Journal of Formalized Mathematics, Index of MML Identifiers


[A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z]


A
ABCMIZ_0,
Grzegorz Bancerek.
On Semilattice Structure of Mizar Types.
ABIAN,
Piotr Rudnicki and Andrzej Trybulec.
Abian's Fixed Point Theorem.
ABSVALUE,
Jan Popiolek.
Some Properties of Functions Modul and Signum.
AFF_1,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Parallelity and Lines in Affine Spaces.
AFF_2,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Classical Configurations in Affine Planes.
AFF_3,
Eugeniusz Kusak, Henryk Oryszczyszyn, and Krzysztof Prazmowski.
Affine Localizations of Desargues Axiom.
AFF_4,
Wojciech Leonczuk, Henryk Oryszczyszyn, and Krzysztof Prazmowski.
Planes in Affine Spaces.
AFINSQ_1,
Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura.
Zero-Based Finite Sequences.
AFPROJ,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
A Projective Closure and Projective Horizon of an Affine Space.
AFVECT0,
Grzegorz Lewandowski, Krzysztof Prazmowski, and Bozena Lewandowska.
Directed Geometrical Bundles and Their Analytical Representation.
AFVECT01,
Barbara Konstanta, Urszula Kowieska, Grzegorz Lewandowski, and Krzysztof Prazmowski.
One-Dimensional Congruence of Segments, Basic Facts and Midpoint Relation.
ALG_1,
Malgorzata Korolkiewicz.
Homomorphisms of Algebras. Quotient Universal Algebra.
ALGSEQ_1,
Michal Muzalewski and Leslaw W. Szczerba.
Construction of Finite Sequence over Ring and Left-, Right-, and Bi-Modules over a Ring.
ALGSPEC1,
Grzegorz Bancerek.
Technical Preliminaries to Algebraic Specifications.
ALGSTR_1,
Michal Muzalewski and Wojciech Skaba.
From Loops to Abelian Multiplicative Groups with Zero.
ALGSTR_2,
Wojciech Skaba and Michal Muzalewski.
From Double Loops to Fields.
ALGSTR_3,
Michal Muzalewski and Wojciech Skaba.
Ternary Fields.
ALI2,
Alicia de la Cruz.
Fix Point Theorem for Compact Spaces.
ALTCAT_1,
Andrzej Trybulec.
Categories without Uniqueness of \rm cod and \rm dom.
ALTCAT_2,
Andrzej Trybulec.
Examples of Category Structures.
ALTCAT_3,
Beata Madras-Kobus.
Basic Properties of Objects and Morphisms.
ALTCAT_4,
Artur Kornilowicz.
On the Categories Without Uniqueness of \bf cod and \bf dom . Some Properties of the Morphisms and the Functors.
AMI_1,
Yatsuka Nakamura and Andrzej Trybulec.
A Mathematical Model of CPU.
AMI_2,
Yatsuka Nakamura and Andrzej Trybulec.
On a Mathematical Model of Programs.
AMI_3,
Andrzej Trybulec and Yatsuka Nakamura.
Some Remarks on the Simple Concrete Model of Computer.
AMI_4,
Andrzej Trybulec and Yatsuka Nakamura.
Euclid's Algorithm.
AMI_5,
Yasushi Tanaka.
On the Decomposition of the States of SCM.
AMI_6,
Artur Kornilowicz.
On the Instructions of SCM.
AMI_7,
Artur Kornilowicz.
Input and Output of Instructions.
AMISTD_1,
Andrzej Trybulec, Piotr Rudnicki, and Artur Kornilowicz.
Standard Ordering of Instruction Locations.
AMISTD_2,
Artur Kornilowicz.
On the Composition of Macro Instructions of Standard Computers.
AMISTD_3,
Artur Kornilowicz.
A Tree of Execution of a Macroinstruction.
ANALMETR,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Analytical Metric Affine Spaces and Planes.
ANALOAF,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Analytical Ordered Affine Spaces.
ANALORT,
Jaroslaw Zajkowski.
Oriented Metric-Affine Plane --- Part I.
ANPROJ_1,
Wojciech Leonczuk and Krzysztof Prazmowski.
A Construction of Analytical Projective Space.
ANPROJ_2,
Wojciech Leonczuk and Krzysztof Prazmowski.
Projective Spaces.
ARITHM,
Library Committee.
Field Properties of Complex Numbers --- Requirements.
ARMSTRNG,
William W. Armstrong, Yatsuka Nakamura, and Piotr Rudnicki.
Armstrong's Axioms.
ARYTM_0,
Andrzej Trybulec.
Introduction to Arithmetics.
ARYTM_1,
Andrzej Trybulec.
Non-Negative Real Numbers. Part II.
ARYTM_2,
Andrzej Trybulec.
Non-Negative Real Numbers. Part I.
ARYTM_3,
Grzegorz Bancerek.
Arithmetic of Non-Negative Rational Numbers.
ASYMPT_0,
Richard Krueger, Piotr Rudnicki, and Paul Shelley.
Asymptotic Notation. Part I: Theory.
ASYMPT_1,
Richard Krueger, Piotr Rudnicki, and Paul Shelley.
Asymptotic Notation. Part II: Examples and Problems.
AUTALG_1,
Artur Kornilowicz.
On the Group of Automorphisms of Universal Algebra and Many Sorted Algebra.
AUTGROUP,
Artur Kornilowicz.
On the Group of Inner Automorphisms.
AXIOMS,
Andrzej Trybulec.
Strong Arithmetic of Real Numbers.
B
BAGORDER,
Gilbert Lee and Piotr Rudnicki.
On Ordering of Bags.
BHSP_1,
Jan Popiolek.
Introduction to Banach and Hilbert Spaces --- Part I.
BHSP_2,
Jan Popiolek.
Introduction to Banach and Hilbert Spaces --- Part II.
BHSP_3,
Jan Popiolek.
Introduction to Banach and Hilbert Spaces --- Part III.
BHSP_4,
Elzbieta Kraszewska and Jan Popiolek.
Series in Banach and Hilbert Spaces.
BHSP_5,
Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura.
Bessel's Inequality.
BHSP_6,
Hiroshi Yamazaki, Yasumasa Suzuki, Takao Inoue, and Yasunari Shidama.
On Some Properties of Real Hilbert Space. Part I.
BHSP_7,
Hiroshi Yamazaki, Yasumasa Suzuki, Takao Inoue, and Yasunari Shidama.
On Some Properties of Real Hilbert Space. Part II.
BILINEAR,
Jaroslaw Kotowicz.
Bilinear Functionals in Vector Spaces.
BINARI_2,
Yasuho Mizuhara and Takaya Nishiyama.
Binary Arithmetics, Addition and Subtraction of Integers.
BINARI_3,
Robert Milewski.
Binary Arithmetics. Binary Sequences.
BINARI_4,
Hisayoshi Kunimune and Yatsuka Nakamura.
A Representation of Integers by Binary Arithmetics and Addition of Integers.
BINARI_5,
Shunichi Kobayashi.
On the Calculus of Binary Arithmetics.
BINARITH,
Takaya Nishiyama and Yasuho Mizuhara.
Binary Arithmetics.
BINOM,
Christoph Schwarzweller.
The Binomial Theorem for Algebraic Structures.
BINOP_1,
Czeslaw Bylinski.
Binary Operations.
BINTREE1,
Grzegorz Bancerek and Piotr Rudnicki.
On Defining Functions on Binary Trees.
BINTREE2,
Robert Milewski.
Full Trees.
BIRKHOFF,
Artur Kornilowicz.
Birkhoff Theorem for Many Sorted Algebras.
BOOLE,
Library Committee.
Boolean Properties of Sets --- Requirements.
BOOLEALG,
Agnieszka Julia Marasik.
Boolean Properties of Lattices.
BOOLMARK,
Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura.
Basic Concepts for Petri Nets with Boolean Markings.
BORSUK_1,
Andrzej Trybulec.
A Borsuk Theorem on Homotopy Types.
BORSUK_2,
Adam Grabowski.
Introduction to the Homotopy Theory.
BORSUK_3,
Adam Grabowski.
Properties of the Product of Compact Topological Spaces.
BORSUK_4,
Adam Grabowski.
On the Decompositions of Intervals and Simple Closed Curves.
BORSUK_5,
Adam Grabowski.
On the Subcontinua of a Real Line.
BVFUNC10,
Shunichi Kobayashi.
Propositional Calculus for Boolean Valued Functions. Part VI.
BVFUNC11,
Shunichi Kobayashi and Yatsuka Nakamura.
Predicate Calculus for Boolean Valued Functions. Part III.
BVFUNC12,
Shunichi Kobayashi and Yatsuka Nakamura.
Predicate Calculus for Boolean Valued Functions. Part IV.
BVFUNC13,
Shunichi Kobayashi and Yatsuka Nakamura.
Predicate Calculus for Boolean Valued Functions. Part V.
BVFUNC14,
Shunichi Kobayashi.
Predicate Calculus for Boolean Valued Functions. Part VI.
BVFUNC22,
Shunichi Kobayashi.
Five Variable Predicate Calculus for Boolean Valued Functions. Part I.
BVFUNC23,
Shunichi Kobayashi.
Six Variable Predicate Calculus for Boolean Valued Functions. Part I.
BVFUNC24,
Shunichi Kobayashi.
Predicate Calculus for Boolean Valued Functions. Part XII.
BVFUNC25,
Shunichi Kobayashi.
Propositional Calculus for Boolean Valued Functions. Part VII.
BVFUNC_1,
Shunichi Kobayashi and Kui Jia.
A Theory of Boolean Valued Functions and Partitions.
BVFUNC_2,
Shunichi Kobayashi and Yatsuka Nakamura.
A Theory of Boolean Valued Functions and Quantifiers with Respect to Partitions.
BVFUNC_3,
Shunichi Kobayashi and Yatsuka Nakamura.
Predicate Calculus for Boolean Valued Functions. Part I.
BVFUNC_4,
Shunichi Kobayashi and Yatsuka Nakamura.
Predicate Calculus for Boolean Valued Functions. Part II.
BVFUNC_5,
Shunichi Kobayashi and Yatsuka Nakamura.
Propositional Calculus for Boolean Valued Functions. Part I.
BVFUNC_6,
Shunichi Kobayashi and Yatsuka Nakamura.
Propositional Calculus for Boolean Valued Functions. Part II.
BVFUNC_7,
Shunichi Kobayashi.
Propositional Calculus for Boolean Valued Functions. Part III.
BVFUNC_8,
Shunichi Kobayashi.
Propositional Calculus for Boolean Valued Functions. Part IV.
BVFUNC_9,
Shunichi Kobayashi.
Propositional Calculus for Boolean Valued Functions. Part V.
C
CANTOR_1,
Alexander Yu. Shibakov and Andrzej Trybulec.
The Cantor Set.
CARD_1,
Grzegorz Bancerek.
Cardinal Numbers.
CARD_2,
Grzegorz Bancerek.
Cardinal Arithmetics.
CARD_3,
Grzegorz Bancerek.
K\"onig's Theorem.
CARD_4,
Grzegorz Bancerek.
Countable Sets and Hessenberg's Theorem.
CARD_5,
Grzegorz Bancerek.
On Powers of Cardinals.
CARD_FIL,
Josef Urban.
Basic Facts about Inaccessible and Measurable Cardinals.
CARD_LAR,
Josef Urban.
Mahlo and Inaccessible Cardinals.
CAT_1,
Czeslaw Bylinski.
Introduction to Categories and Functors.
CAT_2,
Czeslaw Bylinski.
Subcategories and Products of Categories.
CAT_3,
Czeslaw Bylinski.
Products and Coproducts in Categories.
CAT_4,
Czeslaw Bylinski.
Cartesian Categories.
CAT_5,
Grzegorz Bancerek.
Categorial Categories and Slice Categories.
CATALG_1,
Grzegorz Bancerek.
Algebra of Morphisms.
CFCONT_1,
Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama.
Property of Complex Sequence and Continuity of Complex Function.
CFUNCT_1,
Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama.
Property of Complex Functions.
CHAIN_1,
Freek Wiedijk.
Chains on a Grating in Euclidean Space.
CIRCCMB2,
Grzegorz Bancerek, Shin'nosuke Yamaguchi, and Yasunari Shidama.
Combining of Multi Cell Circuits.
CIRCCMB3,
Grzegorz Bancerek and Adam Naumowicz.
Preliminaries to Automatic Generation of Mizar Documentation for Circuits.
CIRCCOMB,
Yatsuka Nakamura and Grzegorz Bancerek.
Combining of Circuits.
CIRCTRM1,
Grzegorz Bancerek.
Circuit Generated by Terms and Circuit Calculating Terms.
CIRCUIT1,
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto.
Introduction to Circuits, I.
CIRCUIT2,
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto.
Introduction to Circuits, II.
CLASSES1,
Grzegorz Bancerek.
Tarski's Classes and Ranks.
CLASSES2,
Bogdan Nowak and Grzegorz Bancerek.
Universal Classes.
CLOSURE1,
Artur Kornilowicz.
On the Many Sorted Closure Operator and the Many Sorted Closure System.
CLOSURE2,
Artur Kornilowicz.
On the Closure Operator and the Closure System of Many Sorted Sets.
CLOSURE3,
Agnieszka Julia Marasik.
Algebraic Operation on Subsets of Many Sorted Sets.
COH_SP,
Jaroslaw Kotowicz and Konrad Raczkowski.
Coherent Space.
COHSP_1,
Grzegorz Bancerek.
Continuous, Stable, and Linear Maps of Coherence Spaces.
COLLSP,
Wojciech Skaba.
The Collinearity Structure.
COMMACAT,
Grzegorz Bancerek and Agata Darmochwal.
Comma Category.
COMPLEX1,
Czeslaw Bylinski.
The Complex Numbers.
COMPLEX2,
Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki.
Inner Products and Angles of Complex Numbers.
COMPLFLD,
Anna Justyna Milewska.
The Field of Complex Numbers.
COMPLSP1,
Czeslaw Bylinski and Andrzej Trybulec.
Complex Spaces.
COMPTRIG,
Robert Milewski.
Trigonometric Form of Complex Numbers.
COMPTS_1,
Agata Darmochwal.
Compact Spaces.
COMPUT_1,
Grzegorz Bancerek and Piotr Rudnicki.
The Set of Primitive Recursive Functions.
COMSEQ_1,
Agnieszka Banachowicz and Anna Winnicka.
Complex Sequences.
COMSEQ_2,
Adam Naumowicz.
Conjugate Sequences, Bounded Complex Sequences and Convergent Complex Sequences.
COMSEQ_3,
Yasunari Shidama and Artur Kornilowicz.
Convergence and the Limit of Complex Sequences. Series.
CONAFFM,
Jolanta Swierzynska and Bogdan Swierzynski.
Metric-Affine Configurations in Metric Affine Planes --- Part I.
CONLAT_1,
Christoph Schwarzweller.
Introduction to Concept Lattices.
CONLAT_2,
Christoph Schwarzweller.
A Characterization of Concept Lattices. Dual Concept Lattices.
CONMETR,
Jolanta Swierzynska and Bogdan Swierzynski.
Metric-Affine Configurations in Metric Affine Planes --- Part II.
CONMETR1,
Jolanta Swierzynska and Bogdan Swierzynski.
Shear Theorems and Their Role in Affine Geometry.
CONNSP_1,
Beata Padlewska.
Connected Spaces.
CONNSP_2,
Beata Padlewska.
Locally Connected Spaces.
CONNSP_3,
Yatsuka Nakamura and Andrzej Trybulec.
Components and Unions of Components.
CONVEX1,
Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama.
Convex Sets and Convex Combinations.
CONVEX2,
Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama.
Some Properties for Convex Combinations.
CONVEX3,
Noboru Endou and Yasunari Shidama.
Convex Hull, Set of Convex Combinations and Convex Cone.
CONVFUN1,
Grigory E. Ivanov.
Definition of Convex Function and Jensen's Inequality.
CQC_LANG,
Czeslaw Bylinski.
A Classical First Order Language.
CQC_SIM1,
Agata Darmochwal and Andrzej Trybulec.
Similarity of Formulae.
CQC_THE1,
Agata Darmochwal.
A First-Order Predicate Calculus.
CQC_THE2,
Agata Darmochwal.
Calculus of Quantifiers. Deduction Theorem.
CQC_THE3,
Oleg Okhotnikov.
Logical Equivalence of Formulae.
D
DECOMP_1,
Marian Przemski.
On the Decomposition of the Continuity.
DICKSON,
Gilbert Lee and Piotr Rudnicki.
Dickson's Lemma.
DIRAF,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Ordered Affine Spaces Defined in Terms of Directed Parallelity --- Part I.
DIRORT,
Jaroslaw Zajkowski.
Oriented Metric-Affine Plane --- Part II.
DOMAIN_1,
Andrzej Trybulec.
Domains and Their Cartesian Products.
DTCONSTR,
Grzegorz Bancerek and Piotr Rudnicki.
On Defining Functions on Trees.
DYNKIN,
Franz Merkl.
Dynkin's Lemma in Measure Theory.
E
E_SIEC,
Waldemar Korczynski.
Definitions of Petri Net. Part II.
ENDALG,
Jaroslaw Gryko.
On the Monoid of Endomorphisms of Universal Algebra and Many Sorted Algebra.
ENS_1,
Czeslaw Bylinski.
Category Ens.
ENUMSET1,
Andrzej Trybulec.
Enumerated Sets.
EQREL_1,
Konrad Raczkowski and Pawel Sadowski.
Equivalence Relations and Classes of Abstraction.
EQUATION,
Artur Kornilowicz.
Equations in Many Sorted Algebras.
EUCLID,
Agata Darmochwal.
The Euclidean Space.
EUCLID_2,
Kanchun and Yatsuka Nakamura.
The Inner Product of Finite Sequences and of Points of $n$-dimensional Topological Space.
EUCLID_3,
Akihiro Kubo and Yatsuka Nakamura.
Angle and Triangle in Euclidian Topological Space.
EUCLID_4,
Akihiro Kubo.
Lines in $n$-Dimensional Euclidean Spaces.
EUCLID_5,
Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura.
Cross Products and Tripple Vector Products in 3-dimensional Euclidian Space.
EUCLMETR,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Fundamental Types of Metric Affine Spaces.
EULER_1,
Yoshinori Fujisawa and Yasushi Fuwa.
The Euler's Function.
EULER_2,
Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu.
Euler's Theorem and Small Fermat's Theorem.
EXTENS_1,
Artur Kornilowicz.
Extensions of Mappings on Generator Set.
EXTREAL1,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Basic Properties of Extended Real Numbers.
EXTREAL2,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Some Properties of Extended Real Numbers Operations: abs, min and max.
F
FACIRC_1,
Grzegorz Bancerek and Yatsuka Nakamura.
Full Adder Circuit. Part I.
FACIRC_2,
Grzegorz Bancerek, Shin'nosuke Yamaguchi, and Katsumi Wasaki.
Full Adder Circuit. Part II.
FCONT_1,
Konrad Raczkowski and Pawel Sadowski.
Real Function Continuity.
FCONT_2,
Jaroslaw Kotowicz and Konrad Raczkowski.
Real Function Uniform Continuity.
FCONT_3,
Jaroslaw Kotowicz.
Monotonic and Continuous Real Function.
FDIFF_1,
Konrad Raczkowski and Pawel Sadowski.
Real Function Differentiability.
FDIFF_2,
Jaroslaw Kotowicz and Konrad Raczkowski.
Real Function Differentiability --- Part II.
FDIFF_3,
Ewa Burakowska and Beata Madras.
Real Function One-Side Differentiability.
FF_SIEC,
Waldemar Korczynski.
Definitions of Petri Net. Part I.
FIB_FUSC,
Grzegorz Bancerek and Piotr Rudnicki.
Two Programs for \bf SCM. Part II - Programs.
FIB_NUM,
Robert M. Solovay.
Fibonacci Numbers.
FILTER_0,
Grzegorz Bancerek.
Filters --- Part I.
FILTER_1,
Grzegorz Bancerek.
Filters - Part II. Quotient Lattices Modulo Filters and Direct Product of Two Lattices.
FILTER_2,
Grzegorz Bancerek.
Ideals.
FIN_TOPO,
Hiroshi Imura and Masayoshi Eguchi.
Finite Topological Spaces.
FINSEQ_1,
Grzegorz Bancerek and Krzysztof Hryniewiecki.
Segments of Natural Numbers and Finite Sequences.
FINSEQ_2,
Czeslaw Bylinski.
Finite Sequences and Tuples of Elements of a Non-empty Sets.
FINSEQ_3,
Wojciech A. Trybulec.
Non-contiguous Substrings and One-to-one Finite Sequences.
FINSEQ_4,
Wojciech A. Trybulec.
Pigeon Hole Principle.
FINSEQ_5,
Czeslaw Bylinski.
Some Properties of Restrictions of Finite Sequences.
FINSEQ_6,
Andrzej Trybulec.
On the Decomposition of Finite Sequences.
FINSEQ_7,
Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura.
On Replace Function and Swap Function for Finite Sequences.
FINSEQOP,
Czeslaw Bylinski.
Binary Operations Applied to Finite Sequences.
FINSET_1,
Agata Darmochwal.
Finite Sets.
FINSOP_1,
Wojciech A. Trybulec.
Binary Operations on Finite Sequences.
FINSUB_1,
Andrzej Trybulec and Agata Darmochwal.
Boolean Domains.
FINTOPO2,
Gang Liu, Yasushi Fuwa, and Masayoshi Eguchi.
Formal Topological Spaces.
FRAENKEL,
Andrzej Trybulec.
Function Domains and Fr\aenkel Operator.
FRECHET,
Bartlomiej Skorulski.
First-countable, Sequential, and Frechet Spaces.
FRECHET2,
Bartlomiej Skorulski.
The Sequential Closure Operator in Sequential and Frechet Spaces.
FREEALG,
Beata Perkowska.
Free Universal Algebra Construction.
FSCIRC_1,
Katsumi Wasaki and Noboru Endou.
Full Subtracter Circuit. Part I.
FSCIRC_2,
Shin'nosuke Yamaguchi, Grzegorz Bancerek, and Katsumi Wasaki.
Full Subtracter Circuit. Part II.
FSM_1,
Miroslava Kaloper and Piotr Rudnicki.
Minimization of Finite State Machines.
FSM_2,
Hisayoshi Kunimune, Grzegorz Bancerek, and Yatsuka Nakamura.
On State Machines of Calculating Type.
FUNCOP_1,
Andrzej Trybulec.
Binary Operations Applied to Functions.
FUNCSDOM,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Real Functions Spaces.
FUNCT_1,
Czeslaw Bylinski.
Functions and Their Basic Properties.
FUNCT_2,
Czeslaw Bylinski.
Functions from a Set to a Set.
FUNCT_3,
Czeslaw Bylinski.
Basic Functions and Operations on Functions.
FUNCT_4,
Czeslaw Bylinski.
The Modification of a Function by a Function and the Iteration of the Composition of a Function.
FUNCT_5,
Grzegorz Bancerek.
Curried and Uncurried Functions.
FUNCT_6,
Grzegorz Bancerek.
Cartesian Product of Functions.
FUNCT_7,
Grzegorz Bancerek and Andrzej Trybulec.
Miscellaneous Facts about Functions.
FUNCTOR0,
Andrzej Trybulec.
Functors for Alternative Categories.
FUNCTOR1,
Claus Zinn and Wolfgang Jaksch.
Basic Properties of Functor Structures.
FUNCTOR2,
Robert Nieszczerzewski.
Category of Functors between Alternative Categories.
FUNCTOR3,
Artur Kornilowicz.
The Composition of Functors and Transformations in Alternative Categories.
FUZZY_1,
Takashi Mitsuishi, Noboru Endou, and Yasunari Shidama.
The Concept of Fuzzy Set and Membership Function and Basic Properties of Fuzzy Set Operation.
FUZZY_2,
Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama.
Basic Properties of Fuzzy Set Operation and Membership Function.
FUZZY_3,
Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama.
The Concept of Fuzzy Relation and Basic Properties of its Operation.
FUZZY_4,
Noboru Endou, Takashi Mitsuishi, and Keiji Ohkubo.
Properties of Fuzzy Relation.
FVSUM_1,
Katarzyna Zawadzka.
Sum and Product of Finite Sequences of Elements of a Field.
G
GATE_1,
Yatsuka Nakamura.
Logic Gates and Logical Equivalence of Adders.
GATE_2,
Yuguang Yang, Katsumi Wasaki, Yasushi Fuwa, and Yatsuka Nakamura.
Correctness of Binary Counter Circuits.
GATE_3,
Yuguang Yang, Katsumi Wasaki, Yasushi Fuwa, and Yatsuka Nakamura.
Correctness of Johnson Counter Circuits.
GATE_4,
Yuguang Yang, Katsumi Wasaki, Yasushi Fuwa, and Yatsuka Nakamura.
Correctness of a Cyclic Redundancy Check Code Generator.
GATE_5,
Hiroshi Yamazaki and Katsumi Wasaki.
The Correctness of the High Speed Array Multiplier Circuits.
GCD_1,
Christoph Schwarzweller.
The Correctness of the Generic Algorithms of Brown and Henrici Concerning Addition and Multiplication in Fraction Fields.
GENEALG1,
Akihiko Uchibori and Noboru Endou.
Basic Properties of Genetic Algorithm.
GEOMTRAP,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
A Construction of Analytical Ordered Trapezium Spaces.
GOBOARD1,
Jaroslaw Kotowicz and Yatsuka Nakamura.
Introduction to Go-Board --- Part I.
GOBOARD2,
Jaroslaw Kotowicz and Yatsuka Nakamura.
Introduction to Go-Board --- Part II.
GOBOARD3,
Jaroslaw Kotowicz and Yatsuka Nakamura.
Properties of Go-Board --- Part III.
GOBOARD4,
Jaroslaw Kotowicz and Yatsuka Nakamura.
Go-Board Theorem.
GOBOARD5,
Yatsuka Nakamura and Andrzej Trybulec.
Decomposing a Go-Board into Cells.
GOBOARD6,
Andrzej Trybulec.
On the Geometry of a Go-Board.
GOBOARD7,
Andrzej Trybulec.
On the Go-Board of a Standard Special Circular Sequence.
GOBOARD8,
Andrzej Trybulec.
More on Segments on a Go-Board.
GOBOARD9,
Andrzej Trybulec.
Left and Right Component of the Complement of a Special Closed Curve.
GOBRD10,
Yatsuka Nakamura and Andrzej Trybulec.
Adjacency Concept for Pairs of Natural Numbers.
GOBRD11,
Yatsuka Nakamura and Andrzej Trybulec.
Some Topological Properties of Cells in $R^2$.
GOBRD12,
Yatsuka Nakamura and Andrzej Trybulec.
The First Part of Jordan's Theorem for Special Polygons.
GOBRD13,
Czeslaw Bylinski.
Some Properties of Cells on Go Board.
GOBRD14,
Artur Kornilowicz.
Properties of Left and Right Components.
GR_CY_1,
Dariusz Surowik.
Cyclic Groups and Some of Their Properties --- Part I.
GR_CY_2,
Dariusz Surowik.
Isomorphisms of Cyclic Groups. Some Properties of Cyclic Groups.
GRAPH_1,
Krzysztof Hryniewiecki.
Graphs.
GRAPH_2,
Yatsuka Nakamura and Piotr Rudnicki.
Vertex Sequences Induced by Chains.
GRAPH_3,
Yatsuka Nakamura and Piotr Rudnicki.
Euler Circuits and Paths.
GRAPH_4,
Yatsuka Nakamura and Piotr Rudnicki.
Oriented Chains.
GRAPH_5,
Jing-Chao Chen and Yatsuka Nakamura.
The Underlying Principle of Dijkstra's Shortest Path Algorithm.
GRAPHSP,
Jing-Chao Chen.
Dijkstra's Shortest Path Algorithm.
GRCAT_1,
Michal Muzalewski.
Categories of Groups.
GRFUNC_1,
Czeslaw Bylinski.
Graphs of Functions.
GROEB_1,
Christoph Schwarzweller.
Characterization and Existence of Gr\"obner Bases.
GROEB_2,
Christoph Schwarzweller.
Construction of Gr\"obner bases. S-Polynomials and Standard Representations.
GROUP_1,
Wojciech A. Trybulec.
Groups.
GROUP_2,
Wojciech A. Trybulec.
Subgroup and Cosets of Subgroups.
GROUP_3,
Wojciech A. Trybulec.
Classes of Conjugation. Normal Subgroups.
GROUP_4,
Wojciech A. Trybulec.
Lattice of Subgroups of a Group. Frattini Subgroup.
GROUP_5,
Wojciech A. Trybulec.
Commutator and Center of a Group.
GROUP_6,
Wojciech A. Trybulec and Michal J. Trybulec.
Homomorphisms and Isomorphisms of Groups. Quotient Group.
GROUP_7,
Artur Kornilowicz.
The Product of the Families of the Groups.
GRSOLV_1,
Katarzyna Zawadzka.
Solvable Groups.
H
HAHNBAN,
Bogdan Nowak and Andrzej Trybulec.
Hahn-Banach Theorem.
HAHNBAN1,
Anna Justyna Milewska.
The Hahn Banach Theorem in the Vector Space over the Field of Complex Numbers.
HAUSDORF,
Adam Grabowski.
On the Hausdorff Distance Between Compact Subsets.
HEINE,
Agata Darmochwal and Yatsuka Nakamura.
Heine--Borel's Covering Theorem.
HERMITAN,
Jaroslaw Kotowicz.
Hermitan Functionals. Canonical Construction of Scalar Product in Quotient Vector Space.
HESSENBE,
Eugeniusz Kusak and Wojciech Leonczuk.
Hessenberg Theorem.
HEYTING1,
Andrzej Trybulec.
Algebra of Normal Forms Is a Heyting Algebra.
HEYTING2,
Adam Grabowski.
Lattice of Substitutions is a Heyting Algebra.
HEYTING3,
Adam Grabowski.
The Incompleteness of the Lattice of Substitutions.
HIDDEN,
Library Committee.
Mizar Built-in Notions.
HILBASIS,
Jonathan Backer and Piotr Rudnicki.
Hilbert Basis Theorem.
HILBERT1,
Adam Grabowski.
Hilbert Positive Propositional Calculus.
HILBERT2,
Andrzej Trybulec.
Defining by Structural Induction in the Positive Propositional Language.
HILBERT3,
Andrzej Trybulec.
The Canonical Formulae.
HOMOTHET,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Homotheties and Shears in Affine Planes.
I
IDEA_1,
Yasushi Fuwa and Yoshinori Fujisawa.
Algebraic Group on Fixed-length Bit Integer and its Adaptation to IDEA Cryptography.
IDEAL_1,
Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller.
Ring Ideals.
INCPROJ,
Wojciech Leonczuk and Krzysztof Prazmowski.
Incidence Projective Spaces.
INCSP_1,
Wojciech A. Trybulec.
Axioms of Incidency.
INDEX_1,
Grzegorz Bancerek.
Indexed Category.
INSTALG1,
Grzegorz Bancerek.
Institution of Many Sorted Algebras. Part I: Signature Reduct of an Algebra.
INT_1,
Michal J. Trybulec.
Integers.
INT_2,
Rafal Kwiatek and Grzegorz Zwara.
The Divisibility of Integers and Integer Relatively Primes.
INT_3,
Christoph Schwarzweller.
The Ring of Integers, Euclidean Rings and Modulo Integers.
INTEGRA1,
Noboru Endou and Artur Kornilowicz.
The Definition of the Riemann Definite Integral and some Related Lemmas.
INTEGRA2,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Scalar Multiple of Riemann Definite Integral.
INTEGRA3,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Darboux's Theorem.
INTEGRA4,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Integrability of Bounded Total Functions.
INTEGRA5,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Definition of Integrability for Partial Functions from $\Bbb R$ to $\Bbb R$ and Integrability for Continuous Functions.
INTPRO_1,
Takao Inoue.
Intuitionistic Propositional Calculus in the Extended Framework with Modal Operator. Part I.
IRRAT_1,
Freek Wiedijk.
Irrationality of $e$.
ISOCAT_1,
Andrzej Trybulec.
Isomorphisms of Categories.
ISOCAT_2,
Andrzej Trybulec.
Some Isomorphisms Between Functor Categories.
J
JCT_MISC,
Andrzej Trybulec.
Some Lemmas for the Jordan Curve Theorem.
JGRAPH_1,
Yatsuka Nakamura.
Graph Theoretical Properties of Arcs in the Plane and Fashoda Meet Theorem.
JGRAPH_2,
Yatsuka Nakamura.
On Outside Fashoda Meet Theorem.
JGRAPH_3,
Yatsuka Nakamura.
On the Simple Closed Curve Property of the Circle and the Fashoda Meet Theorem for It.
JGRAPH_4,
Yatsuka Nakamura.
Fan Homeomorphisms in the Plane.
JGRAPH_5,
Yatsuka Nakamura.
General Fashoda Meet Theorem for Unit Circle.
JGRAPH_6,
Yatsuka Nakamura.
General Fashoda Meet Theorem for Unit Circle and Square.
JORDAN1,
Yatsuka Nakamura and Jaroslaw Kotowicz.
The Jordan's Property for Certain Subsets of the Plane.
JORDAN10,
Artur Kornilowicz.
Properties of the External Approximation of Jordan's Curve.
JORDAN11,
Andrzej Trybulec.
Preparing the Internal Approximations of Simple Closed Curves.
JORDAN12,
Mariusz Giero.
On the General Position of Special Polygons.
JORDAN13,
Andrzej Trybulec.
Introducing Spans.
JORDAN14,
Robert Milewski.
Properties of the Internal Approximation of Jordan's Curve.
JORDAN15,
Robert Milewski.
Properties of the Upper and Lower Sequence on the Cage.
JORDAN16,
Andrzej Trybulec and Yatsuka Nakamura.
On the Decomposition of a Simple Closed Curve into Two Arcs.
JORDAN17,
Artur Kornilowicz.
The Ordering of Points on a Curve. Part III.
JORDAN18,
Artur Kornilowicz.
The Ordering of Points on a Curve. Part IV.
JORDAN19,
Robert Milewski.
On the Upper and Lower Approximations of the Curve.
JORDAN1A,
Artur Kornilowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec.
Gauges and Cages. Part I.
JORDAN1B,
Robert Milewski, Andrzej Trybulec, Artur Kornilowicz, and Adam Naumowicz.
Some Properties of Cells and Arcs.
JORDAN1C,
Adam Grabowski, Artur Kornilowicz, and Andrzej Trybulec.
Some Properties of Cells and Gauges.
JORDAN1D,
Artur Kornilowicz and Robert Milewski.
Gauges and Cages. Part II.
JORDAN1E,
Robert Milewski.
Upper and Lower Sequence of a Cage.
JORDAN1F,
Adam Naumowicz.
Some Remarks on Finite Sequences on Go-Boards.
JORDAN1G,
Robert Milewski.
Upper and Lower Sequence on the Cage. Part II.
JORDAN1H,
Andrzej Trybulec.
More on External Approximation of a Continuum.
JORDAN1I,
Adam Naumowicz and Robert Milewski.
Some Remarks on Clockwise Oriented Sequences on Go-boards.
JORDAN1J,
Robert Milewski.
Upper and Lower Sequence on the Cage, Upper and Lower Arcs.
JORDAN1K,
Andrzej Trybulec.
On the Minimal Distance Between Sets in Euclidean Space.
JORDAN2B,
Roman Matuszewski and Yatsuka Nakamura.
Projections in $n$-Dimensional Euclidean Space to Each Coordinates.
JORDAN2C,
Yatsuka Nakamura, Andrzej Trybulec, and Czeslaw Bylinski.
Bounded Domains and Unbounded Domains.
JORDAN3,
Yatsuka Nakamura and Roman Matuszewski.
Reconstructions of Special Sequences.
JORDAN4,
Yatsuka Nakamura, Roman Matuszewski, and Adam Grabowski.
Subsequences of Standard Special Circular Sequences in $\cal E^2_\rm T$.
JORDAN5A,
Adam Grabowski and Yatsuka Nakamura.
Some Properties of Real Maps.
JORDAN5B,
Adam Grabowski and Yatsuka Nakamura.
The Ordering of Points on a Curve. Part I.
JORDAN5C,
Adam Grabowski and Yatsuka Nakamura.
The Ordering of Points on a Curve. Part II.
JORDAN5D,
Yatsuka Nakamura and Adam Grabowski.
Bounding Boxes for Special Sequences in $\calE^2$.
JORDAN6,
Yatsuka Nakamura and Andrzej Trybulec.
A Decomposition of Simple Closed Curves and the Order of Their Points.
JORDAN7,
Yatsuka Nakamura.
On the Dividing Function of the Simple Closed Curve into Segments.
JORDAN8,
Czeslaw Bylinski.
Gauges.
JORDAN9,
Czeslaw Bylinski and Mariusz Zynel.
Cages - the External Approximation of Jordan's Curve.
JORDAN_A,
Andrzej Trybulec.
On the Segmentation of a Simple Closed Curve.
K
KNASTER,
Piotr Rudnicki and Andrzej Trybulec.
Fixpoints in Complete Lattices.
KURATO_1,
Lilla Krystyna Baginska and Adam Grabowski.
On the Kuratowski Closure-Complement Problem.
KURATO_2,
Adam Grabowski.
On the Kuratowski Limit Operators.
L
L_HOSPIT,
Malgorzata Korolkiewicz.
The de l'Hospital Theorem.
LANG1,
Patricia L. Carlson and Grzegorz Bancerek.
Context-Free Grammar --- Part I.
LATSUBGR,
Janusz Ganczarski.
On the Lattice of Subgroups of a Group.
LATTICE2,
Andrzej Trybulec.
Finite Join and Finite Meet, and Dual Lattices.
LATTICE3,
Grzegorz Bancerek.
Complete Lattices.
LATTICE4,
Jolanta Kamienska and Jaroslaw Stanislaw Walijewski.
Homomorphisms of Lattices, Finite Join and Finite Meet.
LATTICE5,
Jaroslaw Gryko.
The Jonsson Theorem.
LATTICE6,
Christoph Schwarzweller.
Noetherian Lattices.
LATTICE7,
Marek Dudzicz.
Representation Theorem for Finite Distributive Lattices.
LATTICE8,
Mariusz \Lapinski.
The Jonsson Theorem about the Representation of Modular Lattices.
LATTICES,
Stanislaw Zukowski.
Introduction to Lattice Theory.
LFUZZY_0,
Takashi Mitsuishi and Grzegorz Bancerek.
Lattice of Fuzzy Sets.
LFUZZY_1,
Takashi Mitsuishi and Grzegorz Bancerek.
Transitive Closure of Fuzzy Relations.
LIMFUNC1,
Jaroslaw Kotowicz.
The Limit of a Real Function at Infinity.
LIMFUNC2,
Jaroslaw Kotowicz.
The One-Side Limits of a Real Function at a Point.
LIMFUNC3,
Jaroslaw Kotowicz.
The Limit of a Real Function at a Point.
LIMFUNC4,
Jaroslaw Kotowicz.
The Limit of a Composition of Real Functions.
LMOD_5,
Michal Muzalewski and Wojciech Skaba.
Linear Independence in Left Module over Domain.
LMOD_6,
Michal Muzalewski.
Submodules.
LMOD_7,
Michal Muzalewski.
Domains of Submodules, Join and Meet of Finite Sequences of Submodules and Quotient Modules.
LOPBAN_1,
Yasunari Shidama.
Banach Space of Bounded Linear Operators.
LOPCLSET,
Jaroslaw Stanislaw Walijewski.
Representation Theorem for Boolean Algebras.
LUKASI_1,
Grzegorz Bancerek, Agata Darmochwal, and Andrzej Trybulec.
Propositional Calculus.
M
MARGREL1,
Edmund Woronowicz.
Many-Argument Relations.
MATRIX_1,
Katarzyna Jankowska.
Matrices. Abelian Group of Matrices.
MATRIX_2,
Katarzyna Jankowska.
Transpose Matrices and Groups of Permutations.
MATRIX_3,
Katarzyna Zawadzka.
The Product and the Determinant of Matrices with Entries in a Field.
MATRIX_4,
Yatsuka Nakamura and Hiroshi Yamazaki.
Calculation of Matrices of Field Elements. Part I.
MATRLIN,
Robert Milewski.
Associated Matrix of Linear Map.
MBOOLEAN,
Artur Kornilowicz.
Definitions and Basic Properties of Boolean and Union of Many Sorted Sets.
MCART_1,
Andrzej Trybulec.
Tuples, Projections and Cartesian Products.
MCART_2,
Michal Muzalewski and Wojciech Skaba.
$N$-Tuples and Cartesian Products for $n=5$.
MCART_3,
Michal Muzalewski and Wojciech Skaba.
$N$-Tuples and Cartesian Products for $n=6$.
MCART_4,
Michal Muzalewski and Wojciech Skaba.
$N$-Tuples and Cartesian Products for $n=7$.
MCART_5,
Michal Muzalewski and Wojciech Skaba.
$N$-Tuples and Cartesian Products for $n=8$.
MCART_6,
Michal Muzalewski and Wojciech Skaba.
$N$-Tuples and Cartesian Products for $n=9$.
MEASURE1,
Jozef Bialas.
The $\sigma$-additive Measure Theory.
MEASURE2,
Jozef Bialas.
Several Properties of the $\sigma$-additive Measure.
MEASURE3,
Jozef Bialas.
Completeness of the $\sigma$-Additive Measure. Measure Theory.
MEASURE4,
Jozef Bialas.
Properties of Caratheodor's Measure.
MEASURE5,
Jozef Bialas.
Properties of the Intervals of Real Numbers.
MEASURE6,
Jozef Bialas.
Some Properties of the Intervals.
MEASURE7,
Jozef Bialas.
The One-Dimensional Lebesgue Measure.
MEMBERED,
Andrzej Trybulec.
On the Sets Inhabited by Numbers.
MESFUNC1,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Definitions and Basic Properties of Measurable Functions.
MESFUNC2,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
The Measurability of Extended Real Valued Functions.
METRIC_1,
Stanislawa Kanas, Adam Lecko, and Mariusz Startek.
Metric Spaces.
METRIC_2,
Adam Lecko and Mariusz Startek.
On Pseudometric Spaces.
METRIC_3,
Stanislawa Kanas and Jan Stankiewicz.
Metrics in Cartesian Product.
METRIC_4,
Stanislawa Kanas and Adam Lecko.
Metrics in the Cartesian Product --- Part II.
METRIC_6,
Stanislawa Kanas and Adam Lecko.
Sequences in Metric Spaces.
MIDSP_1,
Michal Muzalewski.
Midpoint algebras.
MIDSP_2,
Michal Muzalewski.
Atlas of Midpoint Algebra.
MIDSP_3,
Michal Muzalewski.
Reper Algebras.
MOD_1,
Michal Muzalewski and Wojciech Skaba.
Groups, Rings, Left- and Right-Modules.
MOD_2,
Michal Muzalewski.
Rings and Modules --- Part II.
MOD_3,
Michal Muzalewski.
Free Modules.
MOD_4,
Michal Muzalewski.
Opposite Rings, Modules and Their Morphisms.
MODAL_1,
Alicia de la Cruz.
Introduction to Modal Propositional Logic.
MODCAT_1,
Michal Muzalewski.
Category of Left Modules.
MONOID_0,
Grzegorz Bancerek.
Monoids.
MONOID_1,
Grzegorz Bancerek.
Monoid of Multisets and Subsets.
MSAFREE,
Beata Perkowska.
Free Many Sorted Universal Algebra.
MSAFREE1,
Andrzej Trybulec.
A Scheme for Extensions of Homomorphisms of Many Sorted Algebras.
MSAFREE2,
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto.
Preliminaries to Circuits, II.
MSAFREE3,
Grzegorz Bancerek and Artur Kornilowicz.
Yet Another Construction of Free Algebra.
MSALIMIT,
Adam Grabowski.
Inverse Limits of Many Sorted Algebras.
MSATERM,
Grzegorz Bancerek.
Terms Over Many Sorted Universal Algebra.
MSINST_1,
Adam Grabowski.
Examples of Category Structures.
MSSCYC_1,
Czeslaw Bylinski and Piotr Rudnicki.
The Correspondence Between Monotonic Many Sorted Signatures and Well-Founded Graphs. Part I.
MSSCYC_2,
Czeslaw Bylinski and Piotr Rudnicki.
The Correspondence Between Monotonic Many Sorted Signatures and Well-Founded Graphs. Part II.
MSSUBFAM,
Artur Kornilowicz.
Certain Facts about Families of Subsets of Many Sorted Sets.
MSSUBLAT,
Adam Naumowicz and Agnieszka Julia Marasik.
The Correspondence Between Lattices of Subalgebras of Universal Algebras and Many Sorted Algebras.
MSUALG_1,
Andrzej Trybulec.
Many Sorted Algebras.
MSUALG_2,
Ewa Burakowska.
Subalgebras of Many Sorted Algebra. Lattice of Subalgebras.
MSUALG_3,
Malgorzata Korolkiewicz.
Homomorphisms of Many Sorted Algebras.
MSUALG_4,
Malgorzata Korolkiewicz.
Many Sorted Quotient Algebra.
MSUALG_5,
Robert Milewski.
Lattice of Congruences in Many Sorted Algebra.
MSUALG_6,
Grzegorz Bancerek.
Translations, Endomorphisms, and Stable Equational Theories.
MSUALG_7,
Robert Milewski.
More on the Lattice of Many Sorted Equivalence Relations.
MSUALG_8,
Robert Milewski.
More on the Lattice of Congruences in Many Sorted Algebra.
MSUALG_9,
Artur Kornilowicz.
On the Trivial Many Sorted Algebras and Many Sorted Congruences.
MSUHOM_1,
Adam Grabowski.
The Correspondence Between Homomorphisms of Universal Algebra \& Many Sorted Algebra.
MULTOP_1,
Michal Muzalewski and Wojciech Skaba.
Three-Argument Operations and Four-Argument Operations.
N
NAT_1,
Grzegorz Bancerek.
The Fundamental Properties of Natural Numbers.
NAT_2,
Robert Milewski.
Natural Numbers.
NAT_LAT,
Marek Chmur.
The Lattice of Natural Numbers and The Sublattice of it. The Set of Prime Numbers..
NATTRA_1,
Andrzej Trybulec.
Natural transformations. Discrete categories.
NECKLA_2,
Krzysztof Retel.
The Class of Series-Parallel Graphs. Part II.
NECKLACE,
Krzysztof Retel.
The Class of Series -- Parallel Graphs. Part I.
NET_1,
Waldemar Korczynski.
Some Elementary Notions of the Theory of Petri Nets.
NEWTON,
Rafal Kwiatek.
Factorial and Newton Coefficients.
NORMFORM,
Andrzej Trybulec.
Algebra of Normal Forms.
NORMSP_1,
Jan Popiolek.
Real Normed Space.
NUMBERS,
Andrzej Trybulec.
Subsets of Complex Numbers.
NUMERALS,
Library Committee.
Numerals --- Requirements.
O
O_RING_1,
Michal Muzalewski and Leslaw W. Szczerba.
Ordered Rings - Part I.
O_RING_2,
Michal Muzalewski and Leslaw W. Szczerba.
Ordered Rings - Part II.
O_RING_3,
Michal Muzalewski and Leslaw W. Szczerba.
Ordered Rings - Part III.
OPENLATT,
Jolanta Kamienska.
Representation Theorem for Heyting Lattices.
OPOSET_1,
Markus Moschner.
Basic Notions and Properties of Orthoposets.
OPPCAT_1,
Czeslaw Bylinski.
Opposite Categories and Contravariant Functors.
ORDERS_1,
Wojciech A. Trybulec.
Partially Ordered Sets.
ORDERS_2,
Wojciech A. Trybulec and Grzegorz Bancerek.
Kuratowski - Zorn Lemma.
ORDERS_3,
Adam Grabowski.
On the Category of Posets.
ORDERS_4,
Marta Pruszynska and Marek Dudzicz.
On the Isomorphism between Finite Chains.
ORDINAL1,
Grzegorz Bancerek.
The Ordinal Numbers.
ORDINAL2,
Grzegorz Bancerek.
Sequences of Ordinal Numbers.
ORDINAL3,
Grzegorz Bancerek.
Ordinal Arithmetics.
ORDINAL4,
Grzegorz Bancerek.
Increasing and Continuous Ordinal Sequences.
ORTSP_1,
Eugeniusz Kusak, Wojciech Leonczuk, and Michal Muzalewski.
Construction of a bilinear symmetric form in orthogonal vector space.
OSAFREE,
Josef Urban.
Free Order Sorted Universal Algebra.
OSALG_1,
Josef Urban.
Order Sorted Algebras.
OSALG_2,
Josef Urban.
Subalgebras of an Order Sorted Algebra. Lattice of Subalgebras.
OSALG_3,
Josef Urban.
Homomorphisms of Order Sorted Algebras.
OSALG_4,
Josef Urban.
Order Sorted Quotient Algebra.
P
PAPDESAF,
Krzysztof Prazmowski.
Fanoian, Pappian and Desarguesian Affine Spaces.
PARDEPAP,
Krzysztof Prazmowski and Krzysztof Radziszewski.
Elementary Variants of Affine Configurational Theorems.
PARSP_1,
Eugeniusz Kusak, Wojciech Leonczuk, and Michal Muzalewski.
Parallelity Spaces.
PARSP_2,
Eugeniusz Kusak and Wojciech Leonczuk.
Fano-Desargues Parallelity Spaces.
PARTFUN1,
Czeslaw Bylinski.
Partial Functions.
PARTFUN2,
Jaroslaw Kotowicz.
Partial Functions from a Domain to a Domain.
PARTIT1,
Shunichi Kobayashi and Kui Jia.
A Theory of Partitions. Part I.
PARTIT_2,
Andrzej Trybulec.
Classes of Independent Partitions.
PASCH,
Henryk Oryszczyszyn, Krzysztof Prazmowski, and Malgorzata Prazmowska.
Classical and Non-classical Pasch Configurations in Ordered Affine Planes.
PBOOLE,
Andrzej Trybulec.
Many-sorted Sets.
PCOMPS_1,
Leszek Borys.
Paracompact and Metrizable Spaces.
PCOMPS_2,
Leszek Borys.
On Paracompactness of Metrizable Spaces.
PENCIL_1,
Adam Naumowicz.
On Segre's Product of Partial Line Spaces.
PENCIL_2,
Adam Naumowicz.
On Cosets in Segre's Product of Partial Linear Spaces.
PEPIN,
Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu.
Public-Key Cryptography and Pepin's Test for the Primality of Fermat Numbers.
PETRI,
Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura.
Basic Petri Net Concepts.
PNPROC_1,
Grzegorz Bancerek, Mitsuru Aoki, Akio Matsumoto, and Yasunari Shidama.
Processes in Petri nets.
POLYALG1,
Ewa Gradzka.
The Algebra of Polynomials.
POLYEQ_1,
Xiquan Liang.
Solving Roots of Polynomial Equations of Degree 2 and 3 with Real Coefficients.
POLYEQ_2,
Xiquan Liang.
Solving Roots of Polynomial Equation of Degree 4 with Real Coefficients.
POLYNOM1,
Piotr Rudnicki and Andrzej Trybulec.
Multivariate Polynomials with Arbitrary Number of Variables.
POLYNOM2,
Christoph Schwarzweller and Andrzej Trybulec.
The Evaluation of Multivariate Polynomials.
POLYNOM3,
Robert Milewski.
The Ring of Polynomials.
POLYNOM4,
Robert Milewski.
The Evaluation of Polynomials.
POLYNOM5,
Robert Milewski.
Fundamental Theorem of Algebra.
POLYNOM6,
Barbara Dzienis.
On Polynomials with Coefficients in a Ring of Polynomials.
POLYNOM7,
Christoph Schwarzweller.
More on Multivariate Polynomials: Monomials and Constant Polynomials.
POLYRED,
Christoph Schwarzweller.
Polynomial Reduction.
POWER,
Konrad Raczkowski and Andrzej Nedzusiak.
Real Exponents and Logarithms.
PRALG_1,
Beata Madras.
Product of Family of Universal Algebras.
PRALG_2,
Beata Madras.
Products of Many Sorted Algebras.
PRALG_3,
Mariusz Giero.
More on Products of Many Sorted Algebras.
PRE_CIRC,
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto.
Preliminaries to Circuits, I.
PRE_FF,
Grzegorz Bancerek and Piotr Rudnicki.
Two Programs for \bf SCM. Part I - Preliminaries.
PRE_TOPC,
Beata Padlewska and Agata Darmochwal.
Topological Spaces and Continuous Functions.
PRELAMB,
Wojciech Zielonka.
Preliminaries to the Lambek Calculus.
PREPOWER,
Konrad Raczkowski.
Integer and Rational Exponents.
PRGCOR_1,
Yatsuka Nakamura.
Correctness of Non Overwriting Programs. Part I.
PROB_1,
Andrzej Nedzusiak.
$\sigma$-Fields and Probability.
PROB_2,
Andrzej Nedzusiak.
Probability.
PROCAL_1,
Jan Popiolek and Andrzej Trybulec.
Calculus of Propositions.
PROJDES1,
Eugeniusz Kusak.
Desargues Theorem In Projective 3-Space.
PROJPL_1,
Michal Muzalewski.
Projective Planes.
PROJRED1,
Eugeniusz Kusak and Wojciech Leonczuk.
Incidence Projective Space (a reduction theorem in a plane).
PROJRED2,
Eugeniusz Kusak, Wojciech Leonczuk, and Krzysztof Prazmowski.
On Projections in Projective Planes --- Part II.
PRVECT_1,
Anna Lango and Grzegorz Bancerek.
Product of Families of Groups and Vector Spaces.
PSCOMP_1,
Czeslaw Bylinski and Piotr Rudnicki.
Bounding Boxes for Compact Sets in $\calE^2$.
PUA2MSS1,
Grzegorz Bancerek.
Minimal Signature for Partial Algebra.
PYTHTRIP,
Freek Wiedijk.
Pythagorean Triples.
PZFMISC1,
Artur Kornilowicz.
Some Basic Properties of Many Sorted Sets.
Q
QC_LANG1,
Piotr Rudnicki and Andrzej Trybulec.
A First Order Language.
QC_LANG2,
Grzegorz Bancerek.
Connectives and Subformulae of the First Order Language.
QC_LANG3,
Czeslaw Bylinski and Grzegorz Bancerek.
Variables in Formulae of the First Order Language.
QC_LANG4,
Oleg Okhotnikov.
The Subformula Tree of a Formula of the First Order Language.
QMAX_1,
Pawel Sadowski, Andrzej Trybulec, and Konrad Raczkowski.
The Fundamental Logic Structure in Quantum Mechanics.
QUANTAL1,
Grzegorz Bancerek.
Quantales.
QUIN_1,
Jan Popiolek.
Quadratic Inequalities.
QUOFIELD,
Christoph Schwarzweller.
The Field of Quotients Over an Integral Domain.
R
RADIX_1,
Yoshinori Fujisawa and Yasushi Fuwa.
Definitions of Radix-$2^k$ Signed-Digit Number and its Adder Algorithm.
RADIX_2,
Yasushi Fuwa and Yoshinori Fujisawa.
High-Speed Algorithms for RSA Cryptograms.
RADIX_3,
Masaaki Niimura and Yasushi Fuwa.
Improvement of Radix-$2^k$ Signed-Digit Number for High Speed Circuit.
RADIX_4,
Masaaki Niimura and Yasushi Fuwa.
High Speed Adder Algorithm with Radix-$2^k$ Sub Signed-Digit Number.
RADIX_5,
Masaaki Niimura and Yasushi Fuwa.
Magnitude Relation Properties of Radix-$2^k$ SD Number.
RADIX_6,
Masaaki Niimura and Yasushi Fuwa.
High Speed Modulo Calculation Algorithm with Radix-$2^k$ SD Number.
RAT_1,
Andrzej Kondracki.
Basic Properties of Rational Numbers.
RCOMP_1,
Konrad Raczkowski and Pawel Sadowski.
Topological Properties of Subsets in Real Numbers.
RCOMP_2,
Yatsuka Nakamura.
Half Open Intervals in Real Numbers.
REAL,
Library Committee.
Basic Properties of Real Numbers --- Requirements.
REAL_1,
Krzysztof Hryniewiecki.
Basic Properties of Real Numbers.
REAL_2,
Andrzej Kondracki.
Equalities and Inequalities in Real Numbers.
REAL_LAT,
Marek Chmur.
The Lattice of Real Numbers. The Lattice of Real Functions.
REALSET1,
Jozef Bialas.
Group and Field Definitions.
REALSET2,
Jozef Bialas.
Properties of Fields.
REALSET3,
Jozef Bialas.
Several Properties of Fields. Field Theory.
REARRAN1,
Yuji Sakai and Jaroslaw Kotowicz.
Introduction to Theory of Rearrangement.
RECDEF_1,
Krzysztof Hryniewiecki.
Recursive Definitions.
RELAT_1,
Edmund Woronowicz.
Relations and Their Basic Properties.
RELAT_2,
Edmund Woronowicz and Anna Zalewska.
Properties of Binary Relations.
RELOC,
Yasushi Tanaka.
Relocatability.
RELSET_1,
Edmund Woronowicz.
Relations Defined on Sets.
REVROT_1,
Andrzej Trybulec.
Rotating and Reversing.
REWRITE1,
Grzegorz Bancerek.
Reduction Relations.
RFINSEQ,
Jaroslaw Kotowicz.
Functions and Finite Sequences of Real Numbers.
RFINSEQ2,
Yatsuka Nakamura.
Sorting Operators for Finite Sequences.
RFUNCT_1,
Jaroslaw Kotowicz.
Partial Functions from a Domain to the Set of Real Numbers.
RFUNCT_2,
Jaroslaw Kotowicz.
Properties of Real Functions.
RFUNCT_3,
Jaroslaw Kotowicz and Yuji Sakai.
Properties of Partial Functions from a Domain to the Set of Real Numbers.
RFUNCT_4,
Noboru Endou, Katsumi Wasaki, and Yasunari Shidama.
Introduction to Several Concepts of Convexity and Semicontinuity for Function from $\Bbb R$ to $\Bbb R$.
RINGCAT1,
Michal Muzalewski.
Category of Rings.
RLSUB_1,
Wojciech A. Trybulec.
Subspaces and Cosets of Subspaces in Real Linear Space.
RLSUB_2,
Wojciech A. Trybulec.
Operations on Subspaces in Real Linear Space.
RLVECT_1,
Wojciech A. Trybulec.
Vectors in Real Linear Space.
RLVECT_2,
Wojciech A. Trybulec.
Linear Combinations in Real Linear Space.
RLVECT_3,
Wojciech A. Trybulec.
Basis of Real Linear Space.
RLVECT_4,
Wojciech A. Trybulec.
Subspaces of Real Linear Space Generated by One, Two, or Three Vectors and Their Cosets.
RLVECT_5,
Jing-Chao Chen.
The Steinitz Theorem and the Dimension of a Real Linear Space.
RMOD_2,
Michal Muzalewski and Wojciech Skaba.
Submodules and Cosets of Submodules in Right Module over Associative Ring.
RMOD_3,
Michal Muzalewski and Wojciech Skaba.
Operations on Submodules in Right Module over Associative Ring.
RMOD_4,
Michal Muzalewski and Wojciech Skaba.
Linear Combinations in Right Module over Associative Ring.
RMOD_5,
Michal Muzalewski and Wojciech Skaba.
Linear Independence in Right Module over Domain.
ROBBINS1,
Adam Grabowski.
Robbins Algebras vs. Boolean Algebras.
ROBBINS2,
Wioletta Truszkowska and Adam Grabowski.
On the Two Short Axiomatizations of Ortholattices.
ROLLE,
Jaroslaw Kotowicz, Konrad Raczkowski, and Pawel Sadowski.
Average Value Theorems for Real Functions of One Variable.
ROUGHS_1,
Adam Grabowski.
Basic Properties of Rough Sets and Rough Membership Function.
RPR_1,
Jan Popiolek.
Introduction to Probability.
RSSPACE,
Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama.
Real Linear Space of Real Sequences.
RSSPACE2,
Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama.
Hilbert Space of Real Sequences.
RSSPACE3,
Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama.
Banach Space of Absolute Summable Real Sequences.
RSSPACE4,
Yasumasa Suzuki.
Banach Space of Bounded Real Sequences.
RUSUB_1,
Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama.
Subspaces and Cosets of Subspace of Real Unitary Space.
RUSUB_2,
Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama.
Operations on Subspaces in Real Unitary Space.
RUSUB_3,
Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama.
Linear Combinations in Real Unitary Space.
RUSUB_4,
Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama.
Dimension of Real Unitary Space.
RUSUB_5,
Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama.
Topology of Real Unitary Space.
RVSUM_1,
Czeslaw Bylinski.
The Sum and Product of Finite Sequences of Real Numbers.
S
SCHEME1,
Jaroslaw Kotowicz.
Schemes of Existence of Some Types of Functions.
SCHEMS_1,
Stanislaw T. Czuba.
Schemes.
SCM_1,
Grzegorz Bancerek and Piotr Rudnicki.
Development of Terminology for \bf SCM.
SCM_COMP,
Grzegorz Bancerek and Piotr Rudnicki.
A Compiler of Arithmetic Expressions for SCM.
SCM_HALT,
Jing-Chao Chen and Yatsuka Nakamura.
Initialization Halting Concepts and Their Basic Properties of \SCMFSA.
SCMBSORT,
Jing-Chao Chen and Yatsuka Nakamura.
Bubble Sort on \SCMFSA.
SCMFSA10,
Artur Kornilowicz.
On the Instructions of \SCMFSA.
SCMFSA6A,
Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto.
On the Compositions of Macro Instructions. Part I.
SCMFSA6B,
Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec.
On the Composition of Macro Instructions. Part II.
SCMFSA6C,
Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec.
On the Composition of Macro Instructions. Part III.
SCMFSA7B,
Noriko Asamoto.
Constant Assignment Macro Instructions of \SCMFSA. Part II.
SCMFSA8A,
Noriko Asamoto.
Conditional Branch Macro Instructions of \SCMFSA. Part I.
SCMFSA8B,
Noriko Asamoto.
Conditional Branch Macro Instructions of \SCMFSA. Part II.
SCMFSA8C,
Noriko Asamoto.
The \tt loop and \tt Times Macroinstruction for \SCMFSA.
SCMFSA9A,
Piotr Rudnicki.
The \tt while Macro Instructions of \SCMFSA. Part II.
SCMFSA_1,
Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki.
An Extension of \bf SCM.
SCMFSA_2,
Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki.
The \SCMFSA Computer.
SCMFSA_3,
Andrzej Trybulec and Yatsuka Nakamura.
Computation in \SCMFSA.
SCMFSA_4,
Andrzej Trybulec and Yatsuka Nakamura.
Modifying Addresses of Instructions of \SCMFSA.
SCMFSA_5,
Andrzej Trybulec and Yatsuka Nakamura.
Relocability for \SCMFSA.
SCMFSA_7,
Noriko Asamoto.
Some Multi Instructions Defined by Sequence of Instructions of \SCMFSA.
SCMFSA_9,
Jing-Chao Chen.
While Macro Instructions of \SCMFSA.
SCMISORT,
Jing-Chao Chen.
Insert Sort on \SCMFSA.
SCMP_GCD,
Jing-Chao Chen.
Recursive Euclide Algorithm.
SCMPDS_1,
Jing-Chao Chen.
A Small Computer Model with Push-Down Stack.
SCMPDS_2,
Jing-Chao Chen.
The SCMPDS Computer and the Basic Semantics of its Instructions.
SCMPDS_3,
Jing-Chao Chen.
Computation and Program Shift in the SCMPDS Computer.
SCMPDS_4,
Jing-Chao Chen.
The Construction and Shiftability of Program Blocks for SCMPDS.
SCMPDS_5,
Jing-Chao Chen.
Computation of Two Consecutive Program Blocks for SCMPDS.
SCMPDS_6,
Jing-Chao Chen.
The Construction and Computation of Conditional Statements for SCMPDS.
SCMPDS_7,
Jing-Chao Chen and Piotr Rudnicki.
The Construction and Computation of for-loop Programs for SCMPDS.
SCMPDS_8,
Jing-Chao Chen.
The Construction and Computation of While-Loop Programs for SCMPDS.
SCMPDS_9,
Artur Kornilowicz and Yasunari Shidama.
SCMPDS Is Not Standard.
SCMRING1,
Artur Kornilowicz.
The Construction of \SCM over Ring.
SCMRING2,
Artur Kornilowicz.
The Basic Properties of \SCM over Ring.
SCMRING3,
Artur Kornilowicz.
The Properties of Instructions of SCM over Ring.
SCPINVAR,
Jing-Chao Chen.
Justifying the Correctness of the Fibonacci Sequence and the Euclide Algorithm by Loop-Invariant.
SCPISORT,
Jing-Chao Chen.
Insert Sort on SCMPDS.
SCPQSORT,
Jing-Chao Chen.
Quick Sort on SCMPDS.
SEMI_AF1,
Eugeniusz Kusak and Krzysztof Radziszewski.
Semi-Affine Space.
SEQ_1,
Jaroslaw Kotowicz.
Real Sequences and Basic Operations on Them.
SEQ_2,
Jaroslaw Kotowicz.
Convergent Sequences and the Limit of Sequences.
SEQ_4,
Jaroslaw Kotowicz.
Convergent Real Sequences. Upper and Lower Bound of Sets of Real Numbers.
SEQFUNC,
Beata Perkowska.
Functional Sequence from a Domain to a Domain.
SEQM_3,
Jaroslaw Kotowicz.
Monotone Real Sequences. Subsequences.
SERIES_1,
Konrad Raczkowski and Andrzej Nedzusiak.
Series.
SETFAM_1,
Beata Padlewska.
Families of Sets.
SETWISEO,
Andrzej Trybulec.
Semilattice Operations on Finite Subsets.
SETWOP_2,
Czeslaw Bylinski.
Semigroup Operations on Finite Subsets.
SF_MASTR,
Piotr Rudnicki and Andrzej Trybulec.
Memory Handling for \SCMFSA.
SFMASTR1,
Piotr Rudnicki.
On the Composition of Non-parahalting Macro Instructions.
SFMASTR2,
Piotr Rudnicki.
Another \tt times Macro Instruction.
SFMASTR3,
Piotr Rudnicki.
The \tt for (going up) Macro Instruction.
SGRAPH1,
Yozo Toda.
The Formalization of Simple Graphs.
SIN_COS,
Yuguang Yang and Yasunari Shidama.
Trigonometric Functions and Existence of Circle Ratio.
SIN_COS2,
Takashi Mitsuishi and Yuguang Yang.
Properties of the Trigonometric Function.
SIN_COS3,
Takashi Mitsuishi, Noboru Endou, and Keiji Ohkubo.
Trigonometric Functions on Complex Space.
SPPOL_1,
Yatsuka Nakamura and Czeslaw Bylinski.
Extremal Properties of Vertices on Special Polygons, Part I.
SPPOL_2,
Czeslaw Bylinski and Yatsuka Nakamura.
Special Polygons.
SPRECT_1,
Andrzej Trybulec and Yatsuka Nakamura.
On the Rectangular Finite Sequences of the Points of the Plane.
SPRECT_2,
Andrzej Trybulec and Yatsuka Nakamura.
On the Order on a Special Polygon.
SPRECT_3,
Andrzej Trybulec and Yatsuka Nakamura.
Some Properties of Special Polygonal Curves.
SPRECT_4,
Andrzej Trybulec and Yatsuka Nakamura.
On the Components of the Complement of a Special Polygonal Curve.
SPRECT_5,
Andrzej Trybulec and Yatsuka Nakamura.
Again on the Order on a Special Polygon.
SQUARE_1,
Andrzej Trybulec and Czeslaw Bylinski.
Some Properties of Real Numbers Operations: min, max, square, and square root.
STRUCT_0,
Library Committee.
Preliminaries to Structures.
SUB_METR,
Adam Lecko and Mariusz Startek.
Submetric Spaces --- Part I.
SUBSET,
Library Committee.
Basic Properties of Subsets --- Requirements.
SUBSET_1,
Zinaida Trybulec.
Properties of Subsets.
SUBSTLAT,
Adam Grabowski.
Lattice of Substitutions.
SUPINF_1,
Jozef Bialas.
Infimum and Supremum of the Set of Real Numbers. Measure Theory.
SUPINF_2,
Jozef Bialas.
Series of Positive Real Numbers. Measure Theory.
SYMSP_1,
Eugeniusz Kusak, Wojciech Leonczuk, and Michal Muzalewski.
Construction of a bilinear antisymmetric form in symplectic vector space.
SYSREL,
Waldemar Korczynski.
Some Properties of Binary Relations.
T
T_0TOPSP,
Mariusz Zynel and Adam Guzowski.
\Tzero\ Topological Spaces.
T_1TOPSP,
Adam Naumowicz and Mariusz \Lapinski.
On \Tone\ Reflex of Topological Space.
TARSKI,
Andrzej Trybulec.
Tarski Grothendieck Set Theory.
TAXONOM1,
Mariusz Giero and Roman Matuszewski.
Lower Tolerance. Preliminaries to Wroclaw Taxonomy.
TAXONOM2,
Mariusz Giero.
Hierarchies and Classifications of Sets.
TBSP_1,
Alicia de la Cruz.
Totally Bounded Metric Spaces.
TDGROUP,
Grzegorz Lewandowski and Krzysztof Prazmowski.
A Construction of an Abstract Space of Congruence of Vectors.
TDLAT_1,
Toshihiko Watanabe.
The Lattice of Domains of a Topological Space.
TDLAT_2,
Zbigniew Karno and Toshihiko Watanabe.
Completeness of the Lattices of Domains of a Topological Space.
TDLAT_3,
Zbigniew Karno.
The Lattice of Domains of an Extremally Disconnected Space.
TERMORD,
Christoph Schwarzweller.
Term Orders.
TEX_1,
Zbigniew Karno.
On Discrete and Almost Discrete Topological Spaces.
TEX_2,
Zbigniew Karno.
Maximal Discrete Subspaces of Almost Discrete Topological Spaces.
TEX_3,
Zbigniew Karno.
On Nowhere and Everywhere Dense Subspaces of Topological Spaces.
TEX_4,
Zbigniew Karno.
Maximal Anti-Discrete Subspaces of Topological Spaces.
TMAP_1,
Zbigniew Karno.
Continuity of Mappings over the Union of Subspaces.
TOLER_1,
Krzysztof Hryniewiecki.
Relations of Tolerance.
TOPGRP_1,
Artur Kornilowicz.
The Definition and Basic Properties of Topological Groups.
TOPMETR,
Agata Darmochwal and Yatsuka Nakamura.
Metric Spaces as Topological Spaces --- Fundamental Concepts.
TOPMETR2,
Yatsuka Nakamura and Agata Darmochwal.
Some Facts about Union of Two Functions and Continuity of Union of Functions.
TOPMETR3,
Yatsuka Nakamura and Andrzej Trybulec.
Sequences of Metric Spaces and an Abstract Intermediate Value Theorem.
TOPREAL1,
Agata Darmochwal and Yatsuka Nakamura.
The Topological Space $\calE^2_\rmT$. Arcs, Line Segments and Special Polygonal Arcs.
TOPREAL2,
Agata Darmochwal and Yatsuka Nakamura.
The Topological Space $\calE^2_\rmT$. Simple Closed Curves.
TOPREAL3,
Yatsuka Nakamura and Jaroslaw Kotowicz.
Basic Properties of Connecting Points with Line Segments in $\calE^2_\rmT$.
TOPREAL4,
Yatsuka Nakamura and Jaroslaw Kotowicz.
Connectedness Conditions Using Polygonal Arcs.
TOPREAL5,
Yatsuka Nakamura and Andrzej Trybulec.
Intermediate Value Theorem and Thickness of Simple Closed Curves.
TOPREAL6,
Artur Kornilowicz.
Compactness of the Bounded Closed Subsets of $\cal E^2_\rm T$.
TOPREAL7,
Artur Kornilowicz.
Homeomorphism between [:$\cal E^i_\rm T, \cal E^j_\rm T$:] and $\cal E^i+j_\rm T$.
TOPREAL8,
Andrzej Trybulec.
More on the Finite Sequences on the Plane.
TOPRNS_1,
Agnieszka Sakowicz, Jaroslaw Gryko, and Adam Grabowski.
Sequences in $\calE^N_\rmT$.
TOPS_1,
Miroslaw Wysocki and Agata Darmochwal.
Subsets of Topological Spaces.
TOPS_2,
Agata Darmochwal.
Families of Subsets, Subspaces and Mappings in Topological Spaces.
TOPS_3,
Zbigniew Karno.
Remarks on Special Subsets of Topological Spaces.
TRANSGEO,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Transformations in Affine Spaces.
TRANSLAC,
Henryk Oryszczyszyn and Krzysztof Prazmowski.
Translations in Affine Planes.
TREAL_1,
Toshihiko Watanabe.
The Brouwer Fixed Point Theorem for Intervals.
TREES_1,
Grzegorz Bancerek.
Introduction to Trees.
TREES_2,
Grzegorz Bancerek.
K\"onig's Lemma.
TREES_3,
Grzegorz Bancerek.
Sets and Functions of Trees and Joining Operations of Trees.
TREES_4,
Grzegorz Bancerek.
Joining of Decorated Trees.
TREES_9,
Grzegorz Bancerek.
Subtrees.
TREES_A,
Oleg Okhotnikov.
Replacement of Subtrees in a Tree.
TRIANG_1,
Beata Madras.
On the Concept of the Triangulation.
TSEP_1,
Zbigniew Karno.
Separated and Weakly Separated Subspaces of Topological Spaces.
TSEP_2,
Zbigniew Karno.
On a Duality Between Weakly Separated Subspaces of Topological Spaces.
TSP_1,
Zbigniew Karno.
On Kolmogorov Topological Spaces.
TSP_2,
Zbigniew Karno.
Maximal Kolmogorov Subspaces of a Topological Space as Stone Retracts of the Ambient Space.
TURING_1,
Jing-Chao Chen and Yatsuka Nakamura.
Introduction to Turing Machines.
TWOSCOMP,
Katsumi Wasaki and Pauline N. Kawamoto.
2's Complement Circuit.
U
UNIALG_1,
Jaroslaw Kotowicz, Beata Madras, and Malgorzata Korolkiewicz.
Basic Notation of Universal Algebra.
UNIALG_2,
Ewa Burakowska.
Subalgebras of the Universal Algebra. Lattices of Subalgebras.
UNIALG_3,
Miroslaw Jan Paszek.
On the Lattice of Subalgebras of a Universal Algebra.
UNIFORM1,
Yatsuka Nakamura and Andrzej Trybulec.
Lebesgue's Covering Lemma, Uniform Continuity and Segmentation of Arcs.
UNIROOTS,
Broderic Arneson and Piotr Rudnicki.
Primitive Roots of Unity and Cyclotomic Polynomials.
UPROOTS,
Piotr Rudnicki.
Little Bezout Theorem (Factor Theorem).
URYSOHN1,
Jozef Bialas and Yatsuka Nakamura.
Dyadic Numbers and T$_4$ Topological Spaces.
URYSOHN2,
Jozef Bialas and Yatsuka Nakamura.
Some Properties of Dyadic Numbers and Intervals.
URYSOHN3,
Jozef Bialas and Yatsuka Nakamura.
The Urysohn Lemma.
V
VALUAT_1,
Edmund Woronowicz.
Interpretation and Satisfiability in the First Order Logic.
VECTMETR,
Robert Milewski.
Real Linear-Metric Space and Isometric Functions.
VECTSP10,
Jaroslaw Kotowicz.
Quotient Vector Spaces and Functionals.
VECTSP_1,
Eugeniusz Kusak, Wojciech Leonczuk, and Michal Muzalewski.
Abelian Groups, Fields and Vector Spaces.
VECTSP_2,
Michal Muzalewski.
Construction of Rings and Left-, Right-, and Bi-Modules over a Ring.
VECTSP_3,
Wojciech A. Trybulec.
Finite Sums of Vectors in Vector Space.
VECTSP_4,
Wojciech A. Trybulec.
Subspaces and Cosets of Subspaces in Vector Space.
VECTSP_5,
Wojciech A. Trybulec.
Operations on Subspaces in Vector Space.
VECTSP_6,
Wojciech A. Trybulec.
Linear Combinations in Vector Space.
VECTSP_7,
Wojciech A. Trybulec.
Basis of Vector Space.
VECTSP_8,
Andrzej Iwaniuk.
On the Lattice of Subspaces of a Vector Space.
VECTSP_9,
Mariusz Zynel.
The Steinitz Theorem and the Dimension of a Vector Space.
VFUNCT_1,
Hiroshi Yamazaki and Yasunari Shidama.
Algebra of Vector Functions.
W
WAYBEL10,
Grzegorz Bancerek.
Closure Operators and Subalgebras.
WAYBEL11,
Andrzej Trybulec.
Scott Topology.
WAYBEL12,
Artur Kornilowicz.
On the Baire Category Theorem.
WAYBEL13,
Robert Milewski.
Algebraic and Arithmetic Lattices. Part I.
WAYBEL14,
Czeslaw Bylinski and Piotr Rudnicki.
The Scott Topology. Part II.
WAYBEL15,
Robert Milewski.
Algebraic and Arithmetic Lattices. Part II.
WAYBEL16,
Robert Milewski.
Completely-Irreducible Elements.
WAYBEL17,
Adam Grabowski.
Scott-Continuous Functions.
WAYBEL18,
Jaroslaw Gryko.
Injective Spaces.
WAYBEL19,
Grzegorz Bancerek.
The Lawson Topology.
WAYBEL20,
Piotr Rudnicki.
Kernel Projections and Quotient Lattices.
WAYBEL21,
Grzegorz Bancerek.
Lawson Topology in Continuous Lattices.
WAYBEL22,
Piotr Rudnicki.
Representation Theorem for Free Continuous Lattices.
WAYBEL23,
Robert Milewski.
Bases of Continuous Lattices.
WAYBEL24,
Adam Grabowski.
Scott-Continuous Functions. Part II.
WAYBEL25,
Artur Kornilowicz and Jaroslaw Gryko.
Injective Spaces. Part II.
WAYBEL26,
Grzegorz Bancerek.
Continuous Lattices of Maps between T$_0$ Spaces.
WAYBEL27,
Grzegorz Bancerek and Adam Naumowicz.
Function Spaces in the Category of Directed Suprema Preserving Maps.
WAYBEL28,
Bartlomiej Skorulski.
Lim-Inf Convergence.
WAYBEL29,
Grzegorz Bancerek and Adam Naumowicz.
The Characterization of the Continuity of Topologies.
WAYBEL30,
Artur Kornilowicz.
Meet Continuous Lattices Revisited.
WAYBEL31,
Robert Milewski.
Weights of Continuous Lattices.
WAYBEL32,
Ewa Gradzka.
On the Order-consistent Topology of Complete and Uncomplete Lattices.
WAYBEL33,
Grzegorz Bancerek and Noboru Endou.
Compactness of Lim-inf Topology.
WAYBEL34,
Grzegorz Bancerek.
Duality Based on Galois Connection. Part I.
WAYBEL35,
Artur Kornilowicz.
Morphisms Into Chains. Part I.
WAYBEL_0,
Grzegorz Bancerek.
Directed Sets, Nets, Ideals, Filters, and Maps.
WAYBEL_1,
Czeslaw Bylinski.
Galois Connections.
WAYBEL_2,
Artur Kornilowicz.
Meet -- Continuous Lattices.
WAYBEL_3,
Grzegorz Bancerek.
The ``Way-Below'' Relation.
WAYBEL_4,
Adam Grabowski.
Auxiliary and Approximating Relations.
WAYBEL_5,
Mariusz Zynel.
The Equational Characterization of Continuous Lattices.
WAYBEL_6,
Beata Madras.
Irreducible and Prime Elements.
WAYBEL_7,
Grzegorz Bancerek.
Prime Ideals and Filters.
WAYBEL_8,
Robert Milewski.
Algebraic Lattices.
WAYBEL_9,
Artur Kornilowicz.
On the Topological Properties of Meet-Continuous Lattices.
WEDDWITT,
Broderic Arneson, Matthias Baaz, and Piotr Rudnicki.
Witt's Proof of the Wedderburn Theorem.
WEIERSTR,
Jozef Bialas and Yatsuka Nakamura.
The Theorem of Weierstrass.
WELLFND1,
Piotr Rudnicki and Andrzej Trybulec.
On Same Equivalents of Well-foundedness.
WELLORD1,
Grzegorz Bancerek.
The Well Ordering Relations.
WELLORD2,
Grzegorz Bancerek.
Zermelo Theorem and Axiom of Choice.
WELLSET1,
Bogdan Nowak and Slawomir Bialecki.
Zermelo's Theorem.
WSIERP_1,
Andrzej Kondracki.
The Chinese Remainder Theorem.
X
XBOOLE_0,
Library Committee.
Boolean Properties of Sets --- Definitions.
XBOOLE_1,
Library Committee.
Boolean Properties of Sets --- Theorems.
XCMPLX_0,
Library Committee.
Complex Numbers --- Basic Definitions.
XCMPLX_1,
Library Committee.
Complex Numbers --- Basic Theorems.
XREAL_0,
Library Committee.
Introduction to Arithmetic of Real Numbers.
Y
YELLOW10,
Artur Kornilowicz.
The Properties of Product of Relational Structures.
YELLOW11,
Adam Naumowicz.
On the Characterization of Modular and Distributive Lattices.
YELLOW12,
Artur Kornilowicz.
On the Characterization of Hausdorff Spaces.
YELLOW13,
Artur Kornilowicz.
Introduction to Meet-Continuous Topological Lattices.
YELLOW14,
Jaroslaw Gryko and Artur Kornilowicz.
Some Properties of Isomorphism between Relational Structures. On the Product of Topological Spaces.
YELLOW15,
Robert Milewski.
Components and Basis of Topological Spaces.
YELLOW16,
Grzegorz Bancerek.
Retracts and Inheritance.
YELLOW17,
Bartlomiej Skorulski.
The Tichonov Theorem.
YELLOW18,
Grzegorz Bancerek.
Concrete Categories.
YELLOW19,
Grzegorz Bancerek, Noboru Endou, and Yuji Sakai.
On the Characterizations of Compactness.
YELLOW20,
Grzegorz Bancerek.
Miscellaneous Facts about Functors.
YELLOW21,
Grzegorz Bancerek.
Categorial Background for Duality Theory.
YELLOW_0,
Grzegorz Bancerek.
Bounds in Posets and Relational Substructures.
YELLOW_1,
Adam Grabowski and Robert Milewski.
Boolean Posets, Posets under Inclusion and Products of Relational Structures.
YELLOW_2,
Mariusz Zynel and Czeslaw Bylinski.
Properties of Relational Structures, Posets, Lattices and Maps.
YELLOW_3,
Artur Kornilowicz.
Cartesian Products of Relations and Relational Structures.
YELLOW_4,
Artur Kornilowicz.
Definitions and Properties of the Join and Meet of Subsets.
YELLOW_5,
Agnieszka Julia Marasik.
Miscellaneous Facts about Relation Structure.
YELLOW_6,
Andrzej Trybulec.
Moore-Smith Convergence.
YELLOW_7,
Grzegorz Bancerek.
Duality in Relation Structures.
YELLOW_8,
Andrzej Trybulec.
Baire Spaces, Sober Spaces.
YELLOW_9,
Grzegorz Bancerek.
Bases and Refinements of Topologies.
YONEDA_1,
Miroslaw Wojciechowski.
Yoneda Embedding.
Z
ZF_COLLA,
Grzegorz Bancerek.
The Contraction Lemma.
ZF_FUND1,
Andrzej Kondracki.
Mostowski's Fundamental Operations --- Part I.
ZF_FUND2,
Grzegorz Bancerek and Andrzej Kondracki.
Mostowski's Fundamental Operations --- Part II.
ZF_LANG,
Grzegorz Bancerek.
A Model of ZF Set Theory Language.
ZF_LANG1,
Grzegorz Bancerek.
Replacing of Variables in Formulas of ZF Theory.
ZF_MODEL,
Grzegorz Bancerek.
Models and Satisfiability.
ZF_REFLE,
Grzegorz Bancerek.
The Reflection Theorem.
ZFMISC_1,
Czeslaw Bylinski.
Some Basic Properties of Sets.
ZFMODEL1,
Grzegorz Bancerek.
Properties of ZF Models.
ZFMODEL2,
Grzegorz Bancerek.
Definable Functions.
ZFREFLE1,
Grzegorz Bancerek.
Consequences of the Reflection Theorem.


[Journal of Formalized Mathematics, Mizar Home Page]