[A,
B,
C,
D,
E,
F,
G,
H,
I,
J,
K,
L,
M,
N,
O,
P,
Q,
R,
S,
T,
U,
V,
W,
X,
Y,
Z]
- A
- ABCMIZ_0,
-
Grzegorz Bancerek.
-
On Semilattice Structure of Mizar Types.
- ABIAN,
-
Piotr Rudnicki and
Andrzej Trybulec.
-
Abian's Fixed Point Theorem.
- ABSVALUE,
-
Jan Popiolek.
-
Some Properties of Functions
Modul and Signum.
- AFF_1,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Parallelity and Lines in Affine Spaces.
- AFF_2,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Classical Configurations in Affine Planes.
- AFF_3,
-
Eugeniusz Kusak, Henryk Oryszczyszyn, and
Krzysztof Prazmowski.
-
Affine Localizations of Desargues Axiom.
- AFF_4,
-
Wojciech Leonczuk, Henryk Oryszczyszyn, and
Krzysztof Prazmowski.
-
Planes in Affine Spaces.
- AFINSQ_1,
-
Tetsuya Tsunetou, Grzegorz Bancerek, and
Yatsuka Nakamura.
-
Zero-Based Finite Sequences.
- AFPROJ,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
A Projective Closure and Projective Horizon of an Affine Space.
- AFVECT0,
-
Grzegorz Lewandowski, Krzysztof Prazmowski, and
Bozena Lewandowska.
-
Directed Geometrical Bundles and Their Analytical Representation.
- AFVECT01,
-
Barbara Konstanta, Urszula Kowieska, Grzegorz Lewandowski, and
Krzysztof Prazmowski.
-
One-Dimensional Congruence of Segments, Basic Facts and Midpoint Relation.
- ALG_1,
-
Malgorzata Korolkiewicz.
-
Homomorphisms of Algebras. Quotient Universal Algebra.
- ALGSEQ_1,
-
Michal Muzalewski and
Leslaw W. Szczerba.
-
Construction of Finite Sequence over Ring and Left-, Right-, and Bi-Modules
over a Ring.
- ALGSPEC1,
-
Grzegorz Bancerek.
-
Technical Preliminaries to Algebraic Specifications.
- ALGSTR_1,
-
Michal Muzalewski and
Wojciech Skaba.
-
From Loops to Abelian Multiplicative Groups with Zero.
- ALGSTR_2,
-
Wojciech Skaba and
Michal Muzalewski.
-
From Double Loops to Fields.
- ALGSTR_3,
-
Michal Muzalewski and
Wojciech Skaba.
-
Ternary Fields.
- ALI2,
-
Alicia de la Cruz.
-
Fix Point Theorem for Compact Spaces.
- ALTCAT_1,
-
Andrzej Trybulec.
-
Categories without Uniqueness of \rm cod and \rm dom.
- ALTCAT_2,
-
Andrzej Trybulec.
-
Examples of Category Structures.
- ALTCAT_3,
-
Beata Madras-Kobus.
-
Basic Properties of Objects and Morphisms.
- ALTCAT_4,
-
Artur Kornilowicz.
-
On the Categories Without Uniqueness of \bf cod and \bf dom .
Some Properties of the Morphisms and the Functors.
- AMI_1,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
A Mathematical Model of CPU.
- AMI_2,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
On a Mathematical Model of Programs.
- AMI_3,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
Some Remarks on the Simple Concrete Model of Computer.
- AMI_4,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
Euclid's Algorithm.
- AMI_5,
-
Yasushi Tanaka.
-
On the Decomposition of the States of SCM.
- AMI_6,
-
Artur Kornilowicz.
-
On the Instructions of SCM.
- AMI_7,
-
Artur Kornilowicz.
-
Input and Output of Instructions.
- AMISTD_1,
-
Andrzej Trybulec, Piotr Rudnicki, and
Artur Kornilowicz.
-
Standard Ordering of Instruction Locations.
- AMISTD_2,
-
Artur Kornilowicz.
-
On the Composition of Macro Instructions of Standard Computers.
- AMISTD_3,
-
Artur Kornilowicz.
-
A Tree of Execution of a Macroinstruction.
- ANALMETR,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Analytical Metric Affine Spaces
and Planes.
- ANALOAF,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Analytical Ordered Affine Spaces.
- ANALORT,
-
Jaroslaw Zajkowski.
-
Oriented Metric-Affine Plane --- Part I.
- ANPROJ_1,
-
Wojciech Leonczuk and
Krzysztof Prazmowski.
-
A Construction of Analytical Projective Space.
- ANPROJ_2,
-
Wojciech Leonczuk and
Krzysztof Prazmowski.
-
Projective Spaces.
- ARITHM,
-
Library Committee.
-
Field Properties of Complex Numbers ---
Requirements.
- ARMSTRNG,
-
William W. Armstrong, Yatsuka Nakamura, and
Piotr Rudnicki.
-
Armstrong's Axioms.
- ARYTM_0,
-
Andrzej Trybulec.
-
Introduction to Arithmetics.
- ARYTM_1,
-
Andrzej Trybulec.
-
Non-Negative Real Numbers. Part II.
- ARYTM_2,
-
Andrzej Trybulec.
-
Non-Negative Real Numbers. Part I.
- ARYTM_3,
-
Grzegorz Bancerek.
-
Arithmetic of Non-Negative Rational Numbers.
- ASYMPT_0,
-
Richard Krueger, Piotr Rudnicki, and
Paul Shelley.
-
Asymptotic Notation. Part I: Theory.
- ASYMPT_1,
-
Richard Krueger, Piotr Rudnicki, and
Paul Shelley.
-
Asymptotic Notation. Part II: Examples and Problems.
- AUTALG_1,
-
Artur Kornilowicz.
-
On the Group of Automorphisms of Universal Algebra and
Many Sorted Algebra.
- AUTGROUP,
-
Artur Kornilowicz.
-
On the Group of Inner Automorphisms.
- AXIOMS,
-
Andrzej Trybulec.
-
Strong Arithmetic of Real Numbers.
- B
- BAGORDER,
-
Gilbert Lee and
Piotr Rudnicki.
-
On Ordering of Bags.
- BHSP_1,
-
Jan Popiolek.
-
Introduction to Banach and Hilbert Spaces --- Part I.
- BHSP_2,
-
Jan Popiolek.
-
Introduction to Banach and Hilbert Spaces --- Part II.
- BHSP_3,
-
Jan Popiolek.
-
Introduction to Banach and Hilbert Spaces --- Part III.
- BHSP_4,
-
Elzbieta Kraszewska and
Jan Popiolek.
-
Series in Banach and Hilbert Spaces.
- BHSP_5,
-
Hiroshi Yamazaki, Yasunari Shidama, and
Yatsuka Nakamura.
-
Bessel's Inequality.
- BHSP_6,
-
Hiroshi Yamazaki, Yasumasa Suzuki, Takao Inoue, and
Yasunari Shidama.
-
On Some Properties of Real Hilbert Space. Part I.
- BHSP_7,
-
Hiroshi Yamazaki, Yasumasa Suzuki, Takao Inoue, and
Yasunari Shidama.
-
On Some Properties of Real Hilbert Space. Part II.
- BILINEAR,
-
Jaroslaw Kotowicz.
-
Bilinear Functionals in Vector Spaces.
- BINARI_2,
-
Yasuho Mizuhara and
Takaya Nishiyama.
-
Binary Arithmetics,
Addition and Subtraction of Integers.
- BINARI_3,
-
Robert Milewski.
-
Binary Arithmetics. Binary Sequences.
- BINARI_4,
-
Hisayoshi Kunimune and
Yatsuka Nakamura.
-
A Representation of Integers by Binary Arithmetics and Addition of Integers.
- BINARI_5,
-
Shunichi Kobayashi.
-
On the Calculus of Binary Arithmetics.
- BINARITH,
-
Takaya Nishiyama and
Yasuho Mizuhara.
-
Binary Arithmetics.
- BINOM,
-
Christoph Schwarzweller.
-
The Binomial Theorem for Algebraic Structures.
- BINOP_1,
-
Czeslaw Bylinski.
-
Binary Operations.
- BINTREE1,
-
Grzegorz Bancerek and
Piotr Rudnicki.
-
On Defining Functions on Binary Trees.
- BINTREE2,
-
Robert Milewski.
-
Full Trees.
- BIRKHOFF,
-
Artur Kornilowicz.
-
Birkhoff Theorem for Many Sorted Algebras.
- BOOLE,
-
Library Committee.
-
Boolean Properties of Sets ---
Requirements.
- BOOLEALG,
-
Agnieszka Julia Marasik.
-
Boolean Properties of Lattices.
- BOOLMARK,
-
Pauline N. Kawamoto, Yasushi Fuwa, and
Yatsuka Nakamura.
-
Basic Concepts for Petri Nets with Boolean Markings.
- BORSUK_1,
-
Andrzej Trybulec.
-
A Borsuk Theorem on Homotopy Types.
- BORSUK_2,
-
Adam Grabowski.
-
Introduction to the Homotopy Theory.
- BORSUK_3,
-
Adam Grabowski.
-
Properties of the Product of Compact Topological Spaces.
- BORSUK_4,
-
Adam Grabowski.
-
On the Decompositions of Intervals
and Simple Closed Curves.
- BORSUK_5,
-
Adam Grabowski.
-
On the Subcontinua of a Real Line.
- BVFUNC10,
-
Shunichi Kobayashi.
-
Propositional Calculus for Boolean Valued Functions. Part VI.
- BVFUNC11,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
Predicate Calculus for Boolean Valued Functions. Part III.
- BVFUNC12,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
Predicate Calculus for Boolean Valued Functions. Part IV.
- BVFUNC13,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
Predicate Calculus for Boolean Valued Functions. Part V.
- BVFUNC14,
-
Shunichi Kobayashi.
-
Predicate Calculus for Boolean Valued Functions. Part VI.
- BVFUNC22,
-
Shunichi Kobayashi.
-
Five Variable Predicate Calculus for Boolean Valued Functions. Part I.
- BVFUNC23,
-
Shunichi Kobayashi.
-
Six Variable Predicate Calculus for Boolean Valued Functions. Part I.
- BVFUNC24,
-
Shunichi Kobayashi.
-
Predicate Calculus for Boolean Valued Functions. Part XII.
- BVFUNC25,
-
Shunichi Kobayashi.
-
Propositional Calculus for Boolean Valued Functions. Part VII.
- BVFUNC_1,
-
Shunichi Kobayashi and
Kui Jia.
-
A Theory of Boolean Valued Functions and Partitions.
- BVFUNC_2,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
A Theory of Boolean Valued Functions and Quantifiers
with Respect to Partitions.
- BVFUNC_3,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
Predicate Calculus for Boolean Valued Functions. Part I.
- BVFUNC_4,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
Predicate Calculus for Boolean Valued Functions. Part II.
- BVFUNC_5,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
Propositional Calculus for Boolean Valued Functions. Part I.
- BVFUNC_6,
-
Shunichi Kobayashi and
Yatsuka Nakamura.
-
Propositional Calculus for Boolean Valued Functions. Part II.
- BVFUNC_7,
-
Shunichi Kobayashi.
-
Propositional Calculus for Boolean Valued Functions. Part III.
- BVFUNC_8,
-
Shunichi Kobayashi.
-
Propositional Calculus for Boolean Valued Functions. Part IV.
- BVFUNC_9,
-
Shunichi Kobayashi.
-
Propositional Calculus for Boolean Valued Functions. Part V.
- C
- CANTOR_1,
-
Alexander Yu. Shibakov and
Andrzej Trybulec.
-
The Cantor Set.
- CARD_1,
-
Grzegorz Bancerek.
-
Cardinal Numbers.
- CARD_2,
-
Grzegorz Bancerek.
-
Cardinal Arithmetics.
- CARD_3,
-
Grzegorz Bancerek.
-
K\"onig's Theorem.
- CARD_4,
-
Grzegorz Bancerek.
-
Countable Sets and Hessenberg's Theorem.
- CARD_5,
-
Grzegorz Bancerek.
-
On Powers of Cardinals.
- CARD_FIL,
-
Josef Urban.
-
Basic Facts about Inaccessible and Measurable Cardinals.
- CARD_LAR,
-
Josef Urban.
-
Mahlo and Inaccessible Cardinals.
- CAT_1,
-
Czeslaw Bylinski.
-
Introduction to Categories and Functors.
- CAT_2,
-
Czeslaw Bylinski.
-
Subcategories and Products of Categories.
- CAT_3,
-
Czeslaw Bylinski.
-
Products and Coproducts in Categories.
- CAT_4,
-
Czeslaw Bylinski.
-
Cartesian Categories.
- CAT_5,
-
Grzegorz Bancerek.
-
Categorial Categories and Slice Categories.
- CATALG_1,
-
Grzegorz Bancerek.
-
Algebra of Morphisms.
- CFCONT_1,
-
Takashi Mitsuishi, Katsumi Wasaki, and
Yasunari Shidama.
-
Property of Complex Sequence and Continuity of Complex Function.
- CFUNCT_1,
-
Takashi Mitsuishi, Katsumi Wasaki, and
Yasunari Shidama.
-
Property of Complex Functions.
- CHAIN_1,
-
Freek Wiedijk.
-
Chains on a Grating in Euclidean Space.
- CIRCCMB2,
-
Grzegorz Bancerek, Shin'nosuke Yamaguchi, and
Yasunari Shidama.
-
Combining of Multi Cell Circuits.
- CIRCCMB3,
-
Grzegorz Bancerek and
Adam Naumowicz.
-
Preliminaries to Automatic Generation of Mizar
Documentation for Circuits.
- CIRCCOMB,
-
Yatsuka Nakamura and
Grzegorz Bancerek.
-
Combining of Circuits.
- CIRCTRM1,
-
Grzegorz Bancerek.
-
Circuit Generated by Terms and Circuit Calculating Terms.
- CIRCUIT1,
-
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and
Pauline N. Kawamoto.
-
Introduction to Circuits, I.
- CIRCUIT2,
-
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and
Pauline N. Kawamoto.
-
Introduction to Circuits, II.
- CLASSES1,
-
Grzegorz Bancerek.
-
Tarski's Classes and Ranks.
- CLASSES2,
-
Bogdan Nowak and
Grzegorz Bancerek.
-
Universal Classes.
- CLOSURE1,
-
Artur Kornilowicz.
-
On the Many Sorted Closure Operator
and the Many Sorted Closure System.
- CLOSURE2,
-
Artur Kornilowicz.
-
On the Closure Operator and the Closure System of Many Sorted Sets.
- CLOSURE3,
-
Agnieszka Julia Marasik.
-
Algebraic Operation on Subsets of Many Sorted Sets.
- COH_SP,
-
Jaroslaw Kotowicz and
Konrad Raczkowski.
-
Coherent Space.
- COHSP_1,
-
Grzegorz Bancerek.
-
Continuous, Stable, and Linear Maps of Coherence Spaces.
- COLLSP,
-
Wojciech Skaba.
-
The Collinearity Structure.
- COMMACAT,
-
Grzegorz Bancerek and
Agata Darmochwal.
-
Comma Category.
- COMPLEX1,
-
Czeslaw Bylinski.
-
The Complex Numbers.
- COMPLEX2,
-
Wenpai Chang, Yatsuka Nakamura, and
Piotr Rudnicki.
-
Inner Products and Angles of Complex Numbers.
- COMPLFLD,
-
Anna Justyna Milewska.
-
The Field of Complex Numbers.
- COMPLSP1,
-
Czeslaw Bylinski and
Andrzej Trybulec.
-
Complex Spaces.
- COMPTRIG,
-
Robert Milewski.
-
Trigonometric Form of Complex Numbers.
- COMPTS_1,
-
Agata Darmochwal.
-
Compact Spaces.
- COMPUT_1,
-
Grzegorz Bancerek and
Piotr Rudnicki.
-
The Set of Primitive Recursive Functions.
- COMSEQ_1,
-
Agnieszka Banachowicz and
Anna Winnicka.
-
Complex Sequences.
- COMSEQ_2,
-
Adam Naumowicz.
-
Conjugate Sequences, Bounded Complex Sequences and
Convergent Complex Sequences.
- COMSEQ_3,
-
Yasunari Shidama and
Artur Kornilowicz.
-
Convergence and the Limit of Complex Sequences. Series.
- CONAFFM,
-
Jolanta Swierzynska and
Bogdan Swierzynski.
-
Metric-Affine Configurations in Metric Affine Planes --- Part I.
- CONLAT_1,
-
Christoph Schwarzweller.
-
Introduction to Concept Lattices.
- CONLAT_2,
-
Christoph Schwarzweller.
-
A Characterization of Concept Lattices. Dual Concept Lattices.
- CONMETR,
-
Jolanta Swierzynska and
Bogdan Swierzynski.
-
Metric-Affine Configurations in Metric Affine Planes --- Part II.
- CONMETR1,
-
Jolanta Swierzynska and
Bogdan Swierzynski.
-
Shear Theorems and Their Role in Affine Geometry.
- CONNSP_1,
-
Beata Padlewska.
-
Connected Spaces.
- CONNSP_2,
-
Beata Padlewska.
-
Locally Connected Spaces.
- CONNSP_3,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
Components and Unions of Components.
- CONVEX1,
-
Noboru Endou, Takashi Mitsuishi, and
Yasunari Shidama.
-
Convex Sets and Convex Combinations.
- CONVEX2,
-
Noboru Endou, Yasumasa Suzuki, and
Yasunari Shidama.
-
Some Properties for Convex Combinations.
- CONVEX3,
-
Noboru Endou and
Yasunari Shidama.
-
Convex Hull, Set of Convex Combinations and Convex Cone.
- CONVFUN1,
-
Grigory E. Ivanov.
-
Definition of Convex Function and Jensen's Inequality.
- CQC_LANG,
-
Czeslaw Bylinski.
-
A Classical First Order Language.
- CQC_SIM1,
-
Agata Darmochwal and
Andrzej Trybulec.
-
Similarity of Formulae.
- CQC_THE1,
-
Agata Darmochwal.
-
A First-Order Predicate Calculus.
- CQC_THE2,
-
Agata Darmochwal.
-
Calculus of Quantifiers. Deduction Theorem.
- CQC_THE3,
-
Oleg Okhotnikov.
-
Logical Equivalence of Formulae.
- D
- DECOMP_1,
-
Marian Przemski.
-
On the Decomposition of the Continuity.
- DICKSON,
-
Gilbert Lee and
Piotr Rudnicki.
-
Dickson's Lemma.
- DIRAF,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Ordered Affine Spaces Defined in Terms of Directed Parallelity --- Part I.
- DIRORT,
-
Jaroslaw Zajkowski.
-
Oriented Metric-Affine Plane --- Part II.
- DOMAIN_1,
-
Andrzej Trybulec.
-
Domains and Their Cartesian Products.
- DTCONSTR,
-
Grzegorz Bancerek and
Piotr Rudnicki.
-
On Defining Functions on Trees.
- DYNKIN,
-
Franz Merkl.
-
Dynkin's Lemma in Measure Theory.
- E
- E_SIEC,
-
Waldemar Korczynski.
-
Definitions of Petri Net. Part II.
- ENDALG,
-
Jaroslaw Gryko.
-
On the Monoid of Endomorphisms of Universal Algebra and Many
Sorted Algebra.
- ENS_1,
-
Czeslaw Bylinski.
-
Category Ens.
- ENUMSET1,
-
Andrzej Trybulec.
-
Enumerated Sets.
- EQREL_1,
-
Konrad Raczkowski and
Pawel Sadowski.
-
Equivalence Relations and Classes of Abstraction.
- EQUATION,
-
Artur Kornilowicz.
-
Equations in Many Sorted Algebras.
- EUCLID,
-
Agata Darmochwal.
-
The Euclidean Space.
- EUCLID_2,
-
Kanchun and
Yatsuka Nakamura.
-
The Inner Product of Finite Sequences
and of Points of $n$-dimensional Topological Space.
- EUCLID_3,
-
Akihiro Kubo and
Yatsuka Nakamura.
-
Angle and Triangle in Euclidian Topological Space.
- EUCLID_4,
-
Akihiro Kubo.
-
Lines in $n$-Dimensional Euclidean Spaces.
- EUCLID_5,
-
Kanchun, Hiroshi Yamazaki, and
Yatsuka Nakamura.
-
Cross Products and Tripple Vector Products in 3-dimensional
Euclidian Space.
- EUCLMETR,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Fundamental Types of Metric Affine Spaces.
- EULER_1,
-
Yoshinori Fujisawa and
Yasushi Fuwa.
-
The Euler's Function.
- EULER_2,
-
Yoshinori Fujisawa, Yasushi Fuwa, and
Hidetaka Shimizu.
-
Euler's Theorem and Small Fermat's Theorem.
- EXTENS_1,
-
Artur Kornilowicz.
-
Extensions of Mappings on Generator Set.
- EXTREAL1,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Basic Properties of Extended Real Numbers.
- EXTREAL2,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Some Properties of Extended Real Numbers Operations: abs, min and max.
- F
- FACIRC_1,
-
Grzegorz Bancerek and
Yatsuka Nakamura.
-
Full Adder Circuit. Part I.
- FACIRC_2,
-
Grzegorz Bancerek, Shin'nosuke Yamaguchi, and
Katsumi Wasaki.
-
Full Adder Circuit. Part II.
- FCONT_1,
-
Konrad Raczkowski and
Pawel Sadowski.
-
Real Function Continuity.
- FCONT_2,
-
Jaroslaw Kotowicz and
Konrad Raczkowski.
-
Real Function Uniform Continuity.
- FCONT_3,
-
Jaroslaw Kotowicz.
-
Monotonic and Continuous Real Function.
- FDIFF_1,
-
Konrad Raczkowski and
Pawel Sadowski.
-
Real Function Differentiability.
- FDIFF_2,
-
Jaroslaw Kotowicz and
Konrad Raczkowski.
-
Real Function Differentiability --- Part II.
- FDIFF_3,
-
Ewa Burakowska and
Beata Madras.
-
Real Function One-Side Differentiability.
- FF_SIEC,
-
Waldemar Korczynski.
-
Definitions of Petri Net. Part I.
- FIB_FUSC,
-
Grzegorz Bancerek and
Piotr Rudnicki.
-
Two Programs for \bf SCM. Part II - Programs.
- FIB_NUM,
-
Robert M. Solovay.
-
Fibonacci Numbers.
- FILTER_0,
-
Grzegorz Bancerek.
-
Filters --- Part I.
- FILTER_1,
-
Grzegorz Bancerek.
-
Filters - Part II.
Quotient Lattices Modulo Filters and
Direct Product of Two Lattices.
- FILTER_2,
-
Grzegorz Bancerek.
-
Ideals.
- FIN_TOPO,
-
Hiroshi Imura and
Masayoshi Eguchi.
-
Finite Topological Spaces.
- FINSEQ_1,
-
Grzegorz Bancerek and
Krzysztof Hryniewiecki.
-
Segments of Natural Numbers and Finite Sequences.
- FINSEQ_2,
-
Czeslaw Bylinski.
-
Finite Sequences and
Tuples of Elements of a Non-empty Sets.
- FINSEQ_3,
-
Wojciech A. Trybulec.
-
Non-contiguous Substrings and
One-to-one Finite Sequences.
- FINSEQ_4,
-
Wojciech A. Trybulec.
-
Pigeon Hole Principle.
- FINSEQ_5,
-
Czeslaw Bylinski.
-
Some Properties of Restrictions of Finite Sequences.
- FINSEQ_6,
-
Andrzej Trybulec.
-
On the Decomposition of Finite Sequences.
- FINSEQ_7,
-
Hiroshi Yamazaki, Yoshinori Fujisawa, and
Yatsuka Nakamura.
-
On Replace Function and Swap Function for Finite Sequences.
- FINSEQOP,
-
Czeslaw Bylinski.
-
Binary Operations Applied to Finite Sequences.
- FINSET_1,
-
Agata Darmochwal.
-
Finite Sets.
- FINSOP_1,
-
Wojciech A. Trybulec.
-
Binary Operations on Finite Sequences.
- FINSUB_1,
-
Andrzej Trybulec and
Agata Darmochwal.
-
Boolean Domains.
- FINTOPO2,
-
Gang Liu, Yasushi Fuwa, and
Masayoshi Eguchi.
-
Formal Topological Spaces.
- FRAENKEL,
-
Andrzej Trybulec.
-
Function Domains and Fr\aenkel Operator.
- FRECHET,
-
Bartlomiej Skorulski.
-
First-countable, Sequential, and Frechet Spaces.
- FRECHET2,
-
Bartlomiej Skorulski.
-
The Sequential Closure Operator in Sequential and Frechet Spaces.
- FREEALG,
-
Beata Perkowska.
-
Free Universal Algebra Construction.
- FSCIRC_1,
-
Katsumi Wasaki and
Noboru Endou.
-
Full Subtracter Circuit. Part I.
- FSCIRC_2,
-
Shin'nosuke Yamaguchi, Grzegorz Bancerek, and
Katsumi Wasaki.
-
Full Subtracter Circuit. Part II.
- FSM_1,
-
Miroslava Kaloper and
Piotr Rudnicki.
-
Minimization of Finite State Machines.
- FSM_2,
-
Hisayoshi Kunimune, Grzegorz Bancerek, and
Yatsuka Nakamura.
-
On State Machines of Calculating Type.
- FUNCOP_1,
-
Andrzej Trybulec.
-
Binary Operations Applied to Functions.
- FUNCSDOM,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Real Functions Spaces.
- FUNCT_1,
-
Czeslaw Bylinski.
-
Functions and Their Basic Properties.
- FUNCT_2,
-
Czeslaw Bylinski.
-
Functions from a Set to a Set.
- FUNCT_3,
-
Czeslaw Bylinski.
-
Basic Functions and Operations on Functions.
- FUNCT_4,
-
Czeslaw Bylinski.
-
The Modification of a Function by a Function
and the Iteration of the Composition of a Function.
- FUNCT_5,
-
Grzegorz Bancerek.
-
Curried and Uncurried Functions.
- FUNCT_6,
-
Grzegorz Bancerek.
-
Cartesian Product of Functions.
- FUNCT_7,
-
Grzegorz Bancerek and
Andrzej Trybulec.
-
Miscellaneous Facts about Functions.
- FUNCTOR0,
-
Andrzej Trybulec.
-
Functors for Alternative Categories.
- FUNCTOR1,
-
Claus Zinn and
Wolfgang Jaksch.
-
Basic Properties of Functor Structures.
- FUNCTOR2,
-
Robert Nieszczerzewski.
-
Category of Functors between Alternative Categories.
- FUNCTOR3,
-
Artur Kornilowicz.
-
The Composition of Functors and Transformations in Alternative
Categories.
- FUZZY_1,
-
Takashi Mitsuishi, Noboru Endou, and
Yasunari Shidama.
-
The Concept of Fuzzy Set and Membership Function and Basic Properties of Fuzzy Set Operation.
- FUZZY_2,
-
Takashi Mitsuishi, Katsumi Wasaki, and
Yasunari Shidama.
-
Basic Properties of Fuzzy Set Operation and Membership Function.
- FUZZY_3,
-
Takashi Mitsuishi, Katsumi Wasaki, and
Yasunari Shidama.
-
The Concept of Fuzzy Relation and Basic Properties of its Operation.
- FUZZY_4,
-
Noboru Endou, Takashi Mitsuishi, and
Keiji Ohkubo.
-
Properties of Fuzzy Relation.
- FVSUM_1,
-
Katarzyna Zawadzka.
-
Sum and Product of Finite Sequences of Elements of a Field.
- G
- GATE_1,
-
Yatsuka Nakamura.
-
Logic Gates and Logical Equivalence of Adders.
- GATE_2,
-
Yuguang Yang, Katsumi Wasaki, Yasushi Fuwa, and
Yatsuka Nakamura.
-
Correctness of Binary Counter Circuits.
- GATE_3,
-
Yuguang Yang, Katsumi Wasaki, Yasushi Fuwa, and
Yatsuka Nakamura.
-
Correctness of Johnson Counter Circuits.
- GATE_4,
-
Yuguang Yang, Katsumi Wasaki, Yasushi Fuwa, and
Yatsuka Nakamura.
-
Correctness of a Cyclic Redundancy Check Code Generator.
- GATE_5,
-
Hiroshi Yamazaki and
Katsumi Wasaki.
-
The Correctness of the High Speed Array Multiplier Circuits.
- GCD_1,
-
Christoph Schwarzweller.
-
The Correctness of the Generic Algorithms of Brown and Henrici
Concerning Addition and Multiplication in Fraction Fields.
- GENEALG1,
-
Akihiko Uchibori and
Noboru Endou.
-
Basic Properties of Genetic Algorithm.
- GEOMTRAP,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
A Construction of Analytical Ordered Trapezium Spaces.
- GOBOARD1,
-
Jaroslaw Kotowicz and
Yatsuka Nakamura.
-
Introduction to Go-Board --- Part I.
- GOBOARD2,
-
Jaroslaw Kotowicz and
Yatsuka Nakamura.
-
Introduction to Go-Board --- Part II.
- GOBOARD3,
-
Jaroslaw Kotowicz and
Yatsuka Nakamura.
-
Properties of Go-Board --- Part III.
- GOBOARD4,
-
Jaroslaw Kotowicz and
Yatsuka Nakamura.
-
Go-Board Theorem.
- GOBOARD5,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
Decomposing a Go-Board into Cells.
- GOBOARD6,
-
Andrzej Trybulec.
-
On the Geometry of a Go-Board.
- GOBOARD7,
-
Andrzej Trybulec.
-
On the Go-Board of a Standard Special Circular Sequence.
- GOBOARD8,
-
Andrzej Trybulec.
-
More on Segments on a Go-Board.
- GOBOARD9,
-
Andrzej Trybulec.
-
Left and Right Component of the Complement of a Special Closed Curve.
- GOBRD10,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
Adjacency Concept for Pairs of Natural Numbers.
- GOBRD11,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
Some Topological Properties of Cells in $R^2$.
- GOBRD12,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
The First Part of Jordan's Theorem for Special Polygons.
- GOBRD13,
-
Czeslaw Bylinski.
-
Some Properties of Cells on Go Board.
- GOBRD14,
-
Artur Kornilowicz.
-
Properties of Left and Right Components.
- GR_CY_1,
-
Dariusz Surowik.
-
Cyclic Groups and Some of Their Properties --- Part I.
- GR_CY_2,
-
Dariusz Surowik.
-
Isomorphisms of Cyclic Groups.
Some Properties of Cyclic Groups.
- GRAPH_1,
-
Krzysztof Hryniewiecki.
-
Graphs.
- GRAPH_2,
-
Yatsuka Nakamura and
Piotr Rudnicki.
-
Vertex Sequences Induced by Chains.
- GRAPH_3,
-
Yatsuka Nakamura and
Piotr Rudnicki.
-
Euler Circuits and Paths.
- GRAPH_4,
-
Yatsuka Nakamura and
Piotr Rudnicki.
-
Oriented Chains.
- GRAPH_5,
-
Jing-Chao Chen and
Yatsuka Nakamura.
-
The Underlying Principle of Dijkstra's Shortest Path Algorithm.
- GRAPHSP,
-
Jing-Chao Chen.
-
Dijkstra's Shortest Path Algorithm.
- GRCAT_1,
-
Michal Muzalewski.
-
Categories of Groups.
- GRFUNC_1,
-
Czeslaw Bylinski.
-
Graphs of Functions.
- GROEB_1,
-
Christoph Schwarzweller.
-
Characterization and Existence of Gr\"obner Bases.
- GROEB_2,
-
Christoph Schwarzweller.
-
Construction of Gr\"obner bases.
S-Polynomials and Standard Representations.
- GROUP_1,
-
Wojciech A. Trybulec.
-
Groups.
- GROUP_2,
-
Wojciech A. Trybulec.
-
Subgroup and Cosets of Subgroups.
- GROUP_3,
-
Wojciech A. Trybulec.
-
Classes of Conjugation. Normal Subgroups.
- GROUP_4,
-
Wojciech A. Trybulec.
-
Lattice of Subgroups of a Group. Frattini Subgroup.
- GROUP_5,
-
Wojciech A. Trybulec.
-
Commutator and Center of a Group.
- GROUP_6,
-
Wojciech A. Trybulec and
Michal J. Trybulec.
-
Homomorphisms and Isomorphisms of Groups. Quotient Group.
- GROUP_7,
-
Artur Kornilowicz.
-
The Product of the Families of the Groups.
- GRSOLV_1,
-
Katarzyna Zawadzka.
-
Solvable Groups.
- H
- HAHNBAN,
-
Bogdan Nowak and
Andrzej Trybulec.
-
Hahn-Banach Theorem.
- HAHNBAN1,
-
Anna Justyna Milewska.
-
The Hahn Banach Theorem in the Vector Space over the Field of Complex Numbers.
- HAUSDORF,
-
Adam Grabowski.
-
On the Hausdorff Distance Between Compact Subsets.
- HEINE,
-
Agata Darmochwal and
Yatsuka Nakamura.
-
Heine--Borel's Covering Theorem.
- HERMITAN,
-
Jaroslaw Kotowicz.
-
Hermitan Functionals.
Canonical Construction of Scalar Product in Quotient Vector Space.
- HESSENBE,
-
Eugeniusz Kusak and
Wojciech Leonczuk.
-
Hessenberg Theorem.
- HEYTING1,
-
Andrzej Trybulec.
-
Algebra of Normal Forms Is a Heyting Algebra.
- HEYTING2,
-
Adam Grabowski.
-
Lattice of Substitutions is a Heyting Algebra.
- HEYTING3,
-
Adam Grabowski.
-
The Incompleteness of the Lattice of Substitutions.
- HIDDEN,
-
Library Committee.
-
Mizar Built-in Notions.
- HILBASIS,
-
Jonathan Backer and
Piotr Rudnicki.
-
Hilbert Basis Theorem.
- HILBERT1,
-
Adam Grabowski.
-
Hilbert Positive Propositional Calculus.
- HILBERT2,
-
Andrzej Trybulec.
-
Defining by Structural Induction in the Positive Propositional Language.
- HILBERT3,
-
Andrzej Trybulec.
-
The Canonical Formulae.
- HOMOTHET,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Homotheties and Shears in Affine Planes.
- I
- IDEA_1,
-
Yasushi Fuwa and
Yoshinori Fujisawa.
-
Algebraic Group on Fixed-length Bit Integer and its Adaptation to IDEA Cryptography.
- IDEAL_1,
-
Jonathan Backer, Piotr Rudnicki, and
Christoph Schwarzweller.
-
Ring Ideals.
- INCPROJ,
-
Wojciech Leonczuk and
Krzysztof Prazmowski.
-
Incidence Projective Spaces.
- INCSP_1,
-
Wojciech A. Trybulec.
-
Axioms of Incidency.
- INDEX_1,
-
Grzegorz Bancerek.
-
Indexed Category.
- INSTALG1,
-
Grzegorz Bancerek.
-
Institution of Many Sorted Algebras.
Part I: Signature Reduct of an Algebra.
- INT_1,
-
Michal J. Trybulec.
-
Integers.
- INT_2,
-
Rafal Kwiatek and
Grzegorz Zwara.
-
The Divisibility of Integers and Integer Relatively Primes.
- INT_3,
-
Christoph Schwarzweller.
-
The Ring of Integers, Euclidean Rings and Modulo Integers.
- INTEGRA1,
-
Noboru Endou and
Artur Kornilowicz.
-
The Definition of the Riemann Definite Integral and some Related Lemmas.
- INTEGRA2,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Scalar Multiple of Riemann Definite Integral.
- INTEGRA3,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Darboux's Theorem.
- INTEGRA4,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Integrability of Bounded Total Functions.
- INTEGRA5,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Definition of Integrability for Partial Functions from $\Bbb R$ to $\Bbb R$ and Integrability for Continuous Functions.
- INTPRO_1,
-
Takao Inoue.
-
Intuitionistic Propositional Calculus in the Extended Framework with Modal Operator. Part I.
- IRRAT_1,
-
Freek Wiedijk.
-
Irrationality of $e$.
- ISOCAT_1,
-
Andrzej Trybulec.
-
Isomorphisms of Categories.
- ISOCAT_2,
-
Andrzej Trybulec.
-
Some Isomorphisms Between Functor Categories.
- J
- JCT_MISC,
-
Andrzej Trybulec.
-
Some Lemmas for the Jordan Curve Theorem.
- JGRAPH_1,
-
Yatsuka Nakamura.
-
Graph Theoretical Properties of Arcs in the Plane and Fashoda Meet Theorem.
- JGRAPH_2,
-
Yatsuka Nakamura.
-
On Outside Fashoda Meet Theorem.
- JGRAPH_3,
-
Yatsuka Nakamura.
-
On the Simple Closed Curve Property of the Circle and the Fashoda Meet Theorem for It.
- JGRAPH_4,
-
Yatsuka Nakamura.
-
Fan Homeomorphisms in the Plane.
- JGRAPH_5,
-
Yatsuka Nakamura.
-
General Fashoda Meet Theorem
for Unit Circle.
- JGRAPH_6,
-
Yatsuka Nakamura.
-
General Fashoda Meet Theorem for Unit Circle and Square.
- JORDAN1,
-
Yatsuka Nakamura and
Jaroslaw Kotowicz.
-
The Jordan's Property for Certain Subsets of the Plane.
- JORDAN10,
-
Artur Kornilowicz.
-
Properties of the External Approximation of Jordan's Curve.
- JORDAN11,
-
Andrzej Trybulec.
-
Preparing the Internal Approximations of Simple Closed Curves.
- JORDAN12,
-
Mariusz Giero.
-
On the General Position of Special Polygons.
- JORDAN13,
-
Andrzej Trybulec.
-
Introducing Spans.
- JORDAN14,
-
Robert Milewski.
-
Properties of the Internal Approximation of Jordan's Curve.
- JORDAN15,
-
Robert Milewski.
-
Properties of the Upper and Lower Sequence on the Cage.
- JORDAN16,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
On the Decomposition of a Simple Closed Curve into Two Arcs.
- JORDAN17,
-
Artur Kornilowicz.
-
The Ordering of Points on a Curve.
Part III.
- JORDAN18,
-
Artur Kornilowicz.
-
The Ordering of Points on a Curve.
Part IV.
- JORDAN19,
-
Robert Milewski.
-
On the Upper and Lower Approximations of the Curve.
- JORDAN1A,
-
Artur Kornilowicz, Robert Milewski, Adam Naumowicz, and
Andrzej Trybulec.
-
Gauges and Cages. Part I.
- JORDAN1B,
-
Robert Milewski, Andrzej Trybulec, Artur Kornilowicz, and
Adam Naumowicz.
-
Some Properties of Cells and Arcs.
- JORDAN1C,
-
Adam Grabowski, Artur Kornilowicz, and
Andrzej Trybulec.
-
Some Properties of Cells and Gauges.
- JORDAN1D,
-
Artur Kornilowicz and
Robert Milewski.
-
Gauges and Cages. Part II.
- JORDAN1E,
-
Robert Milewski.
-
Upper and Lower Sequence of a Cage.
- JORDAN1F,
-
Adam Naumowicz.
-
Some Remarks on Finite Sequences on Go-Boards.
- JORDAN1G,
-
Robert Milewski.
-
Upper and Lower Sequence on the Cage. Part II.
- JORDAN1H,
-
Andrzej Trybulec.
-
More on External Approximation of a Continuum.
- JORDAN1I,
-
Adam Naumowicz and
Robert Milewski.
-
Some Remarks on Clockwise Oriented Sequences on Go-boards.
- JORDAN1J,
-
Robert Milewski.
-
Upper and Lower Sequence on the Cage, Upper and Lower Arcs.
- JORDAN1K,
-
Andrzej Trybulec.
-
On the Minimal Distance Between Sets
in Euclidean Space.
- JORDAN2B,
-
Roman Matuszewski and
Yatsuka Nakamura.
-
Projections in $n$-Dimensional Euclidean Space to Each Coordinates.
- JORDAN2C,
-
Yatsuka Nakamura, Andrzej Trybulec, and
Czeslaw Bylinski.
-
Bounded Domains and Unbounded Domains.
- JORDAN3,
-
Yatsuka Nakamura and
Roman Matuszewski.
-
Reconstructions of Special Sequences.
- JORDAN4,
-
Yatsuka Nakamura, Roman Matuszewski, and
Adam Grabowski.
-
Subsequences of Standard Special Circular Sequences in $\cal E^2_\rm T$.
- JORDAN5A,
-
Adam Grabowski and
Yatsuka Nakamura.
-
Some Properties of Real Maps.
- JORDAN5B,
-
Adam Grabowski and
Yatsuka Nakamura.
-
The Ordering of Points on a Curve. Part I.
- JORDAN5C,
-
Adam Grabowski and
Yatsuka Nakamura.
-
The Ordering of Points on a Curve. Part II.
- JORDAN5D,
-
Yatsuka Nakamura and
Adam Grabowski.
-
Bounding Boxes for Special Sequences in $\calE^2$.
- JORDAN6,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
A Decomposition of Simple Closed Curves and the Order of Their Points.
- JORDAN7,
-
Yatsuka Nakamura.
-
On the Dividing Function of the Simple Closed Curve into Segments.
- JORDAN8,
-
Czeslaw Bylinski.
-
Gauges.
- JORDAN9,
-
Czeslaw Bylinski and
Mariusz Zynel.
-
Cages - the External Approximation of Jordan's Curve.
- JORDAN_A,
-
Andrzej Trybulec.
-
On the Segmentation of a Simple Closed Curve.
- K
- KNASTER,
-
Piotr Rudnicki and
Andrzej Trybulec.
-
Fixpoints in Complete Lattices.
- KURATO_1,
-
Lilla Krystyna Baginska and
Adam Grabowski.
-
On the Kuratowski Closure-Complement Problem.
- KURATO_2,
-
Adam Grabowski.
-
On the Kuratowski Limit Operators.
- L
- L_HOSPIT,
-
Malgorzata Korolkiewicz.
-
The de l'Hospital Theorem.
- LANG1,
-
Patricia L. Carlson and
Grzegorz Bancerek.
-
Context-Free Grammar --- Part I.
- LATSUBGR,
-
Janusz Ganczarski.
-
On the Lattice of Subgroups of a Group.
- LATTICE2,
-
Andrzej Trybulec.
-
Finite Join and Finite Meet, and Dual Lattices.
- LATTICE3,
-
Grzegorz Bancerek.
-
Complete Lattices.
- LATTICE4,
-
Jolanta Kamienska and
Jaroslaw Stanislaw Walijewski.
-
Homomorphisms of Lattices,
Finite Join and Finite Meet.
- LATTICE5,
-
Jaroslaw Gryko.
-
The Jonsson Theorem.
- LATTICE6,
-
Christoph Schwarzweller.
-
Noetherian Lattices.
- LATTICE7,
-
Marek Dudzicz.
-
Representation Theorem for Finite Distributive Lattices.
- LATTICE8,
-
Mariusz \Lapinski.
-
The Jonsson Theorem about the Representation of Modular Lattices.
- LATTICES,
-
Stanislaw Zukowski.
-
Introduction to Lattice Theory.
- LFUZZY_0,
-
Takashi Mitsuishi and
Grzegorz Bancerek.
-
Lattice of Fuzzy Sets.
- LFUZZY_1,
-
Takashi Mitsuishi and
Grzegorz Bancerek.
-
Transitive Closure of Fuzzy Relations.
- LIMFUNC1,
-
Jaroslaw Kotowicz.
-
The Limit of a Real Function at Infinity.
- LIMFUNC2,
-
Jaroslaw Kotowicz.
-
The One-Side Limits of a Real Function at a Point.
- LIMFUNC3,
-
Jaroslaw Kotowicz.
-
The Limit of a Real Function at a Point.
- LIMFUNC4,
-
Jaroslaw Kotowicz.
-
The Limit of a Composition of Real Functions.
- LMOD_5,
-
Michal Muzalewski and
Wojciech Skaba.
-
Linear Independence in Left Module over Domain.
- LMOD_6,
-
Michal Muzalewski.
-
Submodules.
- LMOD_7,
-
Michal Muzalewski.
-
Domains of Submodules, Join and Meet
of Finite Sequences of Submodules
and Quotient Modules.
- LOPBAN_1,
-
Yasunari Shidama.
-
Banach Space of Bounded Linear Operators.
- LOPCLSET,
-
Jaroslaw Stanislaw Walijewski.
-
Representation Theorem for Boolean Algebras.
- LUKASI_1,
-
Grzegorz Bancerek, Agata Darmochwal, and
Andrzej Trybulec.
-
Propositional Calculus.
- M
- MARGREL1,
-
Edmund Woronowicz.
-
Many-Argument Relations.
- MATRIX_1,
-
Katarzyna Jankowska.
-
Matrices. Abelian Group of Matrices.
- MATRIX_2,
-
Katarzyna Jankowska.
-
Transpose Matrices and Groups of Permutations.
- MATRIX_3,
-
Katarzyna Zawadzka.
-
The Product and the Determinant of Matrices with Entries in a Field.
- MATRIX_4,
-
Yatsuka Nakamura and
Hiroshi Yamazaki.
-
Calculation of Matrices of Field Elements. Part I.
- MATRLIN,
-
Robert Milewski.
-
Associated Matrix of Linear Map.
- MBOOLEAN,
-
Artur Kornilowicz.
-
Definitions and Basic Properties of Boolean and
Union of Many Sorted Sets.
- MCART_1,
-
Andrzej Trybulec.
-
Tuples, Projections and Cartesian Products.
- MCART_2,
-
Michal Muzalewski and
Wojciech Skaba.
-
$N$-Tuples and Cartesian Products for $n=5$.
- MCART_3,
-
Michal Muzalewski and
Wojciech Skaba.
-
$N$-Tuples and Cartesian Products for $n=6$.
- MCART_4,
-
Michal Muzalewski and
Wojciech Skaba.
-
$N$-Tuples and Cartesian Products for $n=7$.
- MCART_5,
-
Michal Muzalewski and
Wojciech Skaba.
-
$N$-Tuples and Cartesian Products for $n=8$.
- MCART_6,
-
Michal Muzalewski and
Wojciech Skaba.
-
$N$-Tuples and Cartesian Products for $n=9$.
- MEASURE1,
-
Jozef Bialas.
-
The $\sigma$-additive Measure Theory.
- MEASURE2,
-
Jozef Bialas.
-
Several Properties of the $\sigma$-additive Measure.
- MEASURE3,
-
Jozef Bialas.
-
Completeness of the $\sigma$-Additive Measure.
Measure Theory.
- MEASURE4,
-
Jozef Bialas.
-
Properties of Caratheodor's Measure.
- MEASURE5,
-
Jozef Bialas.
-
Properties of the Intervals of Real Numbers.
- MEASURE6,
-
Jozef Bialas.
-
Some Properties of the Intervals.
- MEASURE7,
-
Jozef Bialas.
-
The One-Dimensional Lebesgue Measure.
- MEMBERED,
-
Andrzej Trybulec.
-
On the Sets Inhabited by Numbers.
- MESFUNC1,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Definitions and Basic Properties of Measurable Functions.
- MESFUNC2,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
The Measurability of Extended Real Valued Functions.
- METRIC_1,
-
Stanislawa Kanas, Adam Lecko, and
Mariusz Startek.
-
Metric Spaces.
- METRIC_2,
-
Adam Lecko and
Mariusz Startek.
-
On Pseudometric Spaces.
- METRIC_3,
-
Stanislawa Kanas and
Jan Stankiewicz.
-
Metrics in Cartesian Product.
- METRIC_4,
-
Stanislawa Kanas and
Adam Lecko.
-
Metrics in the Cartesian Product --- Part II.
- METRIC_6,
-
Stanislawa Kanas and
Adam Lecko.
-
Sequences in Metric Spaces.
- MIDSP_1,
-
Michal Muzalewski.
-
Midpoint algebras.
- MIDSP_2,
-
Michal Muzalewski.
-
Atlas of Midpoint Algebra.
- MIDSP_3,
-
Michal Muzalewski.
-
Reper Algebras.
- MOD_1,
-
Michal Muzalewski and
Wojciech Skaba.
-
Groups, Rings, Left- and Right-Modules.
- MOD_2,
-
Michal Muzalewski.
-
Rings and Modules --- Part II.
- MOD_3,
-
Michal Muzalewski.
-
Free Modules.
- MOD_4,
-
Michal Muzalewski.
-
Opposite Rings, Modules and Their Morphisms.
- MODAL_1,
-
Alicia de la Cruz.
-
Introduction to Modal Propositional Logic.
- MODCAT_1,
-
Michal Muzalewski.
-
Category of Left Modules.
- MONOID_0,
-
Grzegorz Bancerek.
-
Monoids.
- MONOID_1,
-
Grzegorz Bancerek.
-
Monoid of Multisets and Subsets.
- MSAFREE,
-
Beata Perkowska.
-
Free Many Sorted Universal Algebra.
- MSAFREE1,
-
Andrzej Trybulec.
-
A Scheme for Extensions of Homomorphisms of Many Sorted Algebras.
- MSAFREE2,
-
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and
Pauline N. Kawamoto.
-
Preliminaries to Circuits, II.
- MSAFREE3,
-
Grzegorz Bancerek and
Artur Kornilowicz.
-
Yet Another Construction of Free Algebra.
- MSALIMIT,
-
Adam Grabowski.
-
Inverse Limits of Many Sorted Algebras.
- MSATERM,
-
Grzegorz Bancerek.
-
Terms Over Many Sorted Universal Algebra.
- MSINST_1,
-
Adam Grabowski.
-
Examples of Category Structures.
- MSSCYC_1,
-
Czeslaw Bylinski and
Piotr Rudnicki.
-
The Correspondence Between Monotonic Many Sorted Signatures
and Well-Founded Graphs. Part I.
- MSSCYC_2,
-
Czeslaw Bylinski and
Piotr Rudnicki.
-
The Correspondence Between Monotonic Many Sorted Signatures
and Well-Founded Graphs. Part II.
- MSSUBFAM,
-
Artur Kornilowicz.
-
Certain Facts about Families of Subsets of Many Sorted Sets.
- MSSUBLAT,
-
Adam Naumowicz and
Agnieszka Julia Marasik.
-
The Correspondence Between Lattices of Subalgebras of
Universal Algebras and Many Sorted Algebras.
- MSUALG_1,
-
Andrzej Trybulec.
-
Many Sorted Algebras.
- MSUALG_2,
-
Ewa Burakowska.
-
Subalgebras of Many Sorted Algebra.
Lattice of Subalgebras.
- MSUALG_3,
-
Malgorzata Korolkiewicz.
-
Homomorphisms of Many Sorted Algebras.
- MSUALG_4,
-
Malgorzata Korolkiewicz.
-
Many Sorted Quotient Algebra.
- MSUALG_5,
-
Robert Milewski.
-
Lattice of Congruences in Many Sorted Algebra.
- MSUALG_6,
-
Grzegorz Bancerek.
-
Translations, Endomorphisms, and Stable Equational Theories.
- MSUALG_7,
-
Robert Milewski.
-
More on the Lattice of Many Sorted Equivalence Relations.
- MSUALG_8,
-
Robert Milewski.
-
More on the Lattice of Congruences in Many Sorted Algebra.
- MSUALG_9,
-
Artur Kornilowicz.
-
On the Trivial Many Sorted Algebras and Many Sorted Congruences.
- MSUHOM_1,
-
Adam Grabowski.
-
The Correspondence Between Homomorphisms of Universal Algebra
\& Many Sorted Algebra.
- MULTOP_1,
-
Michal Muzalewski and
Wojciech Skaba.
-
Three-Argument Operations and Four-Argument Operations.
- N
- NAT_1,
-
Grzegorz Bancerek.
-
The Fundamental Properties of Natural Numbers.
- NAT_2,
-
Robert Milewski.
-
Natural Numbers.
- NAT_LAT,
-
Marek Chmur.
-
The Lattice of Natural Numbers and The Sublattice of it.
The Set of Prime Numbers..
- NATTRA_1,
-
Andrzej Trybulec.
-
Natural transformations.
Discrete categories.
- NECKLA_2,
-
Krzysztof Retel.
-
The Class of Series-Parallel Graphs.
Part II.
- NECKLACE,
-
Krzysztof Retel.
-
The Class of Series -- Parallel Graphs. Part I.
- NET_1,
-
Waldemar Korczynski.
-
Some Elementary Notions of the Theory of Petri Nets.
- NEWTON,
-
Rafal Kwiatek.
-
Factorial and Newton Coefficients.
- NORMFORM,
-
Andrzej Trybulec.
-
Algebra of Normal Forms.
- NORMSP_1,
-
Jan Popiolek.
-
Real Normed Space.
- NUMBERS,
-
Andrzej Trybulec.
-
Subsets of Complex Numbers.
- NUMERALS,
-
Library Committee.
-
Numerals --- Requirements.
- O
- O_RING_1,
-
Michal Muzalewski and
Leslaw W. Szczerba.
-
Ordered Rings - Part I.
- O_RING_2,
-
Michal Muzalewski and
Leslaw W. Szczerba.
-
Ordered Rings - Part II.
- O_RING_3,
-
Michal Muzalewski and
Leslaw W. Szczerba.
-
Ordered Rings - Part III.
- OPENLATT,
-
Jolanta Kamienska.
-
Representation Theorem for Heyting Lattices.
- OPOSET_1,
-
Markus Moschner.
-
Basic Notions and Properties of Orthoposets.
- OPPCAT_1,
-
Czeslaw Bylinski.
-
Opposite Categories and Contravariant Functors.
- ORDERS_1,
-
Wojciech A. Trybulec.
-
Partially Ordered Sets.
- ORDERS_2,
-
Wojciech A. Trybulec and
Grzegorz Bancerek.
-
Kuratowski - Zorn Lemma.
- ORDERS_3,
-
Adam Grabowski.
-
On the Category of Posets.
- ORDERS_4,
-
Marta Pruszynska and
Marek Dudzicz.
-
On the Isomorphism between Finite Chains.
- ORDINAL1,
-
Grzegorz Bancerek.
-
The Ordinal Numbers.
- ORDINAL2,
-
Grzegorz Bancerek.
-
Sequences of Ordinal Numbers.
- ORDINAL3,
-
Grzegorz Bancerek.
-
Ordinal Arithmetics.
- ORDINAL4,
-
Grzegorz Bancerek.
-
Increasing and Continuous Ordinal Sequences.
- ORTSP_1,
-
Eugeniusz Kusak, Wojciech Leonczuk, and
Michal Muzalewski.
-
Construction of a bilinear symmetric form
in orthogonal vector space.
- OSAFREE,
-
Josef Urban.
-
Free Order Sorted Universal Algebra.
- OSALG_1,
-
Josef Urban.
-
Order Sorted Algebras.
- OSALG_2,
-
Josef Urban.
-
Subalgebras of an Order Sorted Algebra. Lattice of Subalgebras.
- OSALG_3,
-
Josef Urban.
-
Homomorphisms of Order Sorted Algebras.
- OSALG_4,
-
Josef Urban.
-
Order Sorted Quotient Algebra.
- P
- PAPDESAF,
-
Krzysztof Prazmowski.
-
Fanoian, Pappian and Desarguesian Affine Spaces.
- PARDEPAP,
-
Krzysztof Prazmowski and
Krzysztof Radziszewski.
-
Elementary Variants of Affine Configurational Theorems.
- PARSP_1,
-
Eugeniusz Kusak, Wojciech Leonczuk, and
Michal Muzalewski.
-
Parallelity Spaces.
- PARSP_2,
-
Eugeniusz Kusak and
Wojciech Leonczuk.
-
Fano-Desargues Parallelity Spaces.
- PARTFUN1,
-
Czeslaw Bylinski.
-
Partial Functions.
- PARTFUN2,
-
Jaroslaw Kotowicz.
-
Partial Functions from a Domain to a Domain.
- PARTIT1,
-
Shunichi Kobayashi and
Kui Jia.
-
A Theory of Partitions. Part I.
- PARTIT_2,
-
Andrzej Trybulec.
-
Classes of Independent Partitions.
- PASCH,
-
Henryk Oryszczyszyn, Krzysztof Prazmowski, and
Malgorzata Prazmowska.
-
Classical and Non-classical Pasch Configurations
in Ordered Affine Planes.
- PBOOLE,
-
Andrzej Trybulec.
-
Many-sorted Sets.
- PCOMPS_1,
-
Leszek Borys.
-
Paracompact and Metrizable Spaces.
- PCOMPS_2,
-
Leszek Borys.
-
On Paracompactness of Metrizable Spaces.
- PENCIL_1,
-
Adam Naumowicz.
-
On Segre's Product of Partial Line Spaces.
- PENCIL_2,
-
Adam Naumowicz.
-
On Cosets in Segre's Product of Partial Linear Spaces.
- PEPIN,
-
Yoshinori Fujisawa, Yasushi Fuwa, and
Hidetaka Shimizu.
-
Public-Key Cryptography and Pepin's Test for the Primality of Fermat Numbers.
- PETRI,
-
Pauline N. Kawamoto, Yasushi Fuwa, and
Yatsuka Nakamura.
-
Basic Petri Net Concepts.
- PNPROC_1,
-
Grzegorz Bancerek, Mitsuru Aoki, Akio Matsumoto, and
Yasunari Shidama.
-
Processes in Petri nets.
- POLYALG1,
-
Ewa Gradzka.
-
The Algebra of Polynomials.
- POLYEQ_1,
-
Xiquan Liang.
-
Solving Roots of Polynomial Equations of Degree 2 and 3 with Real Coefficients.
- POLYEQ_2,
-
Xiquan Liang.
-
Solving Roots of Polynomial Equation
of Degree 4 with Real Coefficients.
- POLYNOM1,
-
Piotr Rudnicki and
Andrzej Trybulec.
-
Multivariate Polynomials
with Arbitrary Number of Variables.
- POLYNOM2,
-
Christoph Schwarzweller and
Andrzej Trybulec.
-
The Evaluation of Multivariate Polynomials.
- POLYNOM3,
-
Robert Milewski.
-
The Ring of Polynomials.
- POLYNOM4,
-
Robert Milewski.
-
The Evaluation of Polynomials.
- POLYNOM5,
-
Robert Milewski.
-
Fundamental Theorem of Algebra.
- POLYNOM6,
-
Barbara Dzienis.
-
On Polynomials with Coefficients in a Ring of Polynomials.
- POLYNOM7,
-
Christoph Schwarzweller.
-
More on Multivariate Polynomials: Monomials and Constant Polynomials.
- POLYRED,
-
Christoph Schwarzweller.
-
Polynomial Reduction.
- POWER,
-
Konrad Raczkowski and
Andrzej Nedzusiak.
-
Real Exponents and Logarithms.
- PRALG_1,
-
Beata Madras.
-
Product of Family of Universal Algebras.
- PRALG_2,
-
Beata Madras.
-
Products of Many Sorted Algebras.
- PRALG_3,
-
Mariusz Giero.
-
More on Products of Many Sorted Algebras.
- PRE_CIRC,
-
Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and
Pauline N. Kawamoto.
-
Preliminaries to Circuits, I.
- PRE_FF,
-
Grzegorz Bancerek and
Piotr Rudnicki.
-
Two Programs for \bf SCM. Part I - Preliminaries.
- PRE_TOPC,
-
Beata Padlewska and
Agata Darmochwal.
-
Topological Spaces and Continuous Functions.
- PRELAMB,
-
Wojciech Zielonka.
-
Preliminaries to the Lambek Calculus.
- PREPOWER,
-
Konrad Raczkowski.
-
Integer and Rational Exponents.
- PRGCOR_1,
-
Yatsuka Nakamura.
-
Correctness of Non Overwriting Programs. Part I.
- PROB_1,
-
Andrzej Nedzusiak.
-
$\sigma$-Fields and Probability.
- PROB_2,
-
Andrzej Nedzusiak.
-
Probability.
- PROCAL_1,
-
Jan Popiolek and
Andrzej Trybulec.
-
Calculus of Propositions.
- PROJDES1,
-
Eugeniusz Kusak.
-
Desargues Theorem In Projective 3-Space.
- PROJPL_1,
-
Michal Muzalewski.
-
Projective Planes.
- PROJRED1,
-
Eugeniusz Kusak and
Wojciech Leonczuk.
-
Incidence Projective Space (a reduction theorem in a plane).
- PROJRED2,
-
Eugeniusz Kusak, Wojciech Leonczuk, and
Krzysztof Prazmowski.
-
On Projections in Projective Planes --- Part II.
- PRVECT_1,
-
Anna Lango and
Grzegorz Bancerek.
-
Product of Families of Groups and Vector Spaces.
- PSCOMP_1,
-
Czeslaw Bylinski and
Piotr Rudnicki.
-
Bounding Boxes for Compact Sets in $\calE^2$.
- PUA2MSS1,
-
Grzegorz Bancerek.
-
Minimal Signature for Partial Algebra.
- PYTHTRIP,
-
Freek Wiedijk.
-
Pythagorean Triples.
- PZFMISC1,
-
Artur Kornilowicz.
-
Some Basic Properties of Many Sorted Sets.
- Q
- QC_LANG1,
-
Piotr Rudnicki and
Andrzej Trybulec.
-
A First Order Language.
- QC_LANG2,
-
Grzegorz Bancerek.
-
Connectives and Subformulae of the First Order Language.
- QC_LANG3,
-
Czeslaw Bylinski and
Grzegorz Bancerek.
-
Variables in Formulae of the First Order Language.
- QC_LANG4,
-
Oleg Okhotnikov.
-
The Subformula Tree of a Formula of the First Order Language.
- QMAX_1,
-
Pawel Sadowski, Andrzej Trybulec, and
Konrad Raczkowski.
-
The Fundamental Logic Structure in Quantum Mechanics.
- QUANTAL1,
-
Grzegorz Bancerek.
-
Quantales.
- QUIN_1,
-
Jan Popiolek.
-
Quadratic Inequalities.
- QUOFIELD,
-
Christoph Schwarzweller.
-
The Field of Quotients Over an Integral Domain.
- R
- RADIX_1,
-
Yoshinori Fujisawa and
Yasushi Fuwa.
-
Definitions of Radix-$2^k$ Signed-Digit Number and its Adder Algorithm.
- RADIX_2,
-
Yasushi Fuwa and
Yoshinori Fujisawa.
-
High-Speed Algorithms for RSA Cryptograms.
- RADIX_3,
-
Masaaki Niimura and
Yasushi Fuwa.
-
Improvement of Radix-$2^k$ Signed-Digit Number for High Speed Circuit.
- RADIX_4,
-
Masaaki Niimura and
Yasushi Fuwa.
-
High Speed Adder Algorithm with Radix-$2^k$ Sub Signed-Digit Number.
- RADIX_5,
-
Masaaki Niimura and
Yasushi Fuwa.
-
Magnitude Relation Properties of Radix-$2^k$ SD Number.
- RADIX_6,
-
Masaaki Niimura and
Yasushi Fuwa.
-
High Speed Modulo Calculation Algorithm with Radix-$2^k$ SD Number.
- RAT_1,
-
Andrzej Kondracki.
-
Basic Properties of Rational Numbers.
- RCOMP_1,
-
Konrad Raczkowski and
Pawel Sadowski.
-
Topological Properties of Subsets in Real Numbers.
- RCOMP_2,
-
Yatsuka Nakamura.
-
Half Open Intervals in Real Numbers.
- REAL,
-
Library Committee.
-
Basic Properties of Real Numbers ---
Requirements.
- REAL_1,
-
Krzysztof Hryniewiecki.
-
Basic Properties of Real Numbers.
- REAL_2,
-
Andrzej Kondracki.
-
Equalities and Inequalities in Real Numbers.
- REAL_LAT,
-
Marek Chmur.
-
The Lattice of Real Numbers.
The Lattice of Real Functions.
- REALSET1,
-
Jozef Bialas.
-
Group and Field Definitions.
- REALSET2,
-
Jozef Bialas.
-
Properties of Fields.
- REALSET3,
-
Jozef Bialas.
-
Several Properties of Fields. Field Theory.
- REARRAN1,
-
Yuji Sakai and
Jaroslaw Kotowicz.
-
Introduction to Theory of Rearrangement.
- RECDEF_1,
-
Krzysztof Hryniewiecki.
-
Recursive Definitions.
- RELAT_1,
-
Edmund Woronowicz.
-
Relations and Their Basic Properties.
- RELAT_2,
-
Edmund Woronowicz and
Anna Zalewska.
-
Properties of Binary Relations.
- RELOC,
-
Yasushi Tanaka.
-
Relocatability.
- RELSET_1,
-
Edmund Woronowicz.
-
Relations Defined on Sets.
- REVROT_1,
-
Andrzej Trybulec.
-
Rotating and Reversing.
- REWRITE1,
-
Grzegorz Bancerek.
-
Reduction Relations.
- RFINSEQ,
-
Jaroslaw Kotowicz.
-
Functions and Finite Sequences of Real Numbers.
- RFINSEQ2,
-
Yatsuka Nakamura.
-
Sorting Operators for Finite Sequences.
- RFUNCT_1,
-
Jaroslaw Kotowicz.
-
Partial Functions from a Domain to the Set of Real Numbers.
- RFUNCT_2,
-
Jaroslaw Kotowicz.
-
Properties of Real Functions.
- RFUNCT_3,
-
Jaroslaw Kotowicz and
Yuji Sakai.
-
Properties of Partial Functions from a Domain to the Set of Real Numbers.
- RFUNCT_4,
-
Noboru Endou, Katsumi Wasaki, and
Yasunari Shidama.
-
Introduction to Several Concepts of Convexity and Semicontinuity for Function from $\Bbb R$ to $\Bbb R$.
- RINGCAT1,
-
Michal Muzalewski.
-
Category of Rings.
- RLSUB_1,
-
Wojciech A. Trybulec.
-
Subspaces and Cosets of Subspaces in Real Linear Space.
- RLSUB_2,
-
Wojciech A. Trybulec.
-
Operations on Subspaces in Real Linear Space.
- RLVECT_1,
-
Wojciech A. Trybulec.
-
Vectors in Real Linear Space.
- RLVECT_2,
-
Wojciech A. Trybulec.
-
Linear Combinations in Real Linear Space.
- RLVECT_3,
-
Wojciech A. Trybulec.
-
Basis of Real Linear Space.
- RLVECT_4,
-
Wojciech A. Trybulec.
-
Subspaces of Real Linear Space Generated by One, Two, or Three Vectors
and Their Cosets.
- RLVECT_5,
-
Jing-Chao Chen.
-
The Steinitz Theorem and the Dimension of a Real Linear Space.
- RMOD_2,
-
Michal Muzalewski and
Wojciech Skaba.
-
Submodules and Cosets of Submodules in Right Module over Associative Ring.
- RMOD_3,
-
Michal Muzalewski and
Wojciech Skaba.
-
Operations on Submodules in Right Module over Associative Ring.
- RMOD_4,
-
Michal Muzalewski and
Wojciech Skaba.
-
Linear Combinations in Right Module over Associative Ring.
- RMOD_5,
-
Michal Muzalewski and
Wojciech Skaba.
-
Linear Independence in Right Module over Domain.
- ROBBINS1,
-
Adam Grabowski.
-
Robbins Algebras vs. Boolean Algebras.
- ROBBINS2,
-
Wioletta Truszkowska and
Adam Grabowski.
-
On the Two Short Axiomatizations of Ortholattices.
- ROLLE,
-
Jaroslaw Kotowicz, Konrad Raczkowski, and
Pawel Sadowski.
-
Average Value Theorems for Real Functions of One Variable.
- ROUGHS_1,
-
Adam Grabowski.
-
Basic Properties of Rough Sets and Rough Membership Function.
- RPR_1,
-
Jan Popiolek.
-
Introduction to Probability.
- RSSPACE,
-
Noboru Endou, Yasumasa Suzuki, and
Yasunari Shidama.
-
Real Linear Space of Real Sequences.
- RSSPACE2,
-
Noboru Endou, Yasumasa Suzuki, and
Yasunari Shidama.
-
Hilbert Space of Real Sequences.
- RSSPACE3,
-
Yasumasa Suzuki, Noboru Endou, and
Yasunari Shidama.
-
Banach Space of Absolute Summable Real Sequences.
- RSSPACE4,
-
Yasumasa Suzuki.
-
Banach Space of Bounded Real Sequences.
- RUSUB_1,
-
Noboru Endou, Takashi Mitsuishi, and
Yasunari Shidama.
-
Subspaces and Cosets of Subspace of Real Unitary Space.
- RUSUB_2,
-
Noboru Endou, Takashi Mitsuishi, and
Yasunari Shidama.
-
Operations on Subspaces in Real Unitary Space.
- RUSUB_3,
-
Noboru Endou, Takashi Mitsuishi, and
Yasunari Shidama.
-
Linear Combinations in Real Unitary Space.
- RUSUB_4,
-
Noboru Endou, Takashi Mitsuishi, and
Yasunari Shidama.
-
Dimension of Real Unitary Space.
- RUSUB_5,
-
Noboru Endou, Takashi Mitsuishi, and
Yasunari Shidama.
-
Topology of Real Unitary Space.
- RVSUM_1,
-
Czeslaw Bylinski.
-
The Sum and Product of Finite Sequences of Real Numbers.
- S
- SCHEME1,
-
Jaroslaw Kotowicz.
-
Schemes of Existence of Some Types of Functions.
- SCHEMS_1,
-
Stanislaw T. Czuba.
-
Schemes.
- SCM_1,
-
Grzegorz Bancerek and
Piotr Rudnicki.
-
Development of Terminology for \bf SCM.
- SCM_COMP,
-
Grzegorz Bancerek and
Piotr Rudnicki.
-
A Compiler of Arithmetic Expressions for SCM.
- SCM_HALT,
-
Jing-Chao Chen and
Yatsuka Nakamura.
-
Initialization Halting Concepts and Their Basic Properties of \SCMFSA.
- SCMBSORT,
-
Jing-Chao Chen and
Yatsuka Nakamura.
-
Bubble Sort on \SCMFSA.
- SCMFSA10,
-
Artur Kornilowicz.
-
On the Instructions of \SCMFSA.
- SCMFSA6A,
-
Andrzej Trybulec, Yatsuka Nakamura, and
Noriko Asamoto.
-
On the Compositions of Macro Instructions. Part I.
- SCMFSA6B,
-
Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and
Andrzej Trybulec.
-
On the Composition of Macro Instructions. Part II.
- SCMFSA6C,
-
Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and
Andrzej Trybulec.
-
On the Composition of Macro Instructions. Part III.
- SCMFSA7B,
-
Noriko Asamoto.
-
Constant Assignment Macro Instructions of \SCMFSA. Part II.
- SCMFSA8A,
-
Noriko Asamoto.
-
Conditional Branch Macro Instructions of \SCMFSA. Part I.
- SCMFSA8B,
-
Noriko Asamoto.
-
Conditional Branch Macro Instructions of \SCMFSA. Part II.
- SCMFSA8C,
-
Noriko Asamoto.
-
The \tt loop and \tt Times Macroinstruction for \SCMFSA.
- SCMFSA9A,
-
Piotr Rudnicki.
-
The \tt while Macro Instructions of \SCMFSA. Part II.
- SCMFSA_1,
-
Andrzej Trybulec, Yatsuka Nakamura, and
Piotr Rudnicki.
-
An Extension of \bf SCM.
- SCMFSA_2,
-
Andrzej Trybulec, Yatsuka Nakamura, and
Piotr Rudnicki.
-
The \SCMFSA Computer.
- SCMFSA_3,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
Computation in \SCMFSA.
- SCMFSA_4,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
Modifying Addresses of Instructions of \SCMFSA.
- SCMFSA_5,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
Relocability for \SCMFSA.
- SCMFSA_7,
-
Noriko Asamoto.
-
Some Multi Instructions Defined by Sequence of Instructions of \SCMFSA.
- SCMFSA_9,
-
Jing-Chao Chen.
-
While Macro Instructions of \SCMFSA.
- SCMISORT,
-
Jing-Chao Chen.
-
Insert Sort on \SCMFSA.
- SCMP_GCD,
-
Jing-Chao Chen.
-
Recursive Euclide Algorithm.
- SCMPDS_1,
-
Jing-Chao Chen.
-
A Small Computer Model with Push-Down Stack.
- SCMPDS_2,
-
Jing-Chao Chen.
-
The SCMPDS Computer and the Basic Semantics of its Instructions.
- SCMPDS_3,
-
Jing-Chao Chen.
-
Computation and Program Shift in the SCMPDS Computer.
- SCMPDS_4,
-
Jing-Chao Chen.
-
The Construction and Shiftability of Program Blocks for SCMPDS.
- SCMPDS_5,
-
Jing-Chao Chen.
-
Computation of Two Consecutive Program Blocks for SCMPDS.
- SCMPDS_6,
-
Jing-Chao Chen.
-
The Construction and Computation of Conditional Statements for SCMPDS.
- SCMPDS_7,
-
Jing-Chao Chen and
Piotr Rudnicki.
-
The Construction and Computation of for-loop Programs for SCMPDS.
- SCMPDS_8,
-
Jing-Chao Chen.
-
The Construction and Computation of While-Loop Programs for SCMPDS.
- SCMPDS_9,
-
Artur Kornilowicz and
Yasunari Shidama.
-
SCMPDS Is Not Standard.
- SCMRING1,
-
Artur Kornilowicz.
-
The Construction of \SCM over Ring.
- SCMRING2,
-
Artur Kornilowicz.
-
The Basic Properties of \SCM over Ring.
- SCMRING3,
-
Artur Kornilowicz.
-
The Properties of Instructions of SCM over Ring.
- SCPINVAR,
-
Jing-Chao Chen.
-
Justifying the Correctness of the Fibonacci Sequence and the Euclide Algorithm by Loop-Invariant.
- SCPISORT,
-
Jing-Chao Chen.
-
Insert Sort on SCMPDS.
- SCPQSORT,
-
Jing-Chao Chen.
-
Quick Sort on SCMPDS.
- SEMI_AF1,
-
Eugeniusz Kusak and
Krzysztof Radziszewski.
-
Semi-Affine Space.
- SEQ_1,
-
Jaroslaw Kotowicz.
-
Real Sequences and Basic Operations on Them.
- SEQ_2,
-
Jaroslaw Kotowicz.
-
Convergent Sequences and the Limit of Sequences.
- SEQ_4,
-
Jaroslaw Kotowicz.
-
Convergent Real Sequences.
Upper and Lower Bound of Sets of Real Numbers.
- SEQFUNC,
-
Beata Perkowska.
-
Functional Sequence from a Domain to a Domain.
- SEQM_3,
-
Jaroslaw Kotowicz.
-
Monotone Real Sequences. Subsequences.
- SERIES_1,
-
Konrad Raczkowski and
Andrzej Nedzusiak.
-
Series.
- SETFAM_1,
-
Beata Padlewska.
-
Families of Sets.
- SETWISEO,
-
Andrzej Trybulec.
-
Semilattice Operations on Finite Subsets.
- SETWOP_2,
-
Czeslaw Bylinski.
-
Semigroup Operations on Finite Subsets.
- SF_MASTR,
-
Piotr Rudnicki and
Andrzej Trybulec.
-
Memory Handling for \SCMFSA.
- SFMASTR1,
-
Piotr Rudnicki.
-
On the Composition of Non-parahalting Macro Instructions.
- SFMASTR2,
-
Piotr Rudnicki.
-
Another \tt times Macro Instruction.
- SFMASTR3,
-
Piotr Rudnicki.
-
The \tt for (going up) Macro Instruction.
- SGRAPH1,
-
Yozo Toda.
-
The Formalization of Simple Graphs.
- SIN_COS,
-
Yuguang Yang and
Yasunari Shidama.
-
Trigonometric Functions and Existence of Circle Ratio.
- SIN_COS2,
-
Takashi Mitsuishi and
Yuguang Yang.
-
Properties of the Trigonometric Function.
- SIN_COS3,
-
Takashi Mitsuishi, Noboru Endou, and
Keiji Ohkubo.
-
Trigonometric Functions on Complex Space.
- SPPOL_1,
-
Yatsuka Nakamura and
Czeslaw Bylinski.
-
Extremal Properties of Vertices on Special Polygons, Part I.
- SPPOL_2,
-
Czeslaw Bylinski and
Yatsuka Nakamura.
-
Special Polygons.
- SPRECT_1,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
On the Rectangular Finite Sequences of the Points of the Plane.
- SPRECT_2,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
On the Order on a Special Polygon.
- SPRECT_3,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
Some Properties of Special Polygonal Curves.
- SPRECT_4,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
On the Components of the Complement of a Special Polygonal Curve.
- SPRECT_5,
-
Andrzej Trybulec and
Yatsuka Nakamura.
-
Again on the Order on a Special Polygon.
- SQUARE_1,
-
Andrzej Trybulec and
Czeslaw Bylinski.
-
Some Properties of Real Numbers
Operations: min, max, square, and square root.
- STRUCT_0,
-
Library Committee.
-
Preliminaries to Structures.
- SUB_METR,
-
Adam Lecko and
Mariusz Startek.
-
Submetric Spaces --- Part I.
- SUBSET,
-
Library Committee.
-
Basic Properties of Subsets ---
Requirements.
- SUBSET_1,
-
Zinaida Trybulec.
-
Properties of Subsets.
- SUBSTLAT,
-
Adam Grabowski.
-
Lattice of Substitutions.
- SUPINF_1,
-
Jozef Bialas.
-
Infimum and Supremum of the Set of Real Numbers.
Measure Theory.
- SUPINF_2,
-
Jozef Bialas.
-
Series of Positive Real Numbers.
Measure Theory.
- SYMSP_1,
-
Eugeniusz Kusak, Wojciech Leonczuk, and
Michal Muzalewski.
-
Construction of a bilinear antisymmetric form
in symplectic vector space.
- SYSREL,
-
Waldemar Korczynski.
-
Some Properties of Binary Relations.
- T
- T_0TOPSP,
-
Mariusz Zynel and
Adam Guzowski.
-
\Tzero\ Topological Spaces.
- T_1TOPSP,
-
Adam Naumowicz and
Mariusz \Lapinski.
-
On \Tone\ Reflex of Topological Space.
- TARSKI,
-
Andrzej Trybulec.
-
Tarski Grothendieck Set Theory.
- TAXONOM1,
-
Mariusz Giero and
Roman Matuszewski.
-
Lower Tolerance. Preliminaries to Wroclaw Taxonomy.
- TAXONOM2,
-
Mariusz Giero.
-
Hierarchies and Classifications of Sets.
- TBSP_1,
-
Alicia de la Cruz.
-
Totally Bounded Metric Spaces.
- TDGROUP,
-
Grzegorz Lewandowski and
Krzysztof Prazmowski.
-
A Construction of an Abstract Space of Congruence of Vectors.
- TDLAT_1,
-
Toshihiko Watanabe.
-
The Lattice of Domains of a Topological Space.
- TDLAT_2,
-
Zbigniew Karno and
Toshihiko Watanabe.
-
Completeness of the Lattices of Domains
of a Topological Space.
- TDLAT_3,
-
Zbigniew Karno.
-
The Lattice of Domains of an Extremally Disconnected Space.
- TERMORD,
-
Christoph Schwarzweller.
-
Term Orders.
- TEX_1,
-
Zbigniew Karno.
-
On Discrete and Almost Discrete Topological Spaces.
- TEX_2,
-
Zbigniew Karno.
-
Maximal Discrete Subspaces of Almost Discrete Topological Spaces.
- TEX_3,
-
Zbigniew Karno.
-
On Nowhere and Everywhere Dense Subspaces of Topological Spaces.
- TEX_4,
-
Zbigniew Karno.
-
Maximal Anti-Discrete Subspaces of Topological Spaces.
- TMAP_1,
-
Zbigniew Karno.
-
Continuity of Mappings over the Union of Subspaces.
- TOLER_1,
-
Krzysztof Hryniewiecki.
-
Relations of Tolerance.
- TOPGRP_1,
-
Artur Kornilowicz.
-
The Definition and Basic Properties of Topological Groups.
- TOPMETR,
-
Agata Darmochwal and
Yatsuka Nakamura.
-
Metric Spaces as Topological Spaces --- Fundamental Concepts.
- TOPMETR2,
-
Yatsuka Nakamura and
Agata Darmochwal.
-
Some Facts about Union of Two Functions and Continuity of Union
of Functions.
- TOPMETR3,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
Sequences of Metric Spaces and
an Abstract Intermediate Value Theorem.
- TOPREAL1,
-
Agata Darmochwal and
Yatsuka Nakamura.
-
The Topological Space $\calE^2_\rmT$.
Arcs, Line Segments and Special Polygonal Arcs.
- TOPREAL2,
-
Agata Darmochwal and
Yatsuka Nakamura.
-
The Topological Space $\calE^2_\rmT$.
Simple Closed Curves.
- TOPREAL3,
-
Yatsuka Nakamura and
Jaroslaw Kotowicz.
-
Basic Properties of Connecting Points with Line Segments in $\calE^2_\rmT$.
- TOPREAL4,
-
Yatsuka Nakamura and
Jaroslaw Kotowicz.
-
Connectedness Conditions Using Polygonal Arcs.
- TOPREAL5,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
Intermediate Value Theorem and Thickness of Simple Closed Curves.
- TOPREAL6,
-
Artur Kornilowicz.
-
Compactness of the Bounded Closed Subsets of $\cal E^2_\rm T$.
- TOPREAL7,
-
Artur Kornilowicz.
-
Homeomorphism between [:$\cal E^i_\rm T, \cal E^j_\rm T$:] and $\cal E^i+j_\rm T$.
- TOPREAL8,
-
Andrzej Trybulec.
-
More on the Finite Sequences on the Plane.
- TOPRNS_1,
-
Agnieszka Sakowicz, Jaroslaw Gryko, and
Adam Grabowski.
-
Sequences in $\calE^N_\rmT$.
- TOPS_1,
-
Miroslaw Wysocki and
Agata Darmochwal.
-
Subsets of Topological Spaces.
- TOPS_2,
-
Agata Darmochwal.
-
Families of Subsets, Subspaces and Mappings in Topological Spaces.
- TOPS_3,
-
Zbigniew Karno.
-
Remarks on Special Subsets of Topological Spaces.
- TRANSGEO,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Transformations in Affine Spaces.
- TRANSLAC,
-
Henryk Oryszczyszyn and
Krzysztof Prazmowski.
-
Translations in Affine Planes.
- TREAL_1,
-
Toshihiko Watanabe.
-
The Brouwer Fixed Point Theorem for Intervals.
- TREES_1,
-
Grzegorz Bancerek.
-
Introduction to Trees.
- TREES_2,
-
Grzegorz Bancerek.
-
K\"onig's Lemma.
- TREES_3,
-
Grzegorz Bancerek.
-
Sets and Functions of Trees and Joining Operations of Trees.
- TREES_4,
-
Grzegorz Bancerek.
-
Joining of Decorated Trees.
- TREES_9,
-
Grzegorz Bancerek.
-
Subtrees.
- TREES_A,
-
Oleg Okhotnikov.
-
Replacement of Subtrees in a Tree.
- TRIANG_1,
-
Beata Madras.
-
On the Concept of the Triangulation.
- TSEP_1,
-
Zbigniew Karno.
-
Separated and Weakly Separated Subspaces of Topological Spaces.
- TSEP_2,
-
Zbigniew Karno.
-
On a Duality Between Weakly Separated
Subspaces of Topological Spaces.
- TSP_1,
-
Zbigniew Karno.
-
On Kolmogorov Topological Spaces.
- TSP_2,
-
Zbigniew Karno.
-
Maximal Kolmogorov Subspaces of a Topological Space as Stone Retracts of the Ambient Space.
- TURING_1,
-
Jing-Chao Chen and
Yatsuka Nakamura.
-
Introduction to Turing Machines.
- TWOSCOMP,
-
Katsumi Wasaki and
Pauline N. Kawamoto.
-
2's Complement Circuit.
- U
- UNIALG_1,
-
Jaroslaw Kotowicz, Beata Madras, and
Malgorzata Korolkiewicz.
-
Basic Notation of Universal Algebra.
- UNIALG_2,
-
Ewa Burakowska.
-
Subalgebras of the Universal Algebra. Lattices of Subalgebras.
- UNIALG_3,
-
Miroslaw Jan Paszek.
-
On the Lattice of Subalgebras of a Universal Algebra.
- UNIFORM1,
-
Yatsuka Nakamura and
Andrzej Trybulec.
-
Lebesgue's Covering Lemma, Uniform Continuity
and Segmentation of Arcs.
- UNIROOTS,
-
Broderic Arneson and
Piotr Rudnicki.
-
Primitive Roots of Unity and Cyclotomic Polynomials.
- UPROOTS,
-
Piotr Rudnicki.
-
Little Bezout Theorem (Factor Theorem).
- URYSOHN1,
-
Jozef Bialas and
Yatsuka Nakamura.
-
Dyadic Numbers and T$_4$ Topological Spaces.
- URYSOHN2,
-
Jozef Bialas and
Yatsuka Nakamura.
-
Some Properties of Dyadic Numbers and Intervals.
- URYSOHN3,
-
Jozef Bialas and
Yatsuka Nakamura.
-
The Urysohn Lemma.
- V
- VALUAT_1,
-
Edmund Woronowicz.
-
Interpretation and Satisfiability in the First Order Logic.
- VECTMETR,
-
Robert Milewski.
-
Real Linear-Metric Space and Isometric Functions.
- VECTSP10,
-
Jaroslaw Kotowicz.
-
Quotient Vector Spaces and Functionals.
- VECTSP_1,
-
Eugeniusz Kusak, Wojciech Leonczuk, and
Michal Muzalewski.
-
Abelian Groups, Fields and Vector Spaces.
- VECTSP_2,
-
Michal Muzalewski.
-
Construction of Rings and Left-, Right-, and Bi-Modules over a Ring.
- VECTSP_3,
-
Wojciech A. Trybulec.
-
Finite Sums of Vectors in Vector Space.
- VECTSP_4,
-
Wojciech A. Trybulec.
-
Subspaces and Cosets of Subspaces in Vector Space.
- VECTSP_5,
-
Wojciech A. Trybulec.
-
Operations on Subspaces in Vector Space.
- VECTSP_6,
-
Wojciech A. Trybulec.
-
Linear Combinations in Vector Space.
- VECTSP_7,
-
Wojciech A. Trybulec.
-
Basis of Vector Space.
- VECTSP_8,
-
Andrzej Iwaniuk.
-
On the Lattice of Subspaces of a Vector Space.
- VECTSP_9,
-
Mariusz Zynel.
-
The Steinitz Theorem and the Dimension of a Vector Space.
- VFUNCT_1,
-
Hiroshi Yamazaki and
Yasunari Shidama.
-
Algebra of Vector Functions.
- W
- WAYBEL10,
-
Grzegorz Bancerek.
-
Closure Operators and Subalgebras.
- WAYBEL11,
-
Andrzej Trybulec.
-
Scott Topology.
- WAYBEL12,
-
Artur Kornilowicz.
-
On the Baire Category Theorem.
- WAYBEL13,
-
Robert Milewski.
-
Algebraic and Arithmetic Lattices. Part I.
- WAYBEL14,
-
Czeslaw Bylinski and
Piotr Rudnicki.
-
The Scott Topology. Part II.
- WAYBEL15,
-
Robert Milewski.
-
Algebraic and Arithmetic Lattices. Part II.
- WAYBEL16,
-
Robert Milewski.
-
Completely-Irreducible Elements.
- WAYBEL17,
-
Adam Grabowski.
-
Scott-Continuous Functions.
- WAYBEL18,
-
Jaroslaw Gryko.
-
Injective Spaces.
- WAYBEL19,
-
Grzegorz Bancerek.
-
The Lawson Topology.
- WAYBEL20,
-
Piotr Rudnicki.
-
Kernel Projections and Quotient Lattices.
- WAYBEL21,
-
Grzegorz Bancerek.
-
Lawson Topology in Continuous Lattices.
- WAYBEL22,
-
Piotr Rudnicki.
-
Representation Theorem for Free Continuous Lattices.
- WAYBEL23,
-
Robert Milewski.
-
Bases of Continuous Lattices.
- WAYBEL24,
-
Adam Grabowski.
-
Scott-Continuous Functions. Part II.
- WAYBEL25,
-
Artur Kornilowicz and
Jaroslaw Gryko.
-
Injective Spaces. Part II.
- WAYBEL26,
-
Grzegorz Bancerek.
-
Continuous Lattices of Maps between T$_0$ Spaces.
- WAYBEL27,
-
Grzegorz Bancerek and
Adam Naumowicz.
-
Function Spaces in the Category of Directed Suprema Preserving Maps.
- WAYBEL28,
-
Bartlomiej Skorulski.
-
Lim-Inf Convergence.
- WAYBEL29,
-
Grzegorz Bancerek and
Adam Naumowicz.
-
The Characterization of the Continuity of Topologies.
- WAYBEL30,
-
Artur Kornilowicz.
-
Meet Continuous Lattices Revisited.
- WAYBEL31,
-
Robert Milewski.
-
Weights of Continuous Lattices.
- WAYBEL32,
-
Ewa Gradzka.
-
On the Order-consistent Topology of Complete and Uncomplete Lattices.
- WAYBEL33,
-
Grzegorz Bancerek and
Noboru Endou.
-
Compactness of Lim-inf Topology.
- WAYBEL34,
-
Grzegorz Bancerek.
-
Duality Based on Galois Connection. Part I.
- WAYBEL35,
-
Artur Kornilowicz.
-
Morphisms Into Chains. Part I.
- WAYBEL_0,
-
Grzegorz Bancerek.
-
Directed Sets, Nets, Ideals, Filters, and Maps.
- WAYBEL_1,
-
Czeslaw Bylinski.
-
Galois Connections.
- WAYBEL_2,
-
Artur Kornilowicz.
-
Meet -- Continuous Lattices.
- WAYBEL_3,
-
Grzegorz Bancerek.
-
The ``Way-Below'' Relation.
- WAYBEL_4,
-
Adam Grabowski.
-
Auxiliary and Approximating Relations.
- WAYBEL_5,
-
Mariusz Zynel.
-
The Equational Characterization of Continuous Lattices.
- WAYBEL_6,
-
Beata Madras.
-
Irreducible and Prime Elements.
- WAYBEL_7,
-
Grzegorz Bancerek.
-
Prime Ideals and Filters.
- WAYBEL_8,
-
Robert Milewski.
-
Algebraic Lattices.
- WAYBEL_9,
-
Artur Kornilowicz.
-
On the Topological Properties of Meet-Continuous Lattices.
- WEDDWITT,
-
Broderic Arneson, Matthias Baaz, and
Piotr Rudnicki.
-
Witt's Proof of the Wedderburn Theorem.
- WEIERSTR,
-
Jozef Bialas and
Yatsuka Nakamura.
-
The Theorem of Weierstrass.
- WELLFND1,
-
Piotr Rudnicki and
Andrzej Trybulec.
-
On Same Equivalents of Well-foundedness.
- WELLORD1,
-
Grzegorz Bancerek.
-
The Well Ordering Relations.
- WELLORD2,
-
Grzegorz Bancerek.
-
Zermelo Theorem and Axiom of Choice.
- WELLSET1,
-
Bogdan Nowak and
Slawomir Bialecki.
-
Zermelo's Theorem.
- WSIERP_1,
-
Andrzej Kondracki.
-
The Chinese Remainder Theorem.
- X
- XBOOLE_0,
-
Library Committee.
-
Boolean Properties of Sets --- Definitions.
- XBOOLE_1,
-
Library Committee.
-
Boolean Properties of Sets --- Theorems.
- XCMPLX_0,
-
Library Committee.
-
Complex Numbers --- Basic Definitions.
- XCMPLX_1,
-
Library Committee.
-
Complex Numbers --- Basic Theorems.
- XREAL_0,
-
Library Committee.
-
Introduction to Arithmetic of Real Numbers.
- Y
- YELLOW10,
-
Artur Kornilowicz.
-
The Properties of Product of Relational Structures.
- YELLOW11,
-
Adam Naumowicz.
-
On the Characterization of Modular and Distributive Lattices.
- YELLOW12,
-
Artur Kornilowicz.
-
On the Characterization of Hausdorff Spaces.
- YELLOW13,
-
Artur Kornilowicz.
-
Introduction to Meet-Continuous Topological Lattices.
- YELLOW14,
-
Jaroslaw Gryko and
Artur Kornilowicz.
-
Some Properties of Isomorphism between Relational Structures.
On the Product of Topological Spaces.
- YELLOW15,
-
Robert Milewski.
-
Components and Basis of Topological Spaces.
- YELLOW16,
-
Grzegorz Bancerek.
-
Retracts and Inheritance.
- YELLOW17,
-
Bartlomiej Skorulski.
-
The Tichonov Theorem.
- YELLOW18,
-
Grzegorz Bancerek.
-
Concrete Categories.
- YELLOW19,
-
Grzegorz Bancerek, Noboru Endou, and
Yuji Sakai.
-
On the Characterizations of Compactness.
- YELLOW20,
-
Grzegorz Bancerek.
-
Miscellaneous Facts about Functors.
- YELLOW21,
-
Grzegorz Bancerek.
-
Categorial Background for Duality Theory.
- YELLOW_0,
-
Grzegorz Bancerek.
-
Bounds in Posets and Relational Substructures.
- YELLOW_1,
-
Adam Grabowski and
Robert Milewski.
-
Boolean Posets, Posets under Inclusion and
Products of Relational Structures.
- YELLOW_2,
-
Mariusz Zynel and
Czeslaw Bylinski.
-
Properties of Relational Structures, Posets, Lattices and Maps.
- YELLOW_3,
-
Artur Kornilowicz.
-
Cartesian Products of Relations and Relational Structures.
- YELLOW_4,
-
Artur Kornilowicz.
-
Definitions and Properties of the Join and Meet of Subsets.
- YELLOW_5,
-
Agnieszka Julia Marasik.
-
Miscellaneous Facts about Relation Structure.
- YELLOW_6,
-
Andrzej Trybulec.
-
Moore-Smith Convergence.
- YELLOW_7,
-
Grzegorz Bancerek.
-
Duality in Relation Structures.
- YELLOW_8,
-
Andrzej Trybulec.
-
Baire Spaces, Sober Spaces.
- YELLOW_9,
-
Grzegorz Bancerek.
-
Bases and Refinements of Topologies.
- YONEDA_1,
-
Miroslaw Wojciechowski.
-
Yoneda Embedding.
- Z
- ZF_COLLA,
-
Grzegorz Bancerek.
-
The Contraction Lemma.
- ZF_FUND1,
-
Andrzej Kondracki.
-
Mostowski's Fundamental Operations --- Part I.
- ZF_FUND2,
-
Grzegorz Bancerek and
Andrzej Kondracki.
-
Mostowski's Fundamental Operations --- Part II.
- ZF_LANG,
-
Grzegorz Bancerek.
-
A Model of ZF Set Theory Language.
- ZF_LANG1,
-
Grzegorz Bancerek.
-
Replacing of Variables in Formulas of ZF Theory.
- ZF_MODEL,
-
Grzegorz Bancerek.
-
Models and Satisfiability.
- ZF_REFLE,
-
Grzegorz Bancerek.
-
The Reflection Theorem.
- ZFMISC_1,
-
Czeslaw Bylinski.
-
Some Basic Properties of Sets.
- ZFMODEL1,
-
Grzegorz Bancerek.
-
Properties of ZF Models.
- ZFMODEL2,
-
Grzegorz Bancerek.
-
Definable Functions.
- ZFREFLE1,
-
Grzegorz Bancerek.
-
Consequences of the Reflection Theorem.
[Journal of Formalized Mathematics,
Mizar Home Page]