Journal of Formalized Mathematics
Volume 7, 1995
University of Bialystok
Copyright (c) 1995
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Artur Kornilowicz
- Received April 27, 1995
- MML identifier: MBOOLEAN
- [
Mizar article,
MML identifier index
]
environ
vocabulary PBOOLE, FUNCT_1, ZF_REFLE, RELAT_1, FUNCT_4, CAT_1, BOOLE, CAT_4,
FUNCOP_1, ZFMISC_1, PRALG_2, AUTALG_1, FUNCT_2, TARSKI, MATRIX_1,
PRE_CIRC, FINSET_1;
notation TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, FUNCT_1, FUNCT_2, FINSET_1,
FUNCT_4, CQC_LANG, PBOOLE, PRALG_2, AUTALG_1, PRE_CIRC;
constructors CQC_LANG, PRALG_2, AUTALG_1, PRE_CIRC, MEMBERED, XBOOLE_0;
clusters SUBSET_1, PRE_CIRC, CQC_LANG, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Boolean of Many Sorted Sets
reserve x, y, I for set,
A, B, X, Y for ManySortedSet of I;
definition let I, A;
func bool A -> ManySortedSet of I means
:: MBOOLEAN:def 1
for i be set st i in I holds it.i = bool (A.i);
end;
definition let I, A;
cluster bool A -> non-empty;
end;
theorem :: MBOOLEAN:1 :: Tarski:6
X = bool Y iff for A holds A in X iff A c= Y;
theorem :: MBOOLEAN:2 :: ZFMISC_1:1
bool [0]I = I --> {{}};
theorem :: MBOOLEAN:3
bool (I --> x) = I --> bool x;
theorem :: MBOOLEAN:4 :: ZFMISC_1:30
bool (I --> {x}) = I --> { {} , {x} };
theorem :: MBOOLEAN:5 :: ZFMISC_1:76
[0]I c= A;
theorem :: MBOOLEAN:6 :: ZFMISC_1:79
A c= B implies bool A c= bool B;
theorem :: MBOOLEAN:7 :: ZFMISC_1:81
bool A \/ bool B c= bool (A \/ B);
theorem :: MBOOLEAN:8 :: ZFMISC_1:82
bool A \/ bool B = bool (A \/ B) implies
for i be set st i in I holds A.i,B.i are_c=-comparable;
theorem :: MBOOLEAN:9 :: ZFMISC_1:83
bool (A /\ B) = bool A /\ bool B;
theorem :: MBOOLEAN:10 :: ZFMISC_1:84
bool (A \ B) c= (I --> {{}}) \/ (bool A \ bool B);
theorem :: MBOOLEAN:11 :: ZFMISC_1:85
X c= A \ B iff X c= A & X misses B;
theorem :: MBOOLEAN:12 :: ZFMISC_1:86
bool (A \ B) \/ bool (B \ A) c= bool (A \+\ B);
theorem :: MBOOLEAN:13 :: ZFMISC_1:87
X c= A \+\ B iff X c= A \/ B & X misses A /\ B;
canceled;
theorem :: MBOOLEAN:15 :: ZFMISC_1:89
X c= A or Y c= A implies X /\ Y c= A;
theorem :: MBOOLEAN:16 :: ZFMISC_1:90
X c= A implies X \ Y c= A;
theorem :: MBOOLEAN:17 :: ZFMISC_1:91
X c= A & Y c= A implies X \+\ Y c= A;
theorem :: MBOOLEAN:18 :: ZFMISC_1:105
[|X, Y|] c= bool bool (X \/ Y);
theorem :: MBOOLEAN:19 :: FIN_TOPO:4
X c= A iff X in bool A;
theorem :: MBOOLEAN:20 :: FRAENKEL:5
MSFuncs (A, B) c= bool [|A, B|];
begin :: Union of Many Sorted Sets
definition let I, A;
func union A -> ManySortedSet of I means
:: MBOOLEAN:def 2
for i be set st i in I holds it.i = union (A.i);
end;
definition let I;
cluster union [0]I -> empty-yielding;
end;
theorem :: MBOOLEAN:21 :: Tarski:def 4
A in union X iff ex Y st A in Y & Y in X;
theorem :: MBOOLEAN:22 :: ZFMISC_1:2
union [0]I = [0]I;
theorem :: MBOOLEAN:23
union (I --> x) = I --> union x;
theorem :: MBOOLEAN:24 :: ZFMISC_1:31
union (I --> {x}) = I --> x;
theorem :: MBOOLEAN:25 :: ZFMISC_1:32
union (I --> { {x},{y} }) = I --> {x,y};
theorem :: MBOOLEAN:26 :: ZFMISC_1:92
X in A implies X c= union A;
theorem :: MBOOLEAN:27 :: ZFMISC_1:95
A c= B implies union A c= union B;
theorem :: MBOOLEAN:28 :: ZFMISC_1:96
union (A \/ B) = union A \/ union B;
theorem :: MBOOLEAN:29 :: ZFMISC_1:97
union (A /\ B) c= union A /\ union B;
theorem :: MBOOLEAN:30 :: ZFMISC_1:99
union bool A = A;
theorem :: MBOOLEAN:31 :: ZFMISC_1:100
A c= bool union A;
theorem :: MBOOLEAN:32 :: LATTICE4:1
union Y c= A & X in Y implies X c= A;
theorem :: MBOOLEAN:33 :: ZFMISC_1:94
for Z be ManySortedSet of I
for A be non-empty ManySortedSet of I holds
(for X be ManySortedSet of I st X in A holds X c= Z) implies union A c= Z;
theorem :: MBOOLEAN:34 :: ZFMISC_1:98
for B be ManySortedSet of I
for A be non-empty ManySortedSet of I holds
(for X be ManySortedSet of I st X in A holds X /\ B = [0]I)
implies union(A) /\ B = [0]I;
theorem :: MBOOLEAN:35 :: ZFMISC_1:101
for A, B be ManySortedSet of I st A \/ B is non-empty holds
(for X, Y be ManySortedSet of I st X <> Y & X in A \/ B & Y in A \/ B
holds X /\ Y = [0]I) implies union(A /\ B) = union A /\ union B;
theorem :: MBOOLEAN:36 :: LOPCLSET:31
for A, X be ManySortedSet of I
for B be non-empty ManySortedSet of I holds
(X c= union (A \/ B) & for Y be ManySortedSet of I st Y in
B holds Y /\ X = [0]I)
implies X c= union A;
theorem :: MBOOLEAN:37 :: RLVECT_3:34
for A be locally-finite non-empty ManySortedSet of I st
(for X, Y be ManySortedSet of I st X in A & Y in A holds X c= Y or Y c= X)
holds union A in A;
Back to top