Journal of Formalized Mathematics
Volume 1, 1989
University of Bialystok
Copyright (c) 1989
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Edmund Woronowicz
- Received March 15, 1989
- MML identifier: RELAT_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary BOOLE, TARSKI, RELAT_1, ZF_REFLE, FUNCT_1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1;
constructors TARSKI, SUBSET_1, XBOOLE_0;
clusters XBOOLE_0, SUBSET_1, ZFMISC_1;
requirements SUBSET, BOOLE;
begin
reserve A,X,X1,X2,Y,Y1,Y2,a,b,c,d,x,y,z for set;
definition let IT be set;
attr IT is Relation-like means
:: RELAT_1:def 1
x in IT implies ex y,z st x = [y,z];
end;
definition
cluster Relation-like empty set;
end;
definition
mode Relation is Relation-like set;
end;
reserve P,P1,P2,Q,R,S for Relation;
canceled 2;
theorem :: RELAT_1:3
A c= R implies A is Relation-like;
theorem :: RELAT_1:4
{[x,y]} is Relation-like;
theorem :: RELAT_1:5
{[a,b],[c,d]} is Relation-like;
theorem :: RELAT_1:6
[:X,Y:] is Relation-like;
scheme Rel_Existence{A,B() -> set, P[set,set]}:
ex R being Relation st
for x,y holds [x,y] in R iff x in A() & y in B() & P[x,y];
definition let P,R;
redefine pred P = R means
:: RELAT_1:def 2
for a,b holds [a,b] in P iff [a,b] in R;
end;
definition let P,R;
cluster P /\ R -> Relation-like;
cluster P \/ R -> Relation-like;
cluster P \ R -> Relation-like;
end;
definition let P,R;
redefine pred P c= R means
:: RELAT_1:def 3
for a,b holds [a,b] in P implies [a,b] in R;
end;
canceled 2;
theorem :: RELAT_1:9
X /\ R is Relation;
theorem :: RELAT_1:10
R \ X is Relation;
:: DOMAIN OF RELATION
:: __________________
definition let R;
func dom R -> set means
:: RELAT_1:def 4
x in it iff ex y st [x,y] in R;
end;
canceled 2;
theorem :: RELAT_1:13
dom(P \/ R) = dom P \/ dom R;
theorem :: RELAT_1:14
dom(P /\ R) c= dom P /\ dom R;
theorem :: RELAT_1:15
dom P \ dom R c= dom(P \ R);
:: CODOMAIN OF RELATION
:: ____________________
definition let R;
func rng R -> set means
:: RELAT_1:def 5
y in it iff ex x st [x,y] in R;
end;
canceled 2;
theorem :: RELAT_1:18
x in dom R implies ex y st y in rng R;
theorem :: RELAT_1:19
y in rng R implies ex x st x in dom R;
theorem :: RELAT_1:20
[x,y] in R implies x in dom R & y in rng R;
theorem :: RELAT_1:21
R c= [:dom R, rng R:];
theorem :: RELAT_1:22
R /\ [:dom R, rng R:] = R;
theorem :: RELAT_1:23
R = {[x,y]} implies dom R = {x} & rng R = {y};
theorem :: RELAT_1:24
R = {[a,b],[x,y]} implies dom R = {a,x} & rng R = {b,y};
theorem :: RELAT_1:25
P c= R implies dom P c= dom R & rng P c= rng R;
theorem :: RELAT_1:26
rng(P \/ R) = rng P \/ rng R;
theorem :: RELAT_1:27
rng(P /\ R) c= rng P /\ rng R;
theorem :: RELAT_1:28
rng P \ rng R c= rng(P \ R);
:: FIELD OF RELATION
:: _________________
definition let R;
func field R -> set equals
:: RELAT_1:def 6
dom R \/ rng R;
end;
theorem :: RELAT_1:29
dom R c= field R & rng R c= field R;
theorem :: RELAT_1:30
[a,b] in R implies a in field R & b in field R;
theorem :: RELAT_1:31
P c= R implies field P c= field R;
theorem :: RELAT_1:32
R = {[x,y]} implies field R = {x,y};
theorem :: RELAT_1:33
field(P \/ R) = field P \/ field R;
theorem :: RELAT_1:34
field(P /\ R) c= field P /\ field R;
:: CONVERSE RELATION
:: _________________
definition
let R;
func R~ -> Relation means
:: RELAT_1:def 7
[x,y] in it iff [y,x] in R;
involutiveness;
end;
canceled 2;
theorem :: RELAT_1:37
rng R = dom(R~) & dom R = rng(R~);
theorem :: RELAT_1:38
field R = field(R~);
theorem :: RELAT_1:39
(P /\ R)~ = P~ /\ R~;
theorem :: RELAT_1:40
(P \/ R)~ = P~ \/ R~;
theorem :: RELAT_1:41
(P \ R)~ = P~ \ R~;
:: COMPOSITION OF RELATIONS
:: ________________________
definition
let P,R;
func P*R -> Relation means
:: RELAT_1:def 8
[x,y] in it iff ex z st [x,z] in P & [z,y] in R;
end;
canceled 2;
theorem :: RELAT_1:44
dom(P*R) c= dom P;
theorem :: RELAT_1:45
rng(P*R) c= rng R;
theorem :: RELAT_1:46
rng R c= dom P implies dom(R*P)=dom R;
theorem :: RELAT_1:47
dom P c= rng R implies rng(R*P)=rng P;
theorem :: RELAT_1:48
P c= R implies Q*P c= Q*R;
theorem :: RELAT_1:49
P c= Q implies P*R c= Q*R;
theorem :: RELAT_1:50
P c= R & Q c= S implies P*Q c= R*S;
theorem :: RELAT_1:51
P*(R \/ Q) = (P*R) \/ (P*Q);
theorem :: RELAT_1:52
P*(R /\ Q) c= (P*R) /\ (P*Q);
theorem :: RELAT_1:53
(P*R) \ (P*Q) c= P*(R \ Q);
theorem :: RELAT_1:54
(P*R)~ = R~*P~;
theorem :: RELAT_1:55
(P*R)*Q = P*(R*Q);
:: EMPTY RELATION
:: ______________
definition
cluster empty -> Relation-like set;
end;
definition
cluster {} -> Relation-like;
end;
definition
cluster non empty Relation;
end;
definition
let f be non empty Relation;
cluster dom f -> non empty;
cluster rng f -> non empty;
end;
theorem :: RELAT_1:56
(for x,y holds not [x,y] in R) implies R = {};
canceled 3;
theorem :: RELAT_1:60
dom {} = {} & rng {} = {};
canceled;
theorem :: RELAT_1:62
{}*R = {} & R*{} = {};
definition let X be empty set;
cluster dom X -> empty;
cluster rng X -> empty;
let R;
cluster X*R -> empty;
cluster R*X -> empty;
end;
theorem :: RELAT_1:63
R*{} = {}*R;
theorem :: RELAT_1:64
dom R = {} or rng R = {} implies R = {};
theorem :: RELAT_1:65
dom R = {} iff rng R = {};
theorem :: RELAT_1:66
{}~ = {};
definition let X be empty set;
cluster X~ -> empty;
end;
theorem :: RELAT_1:67
rng R misses dom P implies R*P = {};
definition let R be Relation;
attr R is non-empty means
:: RELAT_1:def 9
not {} in rng R;
end;
:: IDENTITY RELATION
:: _________________
definition let X;
func id X -> Relation means
:: RELAT_1:def 10
[x,y] in it iff x in X & x = y;
end;
canceled 3;
theorem :: RELAT_1:71
dom id X = X & rng id X = X;
theorem :: RELAT_1:72
(id X)~ = id X;
theorem :: RELAT_1:73
(for x st x in X holds [x,x] in R) implies id X c=R;
theorem :: RELAT_1:74
[x,y] in (id X)*R iff x in X & [x,y] in R;
theorem :: RELAT_1:75
[x,y] in R*id Y iff y in Y & [x,y] in R;
theorem :: RELAT_1:76
R*(id X) c= R & (id X)*R c= R;
theorem :: RELAT_1:77
dom R c= X implies (id X)*R = R;
theorem :: RELAT_1:78
(id dom R)*R = R;
theorem :: RELAT_1:79
rng R c= Y implies R*(id Y) = R;
theorem :: RELAT_1:80
R*(id rng R) = R;
theorem :: RELAT_1:81
id {} = {};
theorem :: RELAT_1:82
dom R = X & rng P2 c= X & P2*R = id(dom P1) & R*P1 = id X
implies P1 =P2;
definition let R,X;
func R|X -> Relation means
:: RELAT_1:def 11
[x,y] in it iff x in X & [x,y] in R;
end;
canceled 3;
theorem :: RELAT_1:86
x in dom(R|X) iff x in X & x in dom R;
theorem :: RELAT_1:87
dom(R|X) c= X;
theorem :: RELAT_1:88
R|X c= R;
theorem :: RELAT_1:89
dom(R|X) c= dom R;
theorem :: RELAT_1:90
dom(R|X) = dom R /\ X;
theorem :: RELAT_1:91
X c= dom R implies dom(R|X) = X;
theorem :: RELAT_1:92
(R|X)*P c= R*P;
theorem :: RELAT_1:93
P*(R|X) c= P*R;
theorem :: RELAT_1:94
R|X = (id X)*R;
theorem :: RELAT_1:95
R|X = {} iff dom R misses X;
theorem :: RELAT_1:96
R|X = R /\ [:X,rng R:];
theorem :: RELAT_1:97
dom R c= X implies R|X = R;
theorem :: RELAT_1:98
R|dom R = R;
theorem :: RELAT_1:99
rng(R|X) c= rng R;
theorem :: RELAT_1:100
(R|X)|Y = R|(X /\ Y);
theorem :: RELAT_1:101
(R|X)|X = R|X;
theorem :: RELAT_1:102
X c= Y implies (R|X)|Y = R|X;
theorem :: RELAT_1:103
Y c= X implies (R|X)|Y = R|Y;
theorem :: RELAT_1:104
X c= Y implies R|X c= R|Y;
theorem :: RELAT_1:105
P c= R implies P|X c= R|X;
theorem :: RELAT_1:106
P c= R & X c= Y implies P|X c= R|Y;
theorem :: RELAT_1:107
R|(X \/ Y) = (R|X) \/ (R|Y);
theorem :: RELAT_1:108
R|(X /\ Y) = (R|X) /\ (R|Y);
theorem :: RELAT_1:109
R|(X \ Y) = R|X \ R|Y;
theorem :: RELAT_1:110
R|{} = {};
theorem :: RELAT_1:111
{}|X = {};
theorem :: RELAT_1:112
(P*R)|X = (P|X)*R;
definition let Y,R;
func Y|R -> Relation means
:: RELAT_1:def 12
[x,y] in it iff y in Y & [x,y] in R;
end;
canceled 2;
theorem :: RELAT_1:115
y in rng(Y|R) iff y in Y & y in rng R;
theorem :: RELAT_1:116
rng(Y|R) c= Y;
theorem :: RELAT_1:117
Y|R c= R;
theorem :: RELAT_1:118
rng(Y|R) c= rng R;
theorem :: RELAT_1:119
rng(Y|R) = rng R /\ Y;
theorem :: RELAT_1:120
Y c= rng R implies rng(Y|R) = Y;
theorem :: RELAT_1:121
(Y|R)*P c= R*P;
theorem :: RELAT_1:122
P*(Y|R) c= P*R;
theorem :: RELAT_1:123
Y|R = R*(id Y);
theorem :: RELAT_1:124
Y|R = R /\ [:dom R,Y:];
theorem :: RELAT_1:125
rng R c= Y implies Y|R = R;
theorem :: RELAT_1:126
rng R|R=R;
theorem :: RELAT_1:127
Y|(X|R) = (Y /\ X)|R;
theorem :: RELAT_1:128
Y|(Y|R) = Y|R;
theorem :: RELAT_1:129
X c= Y implies Y|(X|R) = X|R;
theorem :: RELAT_1:130
Y c= X implies Y|(X|R) = Y|R;
theorem :: RELAT_1:131
X c= Y implies X|R c= Y|R;
theorem :: RELAT_1:132
P1 c= P2 implies Y|P1 c= Y|P2;
theorem :: RELAT_1:133
P1 c= P2 & Y1 c= Y2 implies Y1|P1 c= Y2|P2;
theorem :: RELAT_1:134
(X \/ Y)|R = (X|R) \/ (Y|R);
theorem :: RELAT_1:135
(X /\ Y)|R = X|R /\ Y|R;
theorem :: RELAT_1:136
(X \ Y)|R = X|R \ Y|R;
theorem :: RELAT_1:137
{}|R = {};
theorem :: RELAT_1:138
Y|{} = {};
theorem :: RELAT_1:139
Y|(P*R) = P*(Y|R);
theorem :: RELAT_1:140
(Y|R)|X = Y|(R|X);
:: IMAGE OF SET IN RELATION
:: ________________________
definition let R,X;
func R.:X -> set means
:: RELAT_1:def 13
y in it iff ex x st [x,y] in R & x in X;
end;
canceled 2;
theorem :: RELAT_1:143
y in R.:X iff ex x st x in dom R & [x,y] in R & x in X;
theorem :: RELAT_1:144
R.:X c= rng R;
theorem :: RELAT_1:145
R.:X = R.:(dom R /\ X);
theorem :: RELAT_1:146
R.:dom R = rng R;
theorem :: RELAT_1:147
R.:X c= R.:(dom R);
theorem :: RELAT_1:148
rng(R|X) = R.:X;
theorem :: RELAT_1:149
R.:{} = {};
theorem :: RELAT_1:150
{}.:X = {};
theorem :: RELAT_1:151
R.:X = {} iff dom R misses X;
theorem :: RELAT_1:152
X <> {} & X c= dom R implies R.:X <> {};
theorem :: RELAT_1:153
R.:(X \/ Y) = R.:X \/ R.:Y;
theorem :: RELAT_1:154
R.:(X /\ Y) c= R.:X /\ R.:Y;
theorem :: RELAT_1:155
R.:X \ R.:Y c= R.:(X \ Y);
theorem :: RELAT_1:156
X c= Y implies R.:X c= R.:Y;
theorem :: RELAT_1:157
P c= R implies P.:X c= R.:X;
theorem :: RELAT_1:158
P c= R & X c= Y implies P.:X c= R.:Y;
theorem :: RELAT_1:159
(P*R).:X=R.:(P.:X);
theorem :: RELAT_1:160
rng(P*R) = R.:(rng P);
theorem :: RELAT_1:161
(R|X).:Y c= R.:Y;
canceled;
theorem :: RELAT_1:163
(dom R) /\ X c= (R~).:(R.:X);
:: INVERSE IMAGE OF SET IN RELATION
:: ________________________________
definition
let R,Y;
func R"Y -> set means
:: RELAT_1:def 14
x in it iff ex y st [x,y] in R & y in Y;
end;
canceled 2;
theorem :: RELAT_1:166
x in R"Y iff ex y st y in rng R & [x,y] in R & y in Y;
theorem :: RELAT_1:167
R"Y c= dom R;
theorem :: RELAT_1:168
R"Y = R"(rng R /\ Y);
theorem :: RELAT_1:169
R"rng R = dom R;
theorem :: RELAT_1:170
R"Y c= R"rng R;
theorem :: RELAT_1:171
R"{} = {};
theorem :: RELAT_1:172
{}"Y = {};
theorem :: RELAT_1:173
R"Y = {} iff rng R misses Y;
theorem :: RELAT_1:174
Y <> {} & Y c= rng R implies R"Y <> {};
theorem :: RELAT_1:175
R"(X \/ Y) = R"X \/ R"Y;
theorem :: RELAT_1:176
R"(X /\ Y) c= R"X /\ R"Y;
theorem :: RELAT_1:177
R"X \ R"Y c= R"(X \ Y);
theorem :: RELAT_1:178
X c= Y implies R"X c= R"Y;
theorem :: RELAT_1:179
P c= R implies P"Y c= R"Y;
theorem :: RELAT_1:180
P c= R & X c= Y implies P"X c= R"Y;
theorem :: RELAT_1:181
(P*R)"Y = P"(R"Y);
theorem :: RELAT_1:182
dom(P*R) = P"(dom R);
theorem :: RELAT_1:183
(rng R) /\ Y c= (R~)"(R"Y);
Back to top