Journal of Formalized Mathematics
Volume 6, 1994
University of Bialystok
Copyright (c) 1994
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Artur Kornilowicz
- Received December 13, 1994
- MML identifier: AUTALG_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary UNIALG_1, FUNCT_1, GROUP_6, ALG_1, RELAT_1, FRAENKEL, FUNCT_2,
BINOP_1, REALSET1, VECTSP_1, GROUP_1, PBOOLE, NATTRA_1, BOOLE, FUNCOP_1,
PRALG_1, MSUALG_3, ZF_REFLE, AMI_1, MSUALG_1, CARD_3, MSUHOM_1, CQC_SIM1,
WELLORD1, AUTALG_1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, PARTFUN1,
FUNCT_2, STRUCT_0, FINSEQ_1, BINOP_1, FRAENKEL, PBOOLE, VECTSP_1,
GROUP_1, GROUP_6, CARD_3, UNIALG_1, UNIALG_2, ALG_1, PRALG_1, MSUALG_1,
MSUALG_3, MSUHOM_1;
constructors BINOP_1, FRAENKEL, GROUP_6, ALG_1, MSUALG_3, MSUHOM_1, MEMBERED,
XBOOLE_0;
clusters FRAENKEL, FUNCT_1, GROUP_1, MSUALG_1, PBOOLE, PRALG_1, RELSET_1,
STRUCT_0, SUBSET_1, MEMBERED, ZFMISC_1, FUNCT_2, PARTFUN1, XBOOLE_0,
NUMBERS, ORDINAL2;
requirements BOOLE, SUBSET;
begin
:: On the Group of Automorphisms of Universal Algebra
reserve UA for Universal_Algebra,
f, g for Function of UA, UA;
theorem :: AUTALG_1:1
id the carrier of UA is_isomorphism UA, UA;
definition let UA;
func UAAut UA -> FUNCTION_DOMAIN of the carrier of UA, the carrier of UA
means
:: AUTALG_1:def 1
(for f be Element of it holds f is Function of UA, UA) &
for h be Function of UA, UA holds h in it iff h is_isomorphism UA, UA;
end;
theorem :: AUTALG_1:2
UAAut UA c= Funcs (the carrier of UA, the carrier of UA);
canceled;
theorem :: AUTALG_1:4
id the carrier of UA in UAAut UA;
theorem :: AUTALG_1:5
for f, g st f is Element of UAAut UA & g = f" holds g is_isomorphism UA, UA;
theorem :: AUTALG_1:6
for f be Element of UAAut UA holds f" in UAAut UA;
theorem :: AUTALG_1:7
for f1, f2 be Element of UAAut UA holds f1 * f2 in UAAut UA;
definition
let UA;
func UAAutComp UA -> BinOp of UAAut UA means
:: AUTALG_1:def 2
for x, y be Element of UAAut UA holds it.(x, y) = y * x;
end;
definition let UA;
func UAAutGroup UA -> Group equals
:: AUTALG_1:def 3
HGrStr (# UAAut UA, UAAutComp UA #);
end;
definition let UA;
cluster UAAutGroup UA -> strict;
end;
theorem :: AUTALG_1:8
for x, y be Element of UAAutGroup UA
for f, g be Element of UAAut UA st x = f & y = g holds x * y = g * f;
theorem :: AUTALG_1:9
id the carrier of UA = 1.UAAutGroup UA;
theorem :: AUTALG_1:10
for f be Element of UAAut UA
for g be Element of UAAutGroup UA st f = g holds f" = g";
begin
:: Some properties of Many Sorted Functions
reserve I for set,
A, B, C for ManySortedSet of I;
definition let I, A, B;
pred A is_transformable_to B means
:: AUTALG_1:def 4
for i be set st i in I holds B.i = {} implies A.i = {};
reflexivity;
end;
theorem :: AUTALG_1:11
A is_transformable_to B & B is_transformable_to C
implies A is_transformable_to C;
theorem :: AUTALG_1:12
for x be set, A be ManySortedSet of {x} holds A = {x} --> A.x;
theorem :: AUTALG_1:13
for F, G, H be Function-yielding Function
holds (H ** G) ** F = H ** (G ** F);
theorem :: AUTALG_1:14
for A, B be non-empty ManySortedSet of I
for F be ManySortedFunction of A, B st F is "1-1" "onto"
holds F"" is "1-1" "onto";
theorem :: AUTALG_1:15
for A, B be non-empty ManySortedSet of I
for F be ManySortedFunction of A, B st F is "1-1" "onto"
holds (F"")"" = F;
theorem :: AUTALG_1:16
for F, G being Function-yielding Function st F is "1-1" & G is "1-1"
holds G ** F is "1-1";
theorem :: AUTALG_1:17
for B, C be non-empty ManySortedSet of I
for F be ManySortedFunction of A, B
for G be ManySortedFunction of B, C st
F is "onto" & G is "onto"
holds G ** F is "onto";
theorem :: AUTALG_1:18
for A, B, C be non-empty ManySortedSet of I
for F be ManySortedFunction of A, B
for G be ManySortedFunction of B, C st
F is "1-1" "onto" & G is "1-1" "onto"
holds (G ** F)"" = (F"") ** (G"");
theorem :: AUTALG_1:19
for A, B be non-empty ManySortedSet of I
for F be ManySortedFunction of A, B
for G be ManySortedFunction of B, A st
F is "1-1" & F is "onto" & G ** F = id A
holds G = F"";
begin
:: On the Group of Automorphisms of Many Sorted Algebra
reserve S for non void non empty ManySortedSign,
U1, U2 for non-empty MSAlgebra over S;
definition let I, A, B;
func MSFuncs (A, B) -> ManySortedSet of I means
:: AUTALG_1:def 5
for i be set st i in I holds it.i = Funcs(A.i, B.i);
end;
canceled;
theorem :: AUTALG_1:21
for A, B be ManySortedSet of I st A is_transformable_to B
for x be set st x in product MSFuncs(A, B)
holds x is ManySortedFunction of A, B;
theorem :: AUTALG_1:22
for A, B be ManySortedSet of I st A is_transformable_to B
for g be ManySortedFunction of A, B holds g in product MSFuncs(A, B);
theorem :: AUTALG_1:23
for A, B be ManySortedSet of I st A is_transformable_to B
holds MSFuncs(A, B) is non-empty;
definition let I, A, B;
assume A is_transformable_to B;
mode MSFunctionSet of A, B -> non empty set means
:: AUTALG_1:def 6
for x be set st x in it holds x is ManySortedFunction of A, B;
end;
definition let I, A;
cluster MSFuncs(A, A) -> non-empty;
end;
definition let S, U1, U2;
mode MSFunctionSet of U1, U2 is MSFunctionSet of the Sorts of U1,
the Sorts of U2;
end;
definition let I be set;
let D be ManySortedSet of I;
cluster non empty MSFunctionSet of D, D;
end;
definition let I be set;
let D be ManySortedSet of I;
let A be non empty MSFunctionSet of D, D;
redefine mode Element of A -> ManySortedFunction of D, D;
end;
theorem :: AUTALG_1:24
id A is "onto";
theorem :: AUTALG_1:25
id A is "1-1";
canceled;
theorem :: AUTALG_1:27
id the Sorts of U1 in product MSFuncs (the Sorts of U1, the Sorts of U1);
definition let S, U1;
func MSAAut U1 -> MSFunctionSet of the Sorts of U1, the Sorts of U1 means
:: AUTALG_1:def 7
(for f be Element of it holds f is ManySortedFunction of U1, U1) &
for h be ManySortedFunction of U1, U1 holds
h in it iff h is_isomorphism U1, U1;
end;
canceled;
theorem :: AUTALG_1:29
for f be Element of MSAAut U1 holds
f in product MSFuncs (the Sorts of U1, the Sorts of U1);
theorem :: AUTALG_1:30
MSAAut U1 c= product MSFuncs (the Sorts of U1, the Sorts of U1);
theorem :: AUTALG_1:31
id the Sorts of U1 in MSAAut U1;
theorem :: AUTALG_1:32
for f be Element of MSAAut U1 holds f"" in MSAAut U1;
theorem :: AUTALG_1:33
for f1, f2 be Element of MSAAut U1 holds f1 ** f2 in MSAAut U1;
theorem :: AUTALG_1:34
for F be ManySortedFunction of MSAlg UA, MSAlg UA
for f be Element of UAAut UA st F = {0} --> f
holds F in MSAAut MSAlg UA;
definition let S, U1;
func MSAAutComp U1 -> BinOp of MSAAut U1 means
:: AUTALG_1:def 8
for x, y be Element of MSAAut U1 holds it.(x, y) = y ** x;
end;
definition let S, U1;
func MSAAutGroup U1 -> Group equals
:: AUTALG_1:def 9
HGrStr (# MSAAut U1, MSAAutComp U1 #);
end;
definition let S, U1;
cluster MSAAutGroup U1 -> strict;
end;
theorem :: AUTALG_1:35
for x, y be Element of MSAAutGroup U1
for f, g be Element of MSAAut U1 st x = f & y = g holds x * y = g ** f;
theorem :: AUTALG_1:36
id the Sorts of U1 = 1.MSAAutGroup U1;
theorem :: AUTALG_1:37
for f be Element of MSAAut U1
for g be Element of MSAAutGroup U1 st f = g holds f"" = g";
begin
:: On the Relationship of Automorphisms of 1-Sorted and Many Sorted Algebras
theorem :: AUTALG_1:38
for UA1, UA2 be Universal_Algebra st UA1, UA2 are_similar
for F be ManySortedFunction of MSAlg UA1, (MSAlg UA2 Over MSSign UA1)
holds F.0 is Function of UA1, UA2;
theorem :: AUTALG_1:39
for f be Element of UAAut UA
holds {0} --> f is ManySortedFunction of MSAlg UA, MSAlg UA;
theorem :: AUTALG_1:40
for h be Function st (dom h = UAAut UA &
for x be set st x in UAAut UA holds h.x = {0} --> x)
holds h is Homomorphism of UAAutGroup UA, MSAAutGroup (MSAlg UA);
theorem :: AUTALG_1:41
for h be Homomorphism of UAAutGroup UA, MSAAutGroup (MSAlg UA) st
for x be set st x in UAAut UA holds h.x = {0} --> x
holds h is_isomorphism;
theorem :: AUTALG_1:42
UAAutGroup UA, MSAAutGroup (MSAlg UA) are_isomorphic;
Back to top