Journal of Formalized Mathematics
Volume 1, 1989
University of Bialystok
Copyright (c) 1989
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Grzegorz Bancerek,
and
- Krzysztof Hryniewiecki
- Received April 1, 1989
- MML identifier: FINSEQ_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary ORDINAL2, ARYTM, FUNCT_1, BOOLE, RELAT_1, FINSET_1, TARSKI,
ORDINAL1, CARD_1, PARTFUN1, ARYTM_1, FINSEQ_1, MCART_1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL2, XCMPLX_0, XREAL_0,
RELAT_1, FUNCT_1, WELLORD2, ORDINAL1, REAL_1, NAT_1, NUMBERS, PARTFUN1,
MCART_1, FINSET_1, CARD_1;
constructors NAT_1, RELSET_1, WELLORD2, CARD_1, XREAL_0, MEMBERED, XBOOLE_0,
DOMAIN_1;
clusters FUNCT_1, RELAT_1, RELSET_1, CARD_1, SUBSET_1, NAT_1, XREAL_0,
MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2, FINSET_1;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin
reserve k,l,m,n,k1,k2 for Nat,
a,b,c for natural number,
x,y,z,y1,y2,X,Y for set,
f,g for Function;
::::::::::::::::::::::::::::::::::::::
:: ::
:: Segments of Natural Numbers ::
:: ::
::::::::::::::::::::::::::::::::::::::
definition let n be natural number;
func Seg n -> set equals
:: FINSEQ_1:def 1
{ k : 1 <= k & k <= n };
end;
definition let n be natural number;
redefine func Seg n -> Subset of NAT;
end;
canceled 2;
theorem :: FINSEQ_1:3
a in Seg b iff 1 <= a & a <= b;
theorem :: FINSEQ_1:4
Seg 0 = {} & Seg 1 = { 1 } & Seg 2 = { 1,2 };
theorem :: FINSEQ_1:5
a = 0 or a in Seg a;
theorem :: FINSEQ_1:6
a+1 in Seg(a+1);
theorem :: FINSEQ_1:7
a <= b iff Seg a c= Seg b;
theorem :: FINSEQ_1:8
Seg a = Seg b implies a = b;
theorem :: FINSEQ_1:9
c <= a implies
Seg c = Seg c /\ Seg a & Seg c = Seg a /\ Seg c;
theorem :: FINSEQ_1:10
(Seg c = Seg c /\ Seg a or Seg c = Seg a /\ Seg c )
implies c <= a;
theorem :: FINSEQ_1:11
Seg a \/ { a+1 } = Seg (a+1);
::::::::::::::::::::::::::::::::
:: ::
:: Finite FinSequences ::
:: ::
::::::::::::::::::::::::::::::::
definition let IT be Relation;
attr IT is FinSequence-like means
:: FINSEQ_1:def 2
ex n st dom IT = Seg n;
end;
definition
cluster FinSequence-like Function;
end;
definition
mode FinSequence is FinSequence-like Function;
end;
reserve p,q,r,s,t for FinSequence;
definition let n;
cluster Seg n -> finite;
end;
definition
cluster FinSequence-like -> finite Function;
end;
definition let p;
redefine func Card p -> Nat means
:: FINSEQ_1:def 3
Seg it = dom p;
synonym len p;
end;
definition let p;
redefine func dom p -> Subset of NAT;
end;
canceled 2;
theorem :: FINSEQ_1:14
{} is FinSequence;
theorem :: FINSEQ_1:15
(ex k st dom f c= Seg k) implies ex p st f c= p;
scheme SeqEx{A()->Nat,P[set,set]}:
ex p st dom p = Seg A() & for k st k in Seg A() holds P[k,p.k]
provided
for k,y1,y2 st k in Seg A() & P[k,y1] & P[k,y2] holds y1=y2
and
for k st k in Seg A() ex x st P[k,x];
scheme SeqLambda{A()->Nat,F(set) -> set}:
ex p being FinSequence st len p = A() & for k st k in Seg A() holds p.k=F(k);
theorem :: FINSEQ_1:16
z in p implies ex k st k in dom p & z=[k,p.k];
theorem :: FINSEQ_1:17
dom p = dom q & (for k st k in dom p holds p.k = q.k) implies p=q;
theorem :: FINSEQ_1:18
( (len p = len q) & for k st 1 <=k & k <= len p holds p.k=q.k )
implies p=q;
theorem :: FINSEQ_1:19
p|(Seg a) is FinSequence;
theorem :: FINSEQ_1:20
rng p c= dom f implies f*p is FinSequence;
theorem :: FINSEQ_1:21
a <= len p & q = p|(Seg a) implies len q = a & dom q = Seg a;
:::::::::::::::::::::::::::::::::
:: ::
:: FinSequences of D ::
:: ::
:::::::::::::::::::::::::::::::::
definition let D be set;
mode FinSequence of D -> FinSequence means
:: FINSEQ_1:def 4
rng it c= D;
end;
definition
cluster {} -> FinSequence-like;
end;
definition let D be set;
cluster FinSequence-like PartFunc of NAT,D;
end;
definition let D be set;
redefine mode FinSequence of D -> FinSequence-like PartFunc of NAT,D;
end;
reserve D for set;
canceled;
theorem :: FINSEQ_1:23
for p being FinSequence of D holds p|(Seg a) is FinSequence of D;
theorem :: FINSEQ_1:24
for D being non empty set
ex p being FinSequence of D st len p = a;
definition
cluster empty FinSequence;
end;
theorem :: FINSEQ_1:25
len p = 0 iff p = {};
theorem :: FINSEQ_1:26
p={} iff dom p = {};
theorem :: FINSEQ_1:27
p={} iff rng p= {};
canceled;
theorem :: FINSEQ_1:29
for D be set holds {} is FinSequence of D;
definition
let D be set;
cluster empty FinSequence of D;
end;
definition let x;
func <*x*> -> set equals
:: FINSEQ_1:def 5
{ [1,x] };
end;
definition let D be set;
func <*>D -> empty FinSequence of D equals
:: FINSEQ_1:def 6
{};
end;
canceled 2;
theorem :: FINSEQ_1:32
p=<*>(D) iff len p = 0;
definition let p,q;
func p^q -> FinSequence means
:: FINSEQ_1:def 7
dom it = Seg (len p + len q) &
(for k st k in dom p holds it.k=p.k) &
(for k st k in dom q holds it.(len p + k) = q.k);
end;
canceled 2;
theorem :: FINSEQ_1:35
len(p^q) = len p + len q;
theorem :: FINSEQ_1:36
(len p + 1 <= k & k <= len p + len q) implies (p^q).k=q.(k-len p);
theorem :: FINSEQ_1:37
len p < k & k <= len(p^q) implies (p^q).k = q.(k - len p);
theorem :: FINSEQ_1:38
k in dom (p^q) implies
(k in dom p or (ex n st n in dom q & k=len p + n));
theorem :: FINSEQ_1:39
dom p c= dom(p^q);
theorem :: FINSEQ_1:40
x in dom q implies ex k st k=x & len p + k in dom(p^q);
theorem :: FINSEQ_1:41
k in dom q implies len p + k in dom(p^q);
theorem :: FINSEQ_1:42
rng p c= rng(p^q);
theorem :: FINSEQ_1:43
rng q c= rng(p^q);
theorem :: FINSEQ_1:44
rng(p^q) = rng p \/ rng q;
theorem :: FINSEQ_1:45
p^q^r = p^(q^r);
theorem :: FINSEQ_1:46
p^r = q^r or r^p = r^q implies p = q;
theorem :: FINSEQ_1:47
p^{} = p & {}^p = p;
theorem :: FINSEQ_1:48
p^q = {} implies p={} & q={};
definition let D be set;let p,q be FinSequence of D;
redefine func p^q -> FinSequence of D;
end;
definition let x;
redefine func <*x*> -> Function means
:: FINSEQ_1:def 8
dom it = Seg 1 & it.1 = x;
end;
definition let x;
cluster <*x*> -> Function-like Relation-like;
end;
definition let x;
cluster <*x*> -> FinSequence-like;
end;
canceled;
theorem :: FINSEQ_1:50
p^q is FinSequence of D implies
p is FinSequence of D & q is FinSequence of D;
definition let x,y;
func <*x,y*> -> set equals
:: FINSEQ_1:def 9
<*x*>^<*y*>;
let z;
func <*x,y,z*> -> set equals
:: FINSEQ_1:def 10
<*x*>^<*y*>^<*z*>;
end;
definition let x,y;
cluster <*x,y*> -> Function-like Relation-like;
let z;
cluster <*x,y,z*> -> Function-like Relation-like;
end;
definition let x,y;
cluster <*x,y*> -> FinSequence-like;
let z;
cluster <*x,y,z*> -> FinSequence-like;
end;
canceled;
theorem :: FINSEQ_1:52
<*x*> = { [1,x] };
canceled 2;
theorem :: FINSEQ_1:55
p=<*x*> iff dom p = Seg 1 & rng p = {x};
theorem :: FINSEQ_1:56
p=<*x*> iff len p = 1 & rng p = {x};
theorem :: FINSEQ_1:57
p = <*x*> iff len p = 1 & p.1 = x;
theorem :: FINSEQ_1:58
(<*x*>^p).1 = x;
theorem :: FINSEQ_1:59
(p^<*x*>).(len p + 1)=x;
theorem :: FINSEQ_1:60
<*x,y,z*>=<*x*>^<*y,z*> &
<*x,y,z*>=<*x,y*>^<*z*>;
theorem :: FINSEQ_1:61
p = <*x,y*> iff len p = 2 & p.1=x & p.2=y;
theorem :: FINSEQ_1:62
p = <*x,y,z*> iff len p = 3 & p.1 = x & p.2 = y & p.3 = z;
theorem :: FINSEQ_1:63
p <> {} implies ex q,x st p=q^<*x*>;
definition let D be non empty set; let x be Element of D;
redefine func <*x*> -> FinSequence of D;
end;
::::::::::::::::::::::::::::::::::::::::::::::
:: scheme of induction for finite sequences ::
::::::::::::::::::::::::::::::::::::::::::::::
scheme IndSeq{P[FinSequence]}:
for p holds P[p]
provided
P[{}] and
for p,x st P[p] holds P[p^<*x*>];
theorem :: FINSEQ_1:64
for p,q,r,s being FinSequence st p^q = r^s & len p <= len r
ex t being FinSequence st p^t = r;
definition let D be set;
func D* -> set means
:: FINSEQ_1:def 11
x in it iff x is FinSequence of D;
end;
definition let D be set;
cluster D* -> non empty;
end;
canceled;
theorem :: FINSEQ_1:66
{} in D*;
scheme SepSeq{D()->non empty set, P[FinSequence]}:
ex X st (for x holds x in X iff
ex p st (p in D()* & P[p] & x=p));
:::::::::::::::::::::::::::::::
:: ::
:: Subsequences ::
:: ::
:::::::::::::::::::::::::::::::
definition let IT be Function;
attr IT is FinSubsequence-like means
:: FINSEQ_1:def 12
ex k st dom IT c= Seg k;
end;
definition
cluster FinSubsequence-like Function;
end;
definition
mode FinSubsequence is FinSubsequence-like Function;
end;
canceled;
theorem :: FINSEQ_1:68
for p being FinSequence holds p is FinSubsequence;
theorem :: FINSEQ_1:69
p|X is FinSubsequence & X|p is FinSubsequence;
reserve p' for FinSubsequence;
definition let X;
given k such that X c= Seg k;
func Sgm X -> FinSequence of NAT means
:: FINSEQ_1:def 13
rng it = X & for l,m,k1,k2 st
( 1 <= l & l < m & m <= len it &
k1=it.l & k2=it.m) holds k1 < k2;
end;
canceled;
theorem :: FINSEQ_1:71
rng Sgm dom p' = dom p';
definition let p';
func Seq p' -> Function equals
:: FINSEQ_1:def 14
p'* Sgm(dom p');
end;
definition let p';
cluster Seq p' -> FinSequence-like;
end;
theorem :: FINSEQ_1:72
for X st ex k st X c= Seg k holds Sgm X = {} iff X = {};
begin :: Moved from FINSET_1, 1998
theorem :: FINSEQ_1:73 :: FINSET_1:def 1
D is finite iff ex p st D = rng p;
definition
cluster finite empty Function;
end;
definition
cluster finite non empty Function;
end;
definition let R be finite Relation;
cluster rng R -> finite;
end;
begin :: Moved from CARD_1, 1999
theorem :: FINSEQ_1:74
Seg n,Seg m are_equipotent implies n = m;
theorem :: FINSEQ_1:75
Seg n,n are_equipotent;
theorem :: FINSEQ_1:76
Card Seg n = Card n;
theorem :: FINSEQ_1:77
X is finite implies ex n st X,Seg n are_equipotent;
theorem :: FINSEQ_1:78
for n being Nat holds
card Seg n = n & card n = n & card Card n = n;
Back to top