Journal of Formalized Mathematics
Volume 1, 1989
University of Bialystok
Copyright (c) 1989
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Grzegorz Bancerek
- Received July 18, 1989
- MML identifier: ORDINAL2
- [
Mizar article,
MML identifier index
]
environ
vocabulary ORDINAL1, FUNCT_1, BOOLE, SETFAM_1, TARSKI, RELAT_1, ORDINAL2;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1,
SETFAM_1;
constructors ORDINAL1, SETFAM_1, XBOOLE_0;
clusters FUNCT_1, SUBSET_1, ORDINAL1, ZFMISC_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin
reserve A,A1,A2,B,C,D for Ordinal,
X,Y,Z for set,
x,y,a,b,c for set,
L,L1,L2,L3 for T-Sequence,
f for Function;
scheme Ordinal_Ind { P[Ordinal] } :
for A holds P[A]
provided
P[{}] and
for A st P[A] holds P[succ A] and
for A st A <> {} & A is_limit_ordinal & for B st B in A holds P[B]
holds P[A];
theorem :: ORDINAL2:1
A c= B iff succ A c= succ B;
theorem :: ORDINAL2:2
union succ A = A;
theorem :: ORDINAL2:3
succ A c= bool A;
theorem :: ORDINAL2:4
{} is_limit_ordinal;
theorem :: ORDINAL2:5
union A c= A;
definition let L;
func last L -> set equals
:: ORDINAL2:def 1
L.(union dom L);
end;
canceled;
theorem :: ORDINAL2:7
dom L = succ A implies last L = L.A;
definition let X;
func On X -> set means
:: ORDINAL2:def 2
x in it iff x in X & x is Ordinal;
func Lim X -> set means
:: ORDINAL2:def 3
x in it iff x in X & ex A st x = A & A is_limit_ordinal;
end;
canceled;
theorem :: ORDINAL2:9
On X c= X;
theorem :: ORDINAL2:10
On A = A;
theorem :: ORDINAL2:11
X c= Y implies On X c= On Y;
canceled;
theorem :: ORDINAL2:13
Lim X c= X;
theorem :: ORDINAL2:14
X c= Y implies Lim X c= Lim Y;
theorem :: ORDINAL2:15
Lim X c= On X;
theorem :: ORDINAL2:16
for D ex A st D in A & A is_limit_ordinal;
theorem :: ORDINAL2:17
(for x st x in X holds x is Ordinal) implies meet X is Ordinal;
definition
func one -> non empty Ordinal equals
:: ORDINAL2:def 4
succ {};
end;
definition
func omega -> set means
:: ORDINAL2:def 5
{} in it & it is_limit_ordinal & it is ordinal &
for A st {} in A & A is_limit_ordinal holds it c= A;
end;
definition
cluster omega -> non empty ordinal;
end;
definition
let X;
func inf X -> Ordinal equals
:: ORDINAL2:def 6
meet On X;
func sup X -> Ordinal means
:: ORDINAL2:def 7
On X c= it & for A st On X c= A holds it c= A;
end;
canceled;
theorem :: ORDINAL2:19
{} in omega & omega is_limit_ordinal &
for A st {} in A & A is_limit_ordinal holds omega c= A;
canceled 2;
theorem :: ORDINAL2:22
A in X implies inf X c= A;
theorem :: ORDINAL2:23
On X <> {} & (for A st A in X holds D c= A) implies D c= inf X;
theorem :: ORDINAL2:24
A in X & X c= Y implies inf Y c= inf X;
theorem :: ORDINAL2:25
A in X implies inf X in X;
theorem :: ORDINAL2:26
sup A = A;
theorem :: ORDINAL2:27
A in X implies A in sup X;
theorem :: ORDINAL2:28
(for A st A in X holds A in D) implies sup X c= D;
theorem :: ORDINAL2:29
A in sup X implies ex B st B in X & A c= B;
theorem :: ORDINAL2:30
X c= Y implies sup X c= sup Y;
theorem :: ORDINAL2:31
sup { A } = succ A;
theorem :: ORDINAL2:32
inf X c= sup X;
scheme TS_Lambda { A()->Ordinal, F(Ordinal)->set } :
ex L st dom L = A() & for A st A in A() holds L.A = F(A);
definition let f;
attr f is Ordinal-yielding means
:: ORDINAL2:def 8
ex A st rng f c= A;
end;
definition
cluster Ordinal-yielding T-Sequence;
end;
definition
mode Ordinal-Sequence is Ordinal-yielding T-Sequence;
end;
definition let A;
cluster -> Ordinal-yielding T-Sequence of A;
end;
definition let L be Ordinal-Sequence; let A;
cluster L|A -> Ordinal-yielding;
end;
reserve fi,psi for Ordinal-Sequence;
canceled;
theorem :: ORDINAL2:34
A in dom fi implies fi.A is Ordinal;
definition
let f be Ordinal-Sequence, a be Ordinal;
cluster f.a -> ordinal;
end;
scheme OS_Lambda { A()->Ordinal, F(Ordinal)->Ordinal } :
ex fi st dom fi = A() & for A st A in A() holds fi.A = F(A);
scheme TS_Uniq1 { A()->Ordinal, B()->set, C(Ordinal,set)->set,
D(Ordinal,T-Sequence)->set,
L1()->T-Sequence, L2()->T-Sequence } :
L1() = L2() provided
dom L1() = A() and
{} in A() implies L1().{} = B() and
for A st succ A in A() holds L1().(succ A) = C(A,L1().A) and
for A st A in A() & A <> {} & A is_limit_ordinal
holds L1().A = D(A,L1()|A) and
dom L2() = A() and
{} in A() implies L2().{} = B() and
for A st succ A in A() holds L2().(succ A) = C(A,L2().A) and
for A st A in A() & A <> {} & A is_limit_ordinal
holds L2().A = D(A,L2()|A);
scheme TS_Exist1 { A()->Ordinal, B()->set, C(Ordinal,set)->set,
D(Ordinal,T-Sequence)->set } :
ex L st dom L = A() &
({} in A() implies L.{} = B() ) &
(for A st succ A in A() holds L.(succ A) = C(A,L.A) ) &
(for A st A in A() & A <> {} & A is_limit_ordinal
holds L.A = D(A,L|A) );
scheme TS_Result
{ L()->T-Sequence, F(Ordinal)->set, A()->Ordinal, B()->set,
C(Ordinal,set)->set, D(Ordinal,T-Sequence)->set } :
for A st A in dom L() holds L().A = F(A)
provided
for A,x holds x = F(A) iff
ex L st x = last L & dom L = succ A & L.{} = B() &
(for C st succ C in succ A holds L.succ C = C(C,L.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds L.C = D(C,L|C) and
dom L() = A() and
{} in A() implies L().{} = B() and
for A st succ A in A() holds L().(succ A) = C(A,L().A) and
for A st A in A() & A <> {} & A is_limit_ordinal
holds L().A = D(A,L()|A);
scheme TS_Def { A()->Ordinal, B()->set, C(Ordinal,set)->set,
D(Ordinal,T-Sequence)->set } :
(ex x,L st x = last L & dom L = succ A() & L.{} = B() &
(for C st succ C in succ A() holds L.succ C = C(C,L.C)) &
for C st C in succ A() & C <> {} & C is_limit_ordinal
holds L.C = D(C,L|C) ) &
for x1,x2 being set st
(ex L st x1 = last L & dom L = succ A() & L.{} = B() &
(for C st succ C in succ A() holds L.succ C = C(C,L.C)) &
for C st C in succ A() & C <> {} & C is_limit_ordinal
holds L.C = D(C,L|C) ) &
(ex L st x2 = last L & dom L = succ A() & L.{} = B() &
(for C st succ C in succ A() holds L.succ C = C(C,L.C)) &
for C st C in succ A() & C <> {} & C is_limit_ordinal
holds L.C = D(C,L|C) )
holds x1 = x2;
scheme TS_Result0
{ F(Ordinal)->set, B()->set, C(Ordinal,set)->set,
D(Ordinal,T-Sequence)->set } :
F({}) = B()
provided
for A,x holds x = F(A) iff
ex L st x = last L & dom L = succ A & L.{} = B() &
(for C st succ C in succ A holds L.succ C = C(C,L.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds L.C = D(C,L|C);
scheme TS_ResultS
{ B()->set, C(Ordinal,set)->set,
D(Ordinal,T-Sequence)->set, F(Ordinal)->set } :
for A holds F(succ A) = C(A,F(A))
provided
for A,x holds x = F(A) iff
ex L st x = last L & dom L = succ A & L.{} = B() &
(for C st succ C in succ A holds L.succ C = C(C,L.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds L.C = D(C,L|C);
scheme TS_ResultL
{ L()->T-Sequence, A()->Ordinal, F(Ordinal)->set, B()->set,
C(Ordinal,set)->set, D(Ordinal,T-Sequence)->set } :
F(A()) = D(A(),L())
provided
for A,x holds x = F(A) iff
ex L st x = last L & dom L = succ A & L.{} = B() &
(for C st succ C in succ A holds L.succ C = C(C,L.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds L.C = D(C,L|C) and
A() <> {} & A() is_limit_ordinal and
dom L() = A() and
for A st A in A() holds L().A = F(A);
scheme OS_Exist { A()->Ordinal, B()->Ordinal, C(Ordinal,Ordinal)->Ordinal,
D(Ordinal,T-Sequence)->Ordinal } :
ex fi st dom fi = A() &
({} in A() implies fi.{} = B() ) &
(for A st succ A in A() holds fi.(succ A) = C(A,fi.A) ) &
(for A st A in A() & A <> {} & A is_limit_ordinal
holds fi.A = D(A,fi|A) );
scheme OS_Result
{ fi()->Ordinal-Sequence, F(Ordinal)->Ordinal, A()->Ordinal, B()->Ordinal,
C(Ordinal,Ordinal)->Ordinal, D(Ordinal,T-Sequence)->Ordinal } :
for A st A in dom fi() holds fi().A = F(A)
provided
for A,B holds B = F(A) iff
ex fi st B = last fi & dom fi = succ A & fi.{} = B() &
(for C st succ C in succ A holds fi.succ C = C(C,fi.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds fi.C = D(C,fi|C) and
dom fi() = A() and
{} in A() implies fi().{} = B() and
for A st succ A in A() holds fi().(succ A) = C(A,fi().A) and
for A st A in A() & A <> {} & A is_limit_ordinal
holds fi().A = D(A,fi()|A);
scheme OS_Def { A()->Ordinal, B()->Ordinal, C(Ordinal,Ordinal)->Ordinal,
D(Ordinal,T-Sequence)->Ordinal } :
(ex A,fi st A = last fi & dom fi = succ A() & fi.{} = B() &
(for C st succ C in succ A() holds fi.succ C = C(C,fi.C)) &
for C st C in succ A() & C <> {} & C is_limit_ordinal
holds fi.C = D(C,fi|C) ) &
for A1,A2 st
(ex fi st A1 = last fi & dom fi = succ A() & fi.{} = B() &
(for C st succ C in succ A() holds fi.succ C = C(C,fi.C)) &
for C st C in succ A() & C <> {} & C is_limit_ordinal
holds fi.C = D(C,fi|C) ) &
(ex fi st A2 = last fi & dom fi = succ A() & fi.{} = B() &
(for C st succ C in succ A() holds fi.succ C = C(C,fi.C)) &
for C st C in succ A() & C <> {} & C is_limit_ordinal
holds fi.C = D(C,fi|C) )
holds A1 = A2;
scheme OS_Result0
{ F(Ordinal)->Ordinal, B()->Ordinal, C(Ordinal,Ordinal)->Ordinal,
D(Ordinal,T-Sequence)->Ordinal } :
F({}) = B()
provided
for A,B holds B = F(A) iff
ex fi st B = last fi & dom fi = succ A & fi.{} = B() &
(for C st succ C in succ A holds fi.succ C = C(C,fi.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds fi.C = D(C,fi|C);
scheme OS_ResultS
{ B()->Ordinal, C(Ordinal,Ordinal)->Ordinal,
D(Ordinal,T-Sequence)->Ordinal, F(Ordinal)->Ordinal } :
for A holds F(succ A) = C(A,F(A))
provided
for A,B holds B = F(A) iff
ex fi st B = last fi & dom fi = succ A & fi.{} = B() &
(for C st succ C in succ A holds fi.succ C = C(C,fi.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds fi.C = D(C,fi|C);
scheme OS_ResultL
{ fi()->Ordinal-Sequence, A()->Ordinal, F(Ordinal)->Ordinal, B()->Ordinal,
C(Ordinal,Ordinal)->Ordinal, D(Ordinal,T-Sequence)->Ordinal } :
F(A()) = D(A(),fi())
provided
for A,B holds B = F(A) iff
ex fi st B = last fi & dom fi = succ A & fi.{} = B() &
(for C st succ C in succ A holds fi.succ C = C(C,fi.C)) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds fi.C = D(C,fi|C) and
A() <> {} & A() is_limit_ordinal and
dom fi() = A() and
for A st A in A() holds fi().A = F(A);
definition let L;
func sup L -> Ordinal equals
:: ORDINAL2:def 9
sup rng L;
func inf L -> Ordinal equals
:: ORDINAL2:def 10
inf rng L;
end;
theorem :: ORDINAL2:35
sup L = sup rng L & inf L = inf rng L;
definition let L;
func lim_sup L -> Ordinal means
:: ORDINAL2:def 11
ex fi st it = inf fi & dom fi = dom L &
for A st A in dom L holds fi.A = sup rng (L|(dom L \ A));
func lim_inf L -> Ordinal means
:: ORDINAL2:def 12
ex fi st it = sup fi & dom fi = dom L &
for A st A in dom L holds fi.A = inf rng (L|(dom L \ A));
end;
definition let A,fi;
pred A is_limes_of fi means
:: ORDINAL2:def 13
ex B st B in dom fi & for C st B c= C & C in dom fi holds fi.C = {}
if A = {} otherwise
for B,C st B in A & A in C ex D st D in dom fi &
for E being Ordinal st D c= E & E in dom fi holds B in fi.E & fi.E in C;
end;
definition let fi;
given A such that
A is_limes_of fi;
func lim fi -> Ordinal means
:: ORDINAL2:def 14
it is_limes_of fi;
end;
definition let A,fi;
func lim(A,fi) -> Ordinal equals
:: ORDINAL2:def 15
lim(fi|A);
end;
definition let L be Ordinal-Sequence;
attr L is increasing means
:: ORDINAL2:def 16
for A,B st A in B & B in dom L holds L.A in L.B;
attr L is continuous means
:: ORDINAL2:def 17
for A,B st A in dom L & A <> {} & A is_limit_ordinal & B = L.A
holds B is_limes_of L|A;
end;
definition let A,B;
func A +^ B -> Ordinal means
:: ORDINAL2:def 18
ex fi st it = last fi & dom fi = succ B &
fi.{} = A &
(for C st succ C in succ B holds fi.succ C = succ(fi.C)) &
for C st C in succ B & C <> {} & C is_limit_ordinal
holds fi.C = sup(fi|C);
end;
definition let A,B;
func A *^ B -> Ordinal means
:: ORDINAL2:def 19
ex fi st it = last fi & dom fi = succ A &
fi.{} = {} &
(for C st succ C in succ A holds fi.succ C = (fi.C)+^B) &
for C st C in succ A & C <> {} & C is_limit_ordinal
holds fi.C = union sup(fi|C);
end;
definition let A,B;
func exp(A,B) -> Ordinal means
:: ORDINAL2:def 20
ex fi st it = last fi & dom fi = succ B &
fi.{} = one &
(for C st succ C in succ B holds fi.succ C = A*^(fi.C)) &
for C st C in succ B & C <> {} & C is_limit_ordinal
holds fi.C = lim(fi|C);
end;
canceled 8;
theorem :: ORDINAL2:44
A+^{} = A;
theorem :: ORDINAL2:45
A+^succ B = succ(A+^B);
theorem :: ORDINAL2:46
B <> {} & B is_limit_ordinal implies
for fi st dom fi = B & for C st C in B holds fi.C = A+^C holds A+^B = sup fi
;
theorem :: ORDINAL2:47
{}+^A = A;
theorem :: ORDINAL2:48
A+^one = succ A;
theorem :: ORDINAL2:49
A in B implies C +^ A in C +^ B;
theorem :: ORDINAL2:50
A c= B implies C +^ A c= C +^ B;
theorem :: ORDINAL2:51
A c= B implies A +^ C c= B +^ C;
theorem :: ORDINAL2:52
{}*^A = {};
theorem :: ORDINAL2:53
(succ B)*^A = B*^A +^ A;
theorem :: ORDINAL2:54
B <> {} & B is_limit_ordinal implies
for fi st dom fi = B & for C st C in B holds fi.C = C*^A holds
B*^A = union sup fi;
theorem :: ORDINAL2:55
A*^{} = {};
theorem :: ORDINAL2:56
one*^A = A & A*^one = A;
theorem :: ORDINAL2:57
C <> {} & A in B implies A*^C in B*^C;
theorem :: ORDINAL2:58
A c= B implies A*^C c= B*^C;
theorem :: ORDINAL2:59
A c= B implies C*^A c= C*^B;
theorem :: ORDINAL2:60
exp(A,{}) = one;
theorem :: ORDINAL2:61
exp(A,succ B) = A*^exp(A,B);
theorem :: ORDINAL2:62
B <> {} & B is_limit_ordinal implies
for fi st dom fi = B & for C st C in B holds fi.C = exp(A,C) holds
exp(A,B) = lim fi;
theorem :: ORDINAL2:63
exp(A,one) = A & exp(one,A) = one;
definition let A be set;
attr A is natural means
:: ORDINAL2:def 21
A in omega;
end;
canceled;
theorem :: ORDINAL2:65
for A ex B,C st B is_limit_ordinal & C is natural & A = B +^ C;
Back to top