environ vocabulary XREAL_0, ARYTM_2, BOOLE, ARYTM_1, ARYTM_3, ORDINAL2, ARYTM, RELAT_1, ASYMPT_0, ZF_LANG, XCMPLX_0, COMPLEX1, FUNCOP_1, OPPCAT_1, ORDINAL1; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, FUNCT_4, ORDINAL1, ORDINAL2, ARYTM_2, ARYTM_1, NUMBERS, ARYTM_0, XCMPLX_0; constructors ARYTM_1, ARYTM_0, ORDINAL2, XCMPLX_0, FUNCT_4, XBOOLE_0, TARSKI; clusters ARYTM_2, NUMBERS, ARYTM_3, ORDINAL2, SUBSET_1, XBOOLE_0, XCMPLX_0, ZFMISC_1; requirements NUMERALS, BOOLE, SUBSET, ARITHM; begin definition let r be number; attr r is real means :: XREAL_0:def 1 r in REAL; end; definition cluster natural -> real number; cluster real -> complex number; end; definition cluster real number; end; definition let x,y be real number; pred x <= y means :: XREAL_0:def 2 ex x',y' being Element of REAL+ st x = x' & y = y' & x' <=' y' if x in REAL+ & y in REAL+, ex x',y' being Element of REAL+ st x = [0,x'] & y = [0,y'] & y' <=' x' if x in [:{0},REAL+:] & y in [:{0},REAL+:] otherwise y in REAL+ & x in [:{0},REAL+:]; reflexivity; connectedness; synonym y >= x; antonym y < x; antonym x > y; end; definition let x be real number; attr x is positive means :: XREAL_0:def 3 x > 0; attr x is negative means :: XREAL_0:def 4 x < 0; end; definition let x be real number; cluster -x -> real; cluster x" -> real; let y be real number; cluster x + y -> real; cluster x * y -> real; end; definition let x,y be real number; cluster x-y -> real; cluster x/y -> real; end; begin reserve r,s,t for real number; definition cluster positive -> non negative non zero (real number); cluster non negative non zero -> positive (real number); cluster negative -> non positive non zero (real number); cluster non positive non zero -> negative (real number); cluster zero -> non negative non positive (real number); cluster non negative non positive -> zero (real number); end; definition cluster positive (real number); cluster negative (real number); cluster zero (real number); end; definition let r,s be non negative (real number); cluster r + s -> non negative; end; definition let r,s be non positive (real number); cluster r + s -> non positive; end; definition let r be positive (real number); let s be non negative (real number); cluster r + s -> positive; cluster s + r -> positive; end; definition let r be negative (real number); let s be non positive (real number); cluster r + s -> negative; cluster s + r -> negative; end; definition let r be non positive (real number); cluster -r -> non negative; end; definition let r be non negative (real number); cluster -r -> non positive; end; definition let r be non negative (real number), s be non positive (real number); cluster r - s -> non negative; cluster s - r -> non positive; end; definition let r be positive (real number); let s be non positive (real number); cluster r - s -> positive; cluster s - r -> negative; end; definition let r be negative (real number); let s be non negative (real number); cluster r - s -> negative; cluster s - r -> positive; end; definition let r be non positive (real number), s be non negative (real number); cluster r*s -> non positive; cluster s*r -> non positive; end; definition let r,s be non positive (real number); cluster r*s -> non negative; end; definition let r,s be non negative (real number); cluster r*s -> non negative; end; definition let r be non positive (real number); cluster r" -> non positive; end; definition let r be non negative (real number); cluster r" -> non negative; end; definition let r be non negative (real number), s be non positive (real number); cluster r/s -> non positive; cluster s/r -> non positive; end; definition let r,s be non negative (real number); cluster r/s -> non negative; end; definition let r,s be non positive (real number); cluster r/s -> non negative; end;