Journal of Formalized Mathematics
Addenda , 1998
University of Bialystok
Copyright (c) 1998 Association of Mizar Users

The abstract of the Mizar article:

Non-Negative Real Numbers. Part I

by
Andrzej Trybulec

Received March 7, 1998

MML identifier: ARYTM_2
[ Mizar article, MML identifier index ]


environ

 vocabulary ARYTM_3, BOOLE, ORDINAL2, ORDINAL1, ARYTM_2, HAHNBAN;
 notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, ORDINAL2, ARYTM_3;
 constructors ARYTM_3, XBOOLE_0;
 clusters ARYTM_3, SUBSET_1, ORDINAL1, ORDINAL2, ZFMISC_1, XBOOLE_0;
 requirements BOOLE, SUBSET;


begin

reserve r,s,t,x',y',z',p,q for Element of RAT+;

definition
 func DEDEKIND_CUTS -> Subset of bool RAT+ equals
:: ARYTM_2:def 1
 { A where A is Subset of RAT+: r in A implies
      (for s st s <=' r holds s in A) & ex s st s in A & r < s }
   \ { RAT+};
end;

definition
 cluster DEDEKIND_CUTS -> non empty;
end;

definition
 func REAL+ equals
:: ARYTM_2:def 2
 RAT+ \/ DEDEKIND_CUTS \ {{ s: s < t}: t <> {}};
end;

reserve x,y,z for Element of REAL+;

theorem :: ARYTM_2:1
 RAT+ c= REAL+;


theorem :: ARYTM_2:2
 omega c= REAL+;

definition
 cluster REAL+ -> non empty;
end;

definition let x;
 func DEDEKIND_CUT x -> Element of DEDEKIND_CUTS means
:: ARYTM_2:def 3
 ex r st x = r & it = { s : s < r } if x in RAT+
  otherwise it = x;
end;

theorem :: ARYTM_2:3
   not ex y being set st [{},y] in REAL+;

definition let x be Element of DEDEKIND_CUTS;
 func GLUED x -> Element of REAL+ means
:: ARYTM_2:def 4
 ex r st it = r & for s holds s in x iff s < r
   if ex r st for s holds s in x iff s < r
  otherwise it = x;
end;

definition let x,y be Element of REAL+;
 pred x <=' y means
:: ARYTM_2:def 5
  ex x',y' st x = x' & y = y' & x' <=' y'
   if x in RAT+ & y in RAT+,
  x in y if x in RAT+ & not y in RAT+,
  not y in x if not x in RAT+ & y in RAT+
   otherwise x c= y;
 connectedness;
 antonym y < x;
end;

definition let A,B be Element of DEDEKIND_CUTS;
 func A + B -> Element of DEDEKIND_CUTS equals
:: ARYTM_2:def 6
 { r + s : r in A & s in B};
 commutativity;
end;

definition let A,B be Element of DEDEKIND_CUTS;
 func A *' B -> Element of DEDEKIND_CUTS equals
:: ARYTM_2:def 7
 { r *' s : r in A & s in B};
 commutativity;
end;

definition let x,y be Element of REAL+;
 func x + y -> Element of REAL+ equals
:: ARYTM_2:def 8

   x if y = {},
   y if x = {}
  otherwise GLUED(DEDEKIND_CUT x + DEDEKIND_CUT y);
 commutativity;
 func x *' y -> Element of REAL+ equals
:: ARYTM_2:def 9
 GLUED(DEDEKIND_CUT x *' DEDEKIND_CUT y);
 commutativity;
end;

theorem :: ARYTM_2:4
 x = {} implies x *' y = {};

canceled;

theorem :: ARYTM_2:6
 x + y = {} implies x = {};

theorem :: ARYTM_2:7
 x + (y + z) = (x + y) + z;

theorem :: ARYTM_2:8
   IR is c=-linear;

theorem :: ARYTM_2:9
   for X,Y being Subset of REAL+ st
  (ex x st x in X) & (ex x st x in Y) &
   for x,y st x in X & y in Y holds x <=' y
  ex z st
   for x,y st x in X & y in Y holds x <=' z & z <=' y;

theorem :: ARYTM_2:10
 x <=' y implies ex z st x + z = y;

theorem :: ARYTM_2:11
 ex z st x + z = y or y + z = x;

theorem :: ARYTM_2:12
 x + y = x + z implies y = z;

theorem :: ARYTM_2:13
   x *' (y *' z) = x *' y *' z;

theorem :: ARYTM_2:14
   x *' (y + z) = (x *' y) + (x *' z);

theorem :: ARYTM_2:15
   x <> {} implies ex y st x *' y = one;

theorem :: ARYTM_2:16
   x = one implies x *' y = y;

theorem :: ARYTM_2:17
   x in omega & y in omega implies y + x in omega;

theorem :: ARYTM_2:18
   for A being Subset of REAL+
   st {} in A & for x,y st x in A & y = one holds x + y in A
 holds omega c= A;

theorem :: ARYTM_2:19
   for x st x in omega holds
  for y holds y in x iff y in omega & y <> x & y <=' x;

theorem :: ARYTM_2:20
   x = y + z implies z <=' x;

theorem :: ARYTM_2:21
   {} in REAL+ & one in REAL+;

theorem :: ARYTM_2:22
   x in RAT+ & y in RAT+ implies
  ex x',y' st x = x' & y = y' & x *' y = x' *' y';

Back to top