environ vocabulary ARYTM_3, BOOLE, ORDINAL2, ORDINAL1, ARYTM_2, HAHNBAN; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, ORDINAL2, ARYTM_3; constructors ARYTM_3, XBOOLE_0; clusters ARYTM_3, SUBSET_1, ORDINAL1, ORDINAL2, ZFMISC_1, XBOOLE_0; requirements BOOLE, SUBSET; begin reserve r,s,t,x',y',z',p,q for Element of RAT+; definition func DEDEKIND_CUTS -> Subset of bool RAT+ equals :: ARYTM_2:def 1 { A where A is Subset of RAT+: r in A implies (for s st s <=' r holds s in A) & ex s st s in A & r < s } \ { RAT+}; end; definition cluster DEDEKIND_CUTS -> non empty; end; definition func REAL+ equals :: ARYTM_2:def 2 RAT+ \/ DEDEKIND_CUTS \ {{ s: s < t}: t <> {}}; end; reserve x,y,z for Element of REAL+; theorem :: ARYTM_2:1 RAT+ c= REAL+; theorem :: ARYTM_2:2 omega c= REAL+; definition cluster REAL+ -> non empty; end; definition let x; func DEDEKIND_CUT x -> Element of DEDEKIND_CUTS means :: ARYTM_2:def 3 ex r st x = r & it = { s : s < r } if x in RAT+ otherwise it = x; end; theorem :: ARYTM_2:3 not ex y being set st [{},y] in REAL+; definition let x be Element of DEDEKIND_CUTS; func GLUED x -> Element of REAL+ means :: ARYTM_2:def 4 ex r st it = r & for s holds s in x iff s < r if ex r st for s holds s in x iff s < r otherwise it = x; end; definition let x,y be Element of REAL+; pred x <=' y means :: ARYTM_2:def 5 ex x',y' st x = x' & y = y' & x' <=' y' if x in RAT+ & y in RAT+, x in y if x in RAT+ & not y in RAT+, not y in x if not x in RAT+ & y in RAT+ otherwise x c= y; connectedness; antonym y < x; end; definition let A,B be Element of DEDEKIND_CUTS; func A + B -> Element of DEDEKIND_CUTS equals :: ARYTM_2:def 6 { r + s : r in A & s in B}; commutativity; end; definition let A,B be Element of DEDEKIND_CUTS; func A *' B -> Element of DEDEKIND_CUTS equals :: ARYTM_2:def 7 { r *' s : r in A & s in B}; commutativity; end; definition let x,y be Element of REAL+; func x + y -> Element of REAL+ equals :: ARYTM_2:def 8 x if y = {}, y if x = {} otherwise GLUED(DEDEKIND_CUT x + DEDEKIND_CUT y); commutativity; func x *' y -> Element of REAL+ equals :: ARYTM_2:def 9 GLUED(DEDEKIND_CUT x *' DEDEKIND_CUT y); commutativity; end; theorem :: ARYTM_2:4 x = {} implies x *' y = {}; canceled; theorem :: ARYTM_2:6 x + y = {} implies x = {}; theorem :: ARYTM_2:7 x + (y + z) = (x + y) + z; theorem :: ARYTM_2:8 IR is c=-linear; theorem :: ARYTM_2:9 for X,Y being Subset of REAL+ st (ex x st x in X) & (ex x st x in Y) & for x,y st x in X & y in Y holds x <=' y ex z st for x,y st x in X & y in Y holds x <=' z & z <=' y; theorem :: ARYTM_2:10 x <=' y implies ex z st x + z = y; theorem :: ARYTM_2:11 ex z st x + z = y or y + z = x; theorem :: ARYTM_2:12 x + y = x + z implies y = z; theorem :: ARYTM_2:13 x *' (y *' z) = x *' y *' z; theorem :: ARYTM_2:14 x *' (y + z) = (x *' y) + (x *' z); theorem :: ARYTM_2:15 x <> {} implies ex y st x *' y = one; theorem :: ARYTM_2:16 x = one implies x *' y = y; theorem :: ARYTM_2:17 x in omega & y in omega implies y + x in omega; theorem :: ARYTM_2:18 for A being Subset of REAL+ st {} in A & for x,y st x in A & y = one holds x + y in A holds omega c= A; theorem :: ARYTM_2:19 for x st x in omega holds for y holds y in x iff y in omega & y <> x & y <=' x; theorem :: ARYTM_2:20 x = y + z implies z <=' x; theorem :: ARYTM_2:21 {} in REAL+ & one in REAL+; theorem :: ARYTM_2:22 x in RAT+ & y in RAT+ implies ex x',y' st x = x' & y = y' & x *' y = x' *' y';