Journal of Formalized Mathematics
Volume 1, 1989
University of Bialystok
Copyright (c) 1989
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Eugeniusz Kusak,
- Wojciech Leonczuk,
and
- Michal Muzalewski
- Received November 23, 1989
- MML identifier: VECTSP_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary RLVECT_1, BINOP_1, ARYTM_1, FUNCT_1, LATTICES, RELAT_1, ARYTM_3,
VECTSP_1, ALGSTR_2;
notation XBOOLE_0, ZFMISC_1, SUBSET_1, NUMBERS, FUNCT_1, FUNCT_2, BINOP_1,
REAL_1, STRUCT_0, RLVECT_1;
constructors BINOP_1, REAL_1, RLVECT_1, MEMBERED, XBOOLE_0;
clusters STRUCT_0, RLVECT_1, RELSET_1, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements NUMERALS, SUBSET, ARITHM;
begin
::
:: 1. GROUP STRUCTURE
::
reserve GS for non empty LoopStr;
definition
canceled 3;
func addreal -> BinOp of REAL means
:: VECTSP_1:def 4
for x,y be Element of REAL holds it.(x,y) = x+y;
func compreal -> UnOp of REAL means
:: VECTSP_1:def 5
for x being Element of REAL holds it.x = -x;
end;
definition
func G_Real -> strict LoopStr equals
:: VECTSP_1:def 6
LoopStr (# REAL,addreal,0 #);
end;
definition
cluster G_Real -> non empty;
end;
definition
cluster G_Real -> Abelian add-associative right_zeroed right_complementable;
end;
canceled 5;
theorem :: VECTSP_1:6
for x,y,z being Element of G_Real holds
x+y = y+x &
(x+y)+z = x+(y+z) &
x+(0.G_Real) = x &
x+(-x) = 0.G_Real;
definition
cluster strict add-associative right_zeroed right_complementable
Abelian (non empty LoopStr);
end;
definition
mode AbGroup is add-associative right_zeroed right_complementable
Abelian (non empty LoopStr);
end;
theorem :: VECTSP_1:7
(for x,y,z being Element of GS holds
x+y = y+x &
(x+y)+z = x+(y+z) &
x+(0.GS) = x &
ex x' being Element of GS st x+x' = 0.GS)
iff GS is AbGroup;
::
:: 4. FIELD STRUCTURE
::
definition
struct(1-sorted) HGrStr (# carrier -> set,
mult -> BinOp of the carrier #);
end;
definition
cluster non empty strict HGrStr;
end;
definition
struct(HGrStr) multLoopStr (# carrier -> set,
mult -> BinOp of the carrier,
unity -> Element of the carrier #);
end;
definition
cluster non empty strict multLoopStr;
end;
definition let FS be multLoopStr;
canceled 2;
func 1_ FS -> Element of FS equals
:: VECTSP_1:def 9
the unity of FS;
end;
definition
struct(multLoopStr,ZeroStr) multLoopStr_0 (# carrier -> set,
mult -> BinOp of the carrier,
unity -> Element of the carrier,
Zero -> Element of the carrier #);
end;
definition
cluster non empty strict multLoopStr_0;
end;
definition
struct(LoopStr,multLoopStr_0) doubleLoopStr (# carrier -> set,
add, mult -> BinOp of the carrier,
unity, Zero -> Element of the carrier #);
end;
definition
cluster non empty strict doubleLoopStr;
end;
definition let FS be non empty HGrStr;
let x,y be Element of FS;
func x*y -> Element of FS equals
:: VECTSP_1:def 10
(the mult of FS).(x,y);
end;
definition let IT be non empty doubleLoopStr;
attr IT is right-distributive means
:: VECTSP_1:def 11
for a, b, c being Element of IT holds a*(b+c) = a*b + a*c;
attr IT is left-distributive means
:: VECTSP_1:def 12
for a, b, c being Element of IT holds (b+c)*a = b*a + c*a;
end;
definition let IT be non empty multLoopStr;
attr IT is right_unital means
:: VECTSP_1:def 13
for x being Element of IT holds x * (1_ IT) = x;
end;
func multreal -> BinOp of REAL means
:: VECTSP_1:def 14
for x,y be Element of REAL holds it.(x,y) = x*y;
end;
definition
func F_Real -> strict doubleLoopStr equals
:: VECTSP_1:def 15
doubleLoopStr (# REAL,addreal,multreal,1,0 #);
end;
definition let IT be non empty HGrStr;
attr IT is associative means
:: VECTSP_1:def 16
for x,y,z being Element of IT holds
(x*y)*z = x*(y*z);
attr IT is commutative means
:: VECTSP_1:def 17
for x,y being Element of IT holds x*y = y*x;
end;
definition let IT be non empty doubleLoopStr;
attr IT is distributive means
:: VECTSP_1:def 18
for x,y,z being Element of IT holds
x*(y+z) = x*y+x*z & (y+z)*x = y*x+z*x;
end;
definition let IT be non empty multLoopStr;
attr IT is left_unital means
:: VECTSP_1:def 19
for x being Element of IT holds (1_ IT) * x = x;
end;
definition let IT be non empty multLoopStr_0;
attr IT is Field-like means
:: VECTSP_1:def 20
for x being Element of IT st x <> 0.IT
ex y be Element of IT st x*y = 1_ IT;
end;
definition let IT be multLoopStr_0;
attr IT is degenerated means
:: VECTSP_1:def 21
0.IT = 1_ IT;
end;
definition
cluster F_Real -> non empty;
end;
definition
cluster F_Real -> add-associative right_zeroed right_complementable Abelian
commutative associative left_unital right_unital distributive Field-like
non degenerated;
end;
definition
cluster distributive -> left-distributive right-distributive
(non empty doubleLoopStr);
cluster left-distributive right-distributive -> distributive
(non empty doubleLoopStr);
end;
definition
cluster add-associative right_zeroed right_complementable Abelian
commutative associative left_unital right_unital distributive Field-like
non degenerated strict (non empty doubleLoopStr);
end;
definition
cluster commutative associative (non empty HGrStr);
end;
definition
mode Field is add-associative right_zeroed right_complementable
Abelian commutative associative left_unital distributive
Field-like non degenerated (non empty doubleLoopStr);
end;
canceled 13;
theorem :: VECTSP_1:21
for x,y,z being Element of F_Real holds
x+y = y+x &
(x+y)+z = x+(y+z) &
x+(0.F_Real) = x &
x+(-x) = 0.F_Real &
x*y = y*x &
(x*y)*z = x*(y*z) &
(1_ F_Real)*x = x &
(x <> 0.F_Real implies ex y be Element of F_Real st
x*y = 1_ F_Real) &
x*(y+z) = x*y+x*z & (y+z)*x = y*x+z*x;
theorem :: VECTSP_1:22
for FS being non empty doubleLoopStr holds
(for x,y,z being Element of FS holds
(x <> 0.FS implies ex y be Element of FS
st x*y = 1_ FS)
& x*(y+z) = x*y+x*z & (y+z)*x = y*x+z*x ) iff
FS is distributive Field-like (non empty doubleLoopStr);
::
:: 6. AXIOMS OF FIELD
::
definition let FS be commutative (non empty HGrStr);
let x,y be Element of FS;
redefine func x*y;
commutativity;
end;
canceled 10;
theorem :: VECTSP_1:33
for F being associative commutative left_unital distributive
Field-like (non empty doubleLoopStr),
x,y,z being Element of F
holds (x <> 0.F & x*y = x*z) implies y = z;
definition let F be associative commutative left_unital distributive
Field-like (non empty doubleLoopStr),
x be Element of F;
assume x <> 0.F;
func x" -> Element of F means
:: VECTSP_1:def 22
x*it = 1_ F;
end;
definition let F be associative commutative left_unital distributive
Field-like (non empty doubleLoopStr),
x,y be Element of F;
func x/y ->Element of F equals
:: VECTSP_1:def 23
x*y";
end;
canceled 2;
theorem :: VECTSP_1:36
for F being add-associative right_zeroed right_complementable
right-distributive (non empty doubleLoopStr),
x being Element of F
holds x*(0.F) = 0.F;
canceled 2;
theorem :: VECTSP_1:39
for F being add-associative right_zeroed right_complementable
left-distributive (non empty doubleLoopStr),
x being Element of F
holds (0.F)*x = 0.F;
theorem :: VECTSP_1:40
for F be add-associative right_zeroed right_complementable
right-distributive (non empty doubleLoopStr),
x,y being Element of F
holds x*(-y) = -x*y;
theorem :: VECTSP_1:41
for F be add-associative right_zeroed right_complementable
left-distributive (non empty doubleLoopStr),
x,y being Element of F
holds (-x)*y = -x*y;
theorem :: VECTSP_1:42
for F be add-associative right_zeroed right_complementable
distributive (non empty doubleLoopStr),
x,y being Element of F
holds (-x)*(-y) = x*y;
theorem :: VECTSP_1:43
for F be add-associative right_zeroed right_complementable
right-distributive (non empty doubleLoopStr),
x,y,z being Element of F holds
x*(y-z) = x*y - x*z;
theorem :: VECTSP_1:44
for F being add-associative right_zeroed right_complementable
associative commutative left_unital Field-like
distributive (non empty doubleLoopStr),
x,y being Element of F holds
x*y=0.F iff x=0.F or y=0.F;
theorem :: VECTSP_1:45
for K being add-associative right_zeroed right_complementable
left-distributive (non empty doubleLoopStr)
for a,b,c be Element of K holds (a-b)*c =a*c -b*c;
::
:: 8. VECTOR SPACE STRUCTURE
::
definition let F be 1-sorted;
struct(LoopStr) VectSpStr over F (#
carrier -> set,
add -> BinOp of the carrier,
Zero -> Element of the carrier,
lmult -> Function of [:the carrier of F,the carrier:],
the carrier #);
end;
definition let F be 1-sorted;
cluster non empty strict VectSpStr over F;
end;
definition let F be 1-sorted;
let A be non empty set,
a be BinOp of A, Z be Element of A,
l be Function of [:the carrier of F,A:], A;
cluster VectSpStr(#A,a,Z,l#) -> non empty;
end;
definition let F be 1-sorted;
mode Scalar of F is Element of F;
end;
definition let F be 1-sorted;
let VS be VectSpStr over F;
mode Scalar of VS is Scalar of F;
mode Vector of VS is Element of VS;
end;
definition let F be non empty 1-sorted, V be non empty VectSpStr over F;
let x be Element of F;
let v be Element of V;
func x*v -> Element of V equals
:: VECTSP_1:def 24
(the lmult of V).(x,v);
end;
definition let F be non empty LoopStr;
func comp F -> UnOp of the carrier of F means
:: VECTSP_1:def 25
for x being Element of F holds it.x = -x;
end;
definition let F be non empty doubleLoopStr;
let IT be non empty VectSpStr over F;
attr IT is VectSp-like means
:: VECTSP_1:def 26
for x,y being Element of F
for v,w being Element of IT holds
x*(v+w) = x*v+x*w &
(x+y)*v = x*v+y*v &
(x*y)*v = x*(y*v) &
(1_ F)*v = v;
end;
definition let F be add-associative right_zeroed right_complementable Abelian
associative left_unital distributive (non empty doubleLoopStr);
cluster VectSp-like add-associative right_zeroed right_complementable Abelian
strict (non empty VectSpStr over F);
end;
definition let F be add-associative right_zeroed right_complementable Abelian
associative left_unital distributive (non empty doubleLoopStr);
mode VectSp of F is VectSp-like
add-associative right_zeroed right_complementable Abelian
(non empty VectSpStr over F);
end;
reserve F for Field,
x for Element of F,
V for VectSp-like add-associative right_zeroed right_complementable
(non empty VectSpStr over F),
v for Element of V;
canceled 13;
theorem :: VECTSP_1:59
for F being add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr),
x being Element of F
for V being add-associative right_zeroed
right_complementable VectSp-like (non empty VectSpStr over F),
v being Element of V
holds (0.F)*v = 0.V & (-1_ F)*v = -v & x*(0.V) = 0.V;
theorem :: VECTSP_1:60
x*v = 0.V iff x = 0.F or v = 0.V;
::
:: 13. APPENDIX
::
canceled 2;
theorem :: VECTSP_1:63
for V being add-associative right_zeroed
right_complementable (non empty LoopStr),
v,w being Element of V holds
v+w=0.V iff -v=w;
theorem :: VECTSP_1:64
for V being add-associative right_zeroed
right_complementable (non empty LoopStr),
u,v,w being Element of V holds
-(v+w)=-w-v & -(w+-v)=v-w & -(v-w)=w+-v & -(-v-w)=w+v &
u-(w+v)=u-v-w;
theorem :: VECTSP_1:65
for V being add-associative right_zeroed
right_complementable (non empty LoopStr),
v being Element of V holds
0.V-v=-v & v-0.V=v;
theorem :: VECTSP_1:66
for F being add-associative right_zeroed
right_complementable (non empty LoopStr),
x,y being Element of F holds
(x+(-y)=0.F iff x=y) & (x-y=0.F iff x=y);
theorem :: VECTSP_1:67
x<>0.F implies x"*(x*v)=v;
theorem :: VECTSP_1:68
for F be add-associative right_zeroed right_complementable Abelian
associative left_unital distributive (non empty doubleLoopStr),
V be VectSp-like add-associative right_zeroed right_complementable
(non empty VectSpStr over F),
x being Element of F,
v,w being Element of V holds
-x*v=(-x)*v & w-x*v=w+(-x)*v;
definition
cluster commutative left_unital -> right_unital (non empty multLoopStr);
end;
theorem :: VECTSP_1:69
for F be add-associative right_zeroed right_complementable Abelian
associative left_unital right_unital distributive
(non empty doubleLoopStr),
V be VectSp-like add-associative right_zeroed right_complementable
(non empty VectSpStr over F),
x being Element of F,
v being Element of V holds
x*(-v)=-x*v;
theorem :: VECTSP_1:70
for F be add-associative right_zeroed right_complementable Abelian
associative left_unital right_unital distributive
(non empty doubleLoopStr),
V be VectSp-like add-associative right_zeroed right_complementable
(non empty VectSpStr over F),
x being Element of F,
v,w being Element of V holds
x*(v-w)=x*v-x*w;
canceled 2;
theorem :: VECTSP_1:73
for F being add-associative right_zeroed right_complementable
commutative associative left_unital non degenerated
Field-like distributive (non empty doubleLoopStr),
x being Element of F holds
x <> 0.F implies (x")" = x;
theorem :: VECTSP_1:74
for F being Field,
x being Element of F holds
x <> 0.F implies x" <> 0.F & -x" <> 0.F;
canceled 3;
theorem :: VECTSP_1:78
1_ F_Real + 1_ F_Real <> 0.F_Real;
definition
let IT be non empty LoopStr;
canceled;
attr IT is Fanoian means
:: VECTSP_1:def 28
for a being Element of IT st a + a = 0.IT
holds a = 0.IT;
end;
definition
cluster Fanoian (non empty LoopStr);
end;
definition let F be add-associative right_zeroed right_complementable
commutative associative left_unital Field-like
non degenerated distributive (non empty doubleLoopStr);
redefine attr F is Fanoian means
:: VECTSP_1:def 29
1_ F+1_ F<>0.F;
end;
definition
cluster strict Fanoian Field;
end;
canceled 2;
theorem :: VECTSP_1:81
for F being add-associative right_zeroed
right_complementable (non empty LoopStr),
a, b being Element of F holds
-(a-b) = b-a;
canceled 2;
theorem :: VECTSP_1:84
for F being add-associative right_zeroed
right_complementable (non empty LoopStr),
a,b being Element of F holds
a - b = 0.F implies a = b;
canceled;
theorem :: VECTSP_1:86
for F being add-associative right_zeroed
right_complementable (non empty LoopStr),
a being Element of F holds
-a = 0.F implies a = 0.F;
theorem :: VECTSP_1:87
for F being add-associative right_zeroed
right_complementable (non empty LoopStr),
a, b being Element of F holds
a - b = 0.F implies b - a = 0.F;
theorem :: VECTSP_1:88
for a, b, c being Element of F holds
(a <> 0.F & a*c - b = 0.F implies c = b*a") &
(a <> 0.F & b - c*a = 0.F implies c = b*a");
theorem :: VECTSP_1:89
for F being add-associative right_zeroed
right_complementable (non empty LoopStr),
a, b being Element of F holds
a + b = -(-b + -a);
theorem :: VECTSP_1:90
for F being add-associative right_zeroed
right_complementable (non empty LoopStr),
a, b, c being Element of F holds
(b+a)-(c+a) = b-c;
theorem :: VECTSP_1:91
for F being Abelian add-associative (non empty LoopStr)
for a,b,c be Element of F holds a+b-c = a-c+b;
theorem :: VECTSP_1:92
for G being add-associative right_zeroed right_complementable
(non empty LoopStr),
v,w being Element of G holds
-(-v+w) = -w+v;
theorem :: VECTSP_1:93
for G being Abelian add-associative right_zeroed right_complementable
(non empty LoopStr),
u,v,w being Element of G holds
u - v - w = u - w - v;
Back to top