environ vocabulary JORDAN1A, JORDAN11, JORDAN8, EUCLID, GROUP_1, FINSEQ_1, ARYTM_1, SEQ_1, BOOLE, GOBOARD5, SETFAM_1, SQUARE_1, FUNCT_1, PSCOMP_1, RCOMP_1, RELAT_2, JORDAN2C, JORDAN6, JORDAN9, PRE_TOPC, RELAT_1, TARSKI, ORDINAL2, CONNSP_1, COMPTS_1, MCART_1, TOPREAL1, TOPREAL2, GOBOARD9, ARYTM_3, SUBSET_1, LATTICES, NAT_1, INT_1, JORDAN10, SEQ_2, FUNCT_5, TREES_1, MATRIX_1, JORDAN1H, JORDAN1E, ARYTM; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, REAL_1, INT_1, NAT_1, BINARITH, CARD_4, CQC_SIM1, RELAT_1, FUNCT_2, FINSEQ_1, MATRIX_1, SEQ_1, SEQ_4, RCOMP_1, STRUCT_0, PRE_TOPC, CONNSP_1, COMPTS_1, EUCLID, TOPREAL1, TOPREAL2, GOBOARD5, GOBOARD9, PSCOMP_1, JORDAN2C, JORDAN6, JCT_MISC, JORDAN8, JORDAN9, JORDAN10, JORDAN1A, JORDAN1E, JORDAN1H; constructors TOPREAL2, JORDAN8, JORDAN2C, BINARITH, REALSET1, GOBOARD9, JORDAN1, RCOMP_1, PSCOMP_1, CONNSP_1, CQC_SIM1, REAL_1, CARD_4, TOPS_1, JORDAN6, JORDAN9, JORDAN5C, JORDAN1A, JORDAN10, WSIERP_1, JCT_MISC, JORDAN1H, JORDAN1E, PARTFUN1, INT_1; clusters SPRECT_3, BORSUK_2, TOPREAL6, XREAL_0, SUBSET_1, PSCOMP_1, REVROT_1, JORDAN8, INT_1, JORDAN1A, JORDAN1B, JORDAN10, MEMBERED, NUMBERS, ORDINAL2; requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM; begin reserve i,j,k,n for Nat, C for being_simple_closed_curve Subset of TOP-REAL 2; definition let C; func ApproxIndex C -> Nat means :: JORDAN11:def 1 it is_sufficiently_large_for C & for j st j is_sufficiently_large_for C holds j >= it; end; theorem :: JORDAN11:1 ApproxIndex C >= 1; definition let C; func Y-InitStart C -> Nat means :: JORDAN11:def 2 it < width Gauge(C,ApproxIndex C) & cell(Gauge(C,ApproxIndex C),X-SpanStart(C,ApproxIndex C)-'1,it) c= BDD C & for j st j < width Gauge(C,ApproxIndex C) & cell(Gauge(C,ApproxIndex C),X-SpanStart(C,ApproxIndex C)-'1,j) c= BDD C holds j >= it; end; theorem :: JORDAN11:2 Y-InitStart C > 1; theorem :: JORDAN11:3 Y-InitStart C + 1 < width Gauge(C,ApproxIndex C); definition let C,n such that n is_sufficiently_large_for C; func Y-SpanStart(C,n) -> Nat means :: JORDAN11:def 3 it <= width Gauge(C,n) & (for k st it <= k & k <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2 holds cell(Gauge(C,n),X-SpanStart(C,n)-'1,k) c= BDD C) & for j st j <= width Gauge(C,n) & for k st j <= k & k <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2 holds cell(Gauge(C,n),X-SpanStart(C,n)-'1,k) c= BDD C holds j >= it; end; theorem :: JORDAN11:4 n is_sufficiently_large_for C implies X-SpanStart(C,n) = 2|^(n-'ApproxIndex C)*(X-SpanStart(C,ApproxIndex C)-2)+2; theorem :: JORDAN11:5 n is_sufficiently_large_for C implies Y-SpanStart(C,n) <= 2|^(n-'ApproxIndex C)*(Y-InitStart C-'2)+2; theorem :: JORDAN11:6 n is_sufficiently_large_for C implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) c= BDD C; theorem :: JORDAN11:7 n is_sufficiently_large_for C implies 1 < Y-SpanStart(C,n) & Y-SpanStart(C,n) <= width Gauge(C,n); theorem :: JORDAN11:8 n is_sufficiently_large_for C implies [X-SpanStart(C,n),Y-SpanStart(C,n)] in Indices Gauge(C,n); theorem :: JORDAN11:9 n is_sufficiently_large_for C implies [X-SpanStart(C,n)-'1,Y-SpanStart(C,n)] in Indices Gauge(C,n); theorem :: JORDAN11:10 n is_sufficiently_large_for C implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)-'1) meets C; theorem :: JORDAN11:11 n is_sufficiently_large_for C implies cell(Gauge(C,n),X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) misses C;