environ vocabulary COMPTS_1, SPPOL_1, EUCLID, RELAT_2, GOBOARD1, PRE_TOPC, TOPREAL2, RELAT_1, TOPREAL1, TOPS_2, SUBSET_1, BOOLE, MCART_1, CONNSP_3, CONNSP_1, SETFAM_1, TARSKI, FINSEQ_1, JORDAN3, ARYTM_1, FINSEQ_5, FUNCT_1, GROUP_2, PSCOMP_1, ORDINAL2, FUNCT_5, REALSET1, FINSEQ_4, SPRECT_2, FINSEQ_6, JORDAN1A, NAT_1, INT_1, JORDAN8, GROUP_1, ARYTM_3, GOBOARD5, TREES_1, JORDAN2C, JORDAN9, JORDAN6, COMPLEX1, SQUARE_1, ABSVALUE, ARYTM; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, REAL_1, INT_1, NAT_1, ABSVALUE, SQUARE_1, RELAT_1, FUNCT_1, FINSEQ_1, FINSEQ_4, FINSEQ_5, MATRIX_1, REALSET1, FINSEQ_6, STRUCT_0, PRE_TOPC, TOPS_2, JGRAPH_1, TOPREAL2, CARD_4, BINARITH, CONNSP_1, CONNSP_3, COMPTS_1, EUCLID, PSCOMP_1, SPRECT_2, GOBOARD1, TOPREAL1, GOBOARD5, SPPOL_1, JORDAN3, JORDAN8, JORDAN2C, JORDAN6, JORDAN9, JORDAN1A; constructors JORDAN8, REALSET1, JORDAN6, REAL_1, CARD_4, PSCOMP_1, BINARITH, JORDAN2C, CONNSP_1, JORDAN9, JORDAN1A, WSIERP_1, SQUARE_1, ABSVALUE, FINSEQ_4, JORDAN1, JORDAN3, RFINSEQ, TOPS_2, TOPREAL2, JORDAN5C, CONNSP_3, TOPREAL4, SPRECT_1, FINSEQ_5, GOBOARD1, TOPRNS_1, INT_1; clusters XREAL_0, TOPREAL6, JORDAN8, INT_1, RELSET_1, STRUCT_0, EUCLID, SPRECT_3, FINSEQ_1, FINSEQ_5, JORDAN1A, PRE_TOPC, JORDAN3, MEMBERED; requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM; begin reserve E for compact non vertical non horizontal Subset of TOP-REAL 2, C for compact connected non vertical non horizontal Subset of TOP-REAL 2, G for Go-board, i, j, m, n for Nat, p for Point of TOP-REAL 2; definition cluster -> non vertical non horizontal Simple_closed_curve; end; definition let T be non empty TopSpace; cluster non empty a_union_of_components of T; end; theorem :: JORDAN1B:1 for T being non empty TopSpace for A being non empty a_union_of_components of T st A is connected holds A is_a_component_of T; theorem :: JORDAN1B:2 for f being FinSequence holds f is empty iff Rev f is empty; theorem :: JORDAN1B:3 for D being non empty set, f being FinSequence of D for i,j st 1 <= i & i <= len f & 1 <= j & j <= len f holds mid(f,i,j) is non empty; theorem :: JORDAN1B:4 for f be non empty FinSequence of TOP-REAL 2 for p be Point of TOP-REAL 2 st 1 <= len f & p in L~f holds R_Cut(f,p).1 = f.1; theorem :: JORDAN1B:5 for f be non empty FinSequence of TOP-REAL 2 for p be Point of TOP-REAL 2 st f is_S-Seq & p in L~f holds L_Cut(f,p).(len L_Cut(f,p)) = f.(len f); theorem :: JORDAN1B:6 for P be Simple_closed_curve holds W-max(P) <> E-max(P); theorem :: JORDAN1B:7 for D be non empty set for f be FinSequence of D st 1 <= i & i < len f holds mid(f,i,len f-'1)^<*f/.(len f)*> = mid(f,i,len f); theorem :: JORDAN1B:8 for p,q be Point of TOP-REAL 2 st p <> q & LSeg(p,q) is vertical holds <*p,q*> is_S-Seq; theorem :: JORDAN1B:9 for p,q be Point of TOP-REAL 2 st p <> q & LSeg(p,q) is horizontal holds <*p,q*> is_S-Seq; theorem :: JORDAN1B:10 for p,q be FinSequence of TOP-REAL 2 for v be Point of TOP-REAL 2 st p is_in_the_area_of q holds Rotate(p,v) is_in_the_area_of q; theorem :: JORDAN1B:11 for p be non trivial FinSequence of TOP-REAL 2 for v be Point of TOP-REAL 2 holds Rotate(p,v) is_in_the_area_of p; theorem :: JORDAN1B:12 for f be FinSequence holds Center f >= 1; theorem :: JORDAN1B:13 for f be FinSequence st len f >= 1 holds Center f <= len f; theorem :: JORDAN1B:14 Center G <= len G; theorem :: JORDAN1B:15 for f be FinSequence st len f >= 2 holds Center f > 1; theorem :: JORDAN1B:16 for f be FinSequence st len f >= 3 holds Center f < len f; theorem :: JORDAN1B:17 Center Gauge(E,n) = 2|^(n-'1) + 2; theorem :: JORDAN1B:18 E c= cell(Gauge(E,0),2,2); theorem :: JORDAN1B:19 not cell(Gauge(E,0),2,2) c= BDD E; theorem :: JORDAN1B:20 Gauge(C,1)*(Center Gauge(C,1),1) = |[(W-bound C + E-bound C)/2,S-bound L~Cage(C,1)]|; theorem :: JORDAN1B:21 Gauge(C,1)*(Center Gauge(C,1),len Gauge(C,1)) = |[(W-bound C + E-bound C)/2,N-bound L~Cage(C,1)]|; theorem :: JORDAN1B:22 1 <= j & j < width G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,len G,j) & p`1 = G*(m,n)`1 implies len G = m; theorem :: JORDAN1B:23 1 <= i & i <= len G & 1 <= j & j < width G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,i,j) & p`1 = G*(m,n)`1 implies i = m or i = m -' 1; theorem :: JORDAN1B:24 1 <= i & i < len G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,i,width G) & p`2 = G*(m,n)`2 implies width G = n; theorem :: JORDAN1B:25 1 <= i & i < len G & 1 <= j & j <= width G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,i,j) & p`2 = G*(m,n)`2 implies j = n or j = n -' 1; theorem :: JORDAN1B:26 for C be Simple_closed_curve for r be real number st W-bound C <= r & r <= E-bound C holds LSeg(|[r,S-bound C]|,|[r,N-bound C]|) meets Upper_Arc C; theorem :: JORDAN1B:27 for C be Simple_closed_curve for r be real number st W-bound C <= r & r <= E-bound C holds LSeg(|[r,S-bound C]|,|[r,N-bound C]|) meets Lower_Arc C; theorem :: JORDAN1B:28 for C be Simple_closed_curve for i be Nat st 1 < i & i < len Gauge(C,n) holds LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Upper_Arc C; theorem :: JORDAN1B:29 for C be Simple_closed_curve for i be Nat st 1 < i & i < len Gauge(C,n) holds LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Lower_Arc C; theorem :: JORDAN1B:30 for C be Simple_closed_curve holds LSeg(Gauge(C,n)*(Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Upper_Arc C; theorem :: JORDAN1B:31 for C be Simple_closed_curve holds LSeg(Gauge(C,n)*(Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Lower_Arc C; theorem :: JORDAN1B:32 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i be Nat st 1 <= i & i <= len Gauge(C,n) holds LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Upper_Arc L~Cage(C,n); theorem :: JORDAN1B:33 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i be Nat st 1 <= i & i <= len Gauge(C,n) holds LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Lower_Arc L~Cage(C,n); theorem :: JORDAN1B:34 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds LSeg(Gauge(C,n)*(Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Upper_Arc L~Cage(C,n); theorem :: JORDAN1B:35 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds LSeg(Gauge(C,n)*(Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Lower_Arc L~Cage(C,n); theorem :: JORDAN1B:36 j <= width G implies cell(G,0,j) is not Bounded; theorem :: JORDAN1B:37 i <= width G implies cell(G,len G,i) is not Bounded; theorem :: JORDAN1B:38 j <= width Gauge(C,n) implies cell(Gauge(C,n),0,j) c= UBD C; theorem :: JORDAN1B:39 j <= len Gauge(E,n) implies cell(Gauge(E,n),len Gauge(E,n),j) c= UBD E; theorem :: JORDAN1B:40 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i,j) c= BDD C implies j > 1; theorem :: JORDAN1B:41 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i,j) c= BDD C implies i > 1; theorem :: JORDAN1B:42 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i,j) c= BDD C implies j+1 < width Gauge(C,n); theorem :: JORDAN1B:43 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i,j) c= BDD C implies i+1 < len Gauge(C,n); theorem :: JORDAN1B:44 (ex i,j st i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i,j) c= BDD C) implies n >= 1;