Journal of Formalized Mathematics
Volume 12, 2000
University of Bialystok
Copyright (c) 2000 Association of Mizar Users

The abstract of the Mizar article:

Some Properties of Cells and Arcs

by
Robert Milewski,
Andrzej Trybulec,
Artur Kornilowicz, and
Adam Naumowicz

Received October 6, 2000

MML identifier: JORDAN1B
[ Mizar article, MML identifier index ]


environ

 vocabulary COMPTS_1, SPPOL_1, EUCLID, RELAT_2, GOBOARD1, PRE_TOPC, TOPREAL2,
      RELAT_1, TOPREAL1, TOPS_2, SUBSET_1, BOOLE, MCART_1, CONNSP_3, CONNSP_1,
      SETFAM_1, TARSKI, FINSEQ_1, JORDAN3, ARYTM_1, FINSEQ_5, FUNCT_1, GROUP_2,
      PSCOMP_1, ORDINAL2, FUNCT_5, REALSET1, FINSEQ_4, SPRECT_2, FINSEQ_6,
      JORDAN1A, NAT_1, INT_1, JORDAN8, GROUP_1, ARYTM_3, GOBOARD5, TREES_1,
      JORDAN2C, JORDAN9, JORDAN6, COMPLEX1, SQUARE_1, ABSVALUE, ARYTM;
 notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, REAL_1,
      INT_1, NAT_1, ABSVALUE, SQUARE_1, RELAT_1, FUNCT_1, FINSEQ_1, FINSEQ_4,
      FINSEQ_5, MATRIX_1, REALSET1, FINSEQ_6, STRUCT_0, PRE_TOPC, TOPS_2,
      JGRAPH_1, TOPREAL2, CARD_4, BINARITH, CONNSP_1, CONNSP_3, COMPTS_1,
      EUCLID, PSCOMP_1, SPRECT_2, GOBOARD1, TOPREAL1, GOBOARD5, SPPOL_1,
      JORDAN3, JORDAN8, JORDAN2C, JORDAN6, JORDAN9, JORDAN1A;
 constructors JORDAN8, REALSET1, JORDAN6, REAL_1, CARD_4, PSCOMP_1, BINARITH,
      JORDAN2C, CONNSP_1, JORDAN9, JORDAN1A, WSIERP_1, SQUARE_1, ABSVALUE,
      FINSEQ_4, JORDAN1, JORDAN3, RFINSEQ, TOPS_2, TOPREAL2, JORDAN5C,
      CONNSP_3, TOPREAL4, SPRECT_1, FINSEQ_5, GOBOARD1, TOPRNS_1, INT_1;
 clusters XREAL_0, TOPREAL6, JORDAN8, INT_1, RELSET_1, STRUCT_0, EUCLID,
      SPRECT_3, FINSEQ_1, FINSEQ_5, JORDAN1A, PRE_TOPC, JORDAN3, MEMBERED;
 requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM;


begin

reserve
  E for compact non vertical non horizontal Subset of TOP-REAL 2,
  C for compact connected non vertical non horizontal Subset of TOP-REAL 2,
  G for Go-board,
  i, j, m, n for Nat,
  p for Point of TOP-REAL 2;

  definition
   cluster -> non vertical non horizontal Simple_closed_curve;
  end;

  definition
   let T be non empty TopSpace;
   cluster non empty a_union_of_components of T;
  end;

  theorem :: JORDAN1B:1
     for T being non empty TopSpace
   for A being non empty a_union_of_components of T st A is connected holds
    A is_a_component_of T;

theorem :: JORDAN1B:2
 for f being FinSequence holds
  f is empty iff Rev f is empty;

theorem :: JORDAN1B:3
   for D being non empty set, f being FinSequence of D
 for i,j st 1 <= i & i <= len f & 1 <= j & j <= len f
  holds mid(f,i,j) is non empty;

theorem :: JORDAN1B:4
   for f be non empty FinSequence of TOP-REAL 2
   for p be Point of TOP-REAL 2 st 1 <= len f & p in L~f holds
    R_Cut(f,p).1 = f.1;

  theorem :: JORDAN1B:5
     for f be non empty FinSequence of TOP-REAL 2
   for p be Point of TOP-REAL 2 st f is_S-Seq & p in L~f holds
    L_Cut(f,p).(len L_Cut(f,p)) = f.(len f);

  theorem :: JORDAN1B:6
     for P be Simple_closed_curve holds W-max(P) <> E-max(P);

  theorem :: JORDAN1B:7
     for D be non empty set
   for f be FinSequence of D st 1 <= i & i < len f holds
    mid(f,i,len f-'1)^<*f/.(len f)*> = mid(f,i,len f);

  theorem :: JORDAN1B:8
     for p,q be Point of TOP-REAL 2 st p <> q & LSeg(p,q) is vertical holds
    <*p,q*> is_S-Seq;

  theorem :: JORDAN1B:9
     for p,q be Point of TOP-REAL 2 st p <> q & LSeg(p,q) is horizontal holds
    <*p,q*> is_S-Seq;

  theorem :: JORDAN1B:10
   for p,q be FinSequence of TOP-REAL 2
   for v be Point of TOP-REAL 2 st p is_in_the_area_of q holds
    Rotate(p,v) is_in_the_area_of q;

  theorem :: JORDAN1B:11
     for p be non trivial FinSequence of TOP-REAL 2
   for v be Point of TOP-REAL 2 holds
    Rotate(p,v) is_in_the_area_of p;

  theorem :: JORDAN1B:12
   for f be FinSequence holds
    Center f >= 1;

  theorem :: JORDAN1B:13
     for f be FinSequence st len f >= 1 holds
    Center f <= len f;

  theorem :: JORDAN1B:14
   Center G <= len G;

  theorem :: JORDAN1B:15
   for f be FinSequence st len f >= 2 holds
    Center f > 1;

  theorem :: JORDAN1B:16
   for f be FinSequence st len f >= 3 holds
    Center f < len f;

theorem :: JORDAN1B:17
   Center Gauge(E,n) = 2|^(n-'1) + 2;

theorem :: JORDAN1B:18
 E c= cell(Gauge(E,0),2,2);

theorem :: JORDAN1B:19
 not cell(Gauge(E,0),2,2) c= BDD E;

theorem :: JORDAN1B:20
   Gauge(C,1)*(Center Gauge(C,1),1)
   = |[(W-bound C + E-bound C)/2,S-bound L~Cage(C,1)]|;

theorem :: JORDAN1B:21
   Gauge(C,1)*(Center Gauge(C,1),len Gauge(C,1))
   = |[(W-bound C + E-bound C)/2,N-bound L~Cage(C,1)]|;

theorem :: JORDAN1B:22
 1 <= j & j < width G &
 1 <= m & m <= len G & 1 <= n & n <= width G &
 p in cell(G,len G,j) & p`1 = G*(m,n)`1
   implies len G = m;

theorem :: JORDAN1B:23
   1 <= i & i <= len G & 1 <= j & j < width G &
 1 <= m & m <= len G & 1 <= n & n <= width G &
 p in cell(G,i,j) & p`1 = G*(m,n)`1
   implies i = m or i = m -' 1;

theorem :: JORDAN1B:24
 1 <= i & i < len G &
 1 <= m & m <= len G & 1 <= n & n <= width G &
 p in cell(G,i,width G) & p`2 = G*(m,n)`2
   implies width G = n;

theorem :: JORDAN1B:25
   1 <= i & i < len G & 1 <= j & j <= width G &
 1 <= m & m <= len G & 1 <= n & n <= width G &
 p in cell(G,i,j) & p`2 = G*(m,n)`2
   implies j = n or j = n -' 1;

  theorem :: JORDAN1B:26
   for C be Simple_closed_curve
   for r be real number st W-bound C <= r & r <= E-bound C holds
    LSeg(|[r,S-bound C]|,|[r,N-bound C]|) meets Upper_Arc C;

  theorem :: JORDAN1B:27
   for C be Simple_closed_curve
   for r be real number st W-bound C <= r & r <= E-bound C holds
    LSeg(|[r,S-bound C]|,|[r,N-bound C]|) meets Lower_Arc C;

  theorem :: JORDAN1B:28
   for C be Simple_closed_curve
   for i be Nat st 1 < i & i < len Gauge(C,n) holds
   LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n)))
    meets Upper_Arc C;

  theorem :: JORDAN1B:29
   for C be Simple_closed_curve
   for i be Nat st 1 < i & i < len Gauge(C,n) holds
   LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n)))
    meets Lower_Arc C;

  theorem :: JORDAN1B:30
     for C be Simple_closed_curve holds
   LSeg(Gauge(C,n)*(Center Gauge(C,n),1),
        Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n)))
    meets Upper_Arc C;

  theorem :: JORDAN1B:31
     for C be Simple_closed_curve holds
   LSeg(Gauge(C,n)*(Center Gauge(C,n),1),
        Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n)))
    meets Lower_Arc C;

  theorem :: JORDAN1B:32
   for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
   for i be Nat st 1 <= i & i <= len Gauge(C,n) holds
   LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n)))
    meets Upper_Arc L~Cage(C,n);

  theorem :: JORDAN1B:33
   for C be compact connected non vertical non horizontal Subset of TOP-REAL 2
   for i be Nat st 1 <= i & i <= len Gauge(C,n) holds
   LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n)))
    meets Lower_Arc L~Cage(C,n);

  theorem :: JORDAN1B:34
     for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
    holds
   LSeg(Gauge(C,n)*(Center Gauge(C,n),1),
        Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n)))
    meets Upper_Arc L~Cage(C,n);

  theorem :: JORDAN1B:35
     for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
    holds
   LSeg(Gauge(C,n)*(Center Gauge(C,n),1),
        Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n)))
    meets Lower_Arc L~Cage(C,n);

theorem :: JORDAN1B:36
 j <= width G implies cell(G,0,j) is not Bounded;

theorem :: JORDAN1B:37
 i <= width G implies cell(G,len G,i) is not Bounded;

theorem :: JORDAN1B:38
 j <= width Gauge(C,n) implies cell(Gauge(C,n),0,j) c= UBD C;

theorem :: JORDAN1B:39
 j <= len Gauge(E,n) implies cell(Gauge(E,n),len Gauge(E,n),j) c= UBD E;

theorem :: JORDAN1B:40
 i <= len Gauge(C,n) & j <= width Gauge(C,n) &
  cell(Gauge(C,n),i,j) c= BDD C
  implies j > 1;

theorem :: JORDAN1B:41
 i <= len Gauge(C,n) & j <= width Gauge(C,n) &
  cell(Gauge(C,n),i,j) c= BDD C
  implies i > 1;

theorem :: JORDAN1B:42
 i <= len Gauge(C,n) & j <= width Gauge(C,n) &
  cell(Gauge(C,n),i,j) c= BDD C
  implies j+1 < width Gauge(C,n);

theorem :: JORDAN1B:43
 i <= len Gauge(C,n) & j <= width Gauge(C,n) &
  cell(Gauge(C,n),i,j) c= BDD C
  implies i+1 < len Gauge(C,n);

theorem :: JORDAN1B:44
    (ex i,j st i <= len Gauge(C,n) & j <= width Gauge(C,n) &
      cell(Gauge(C,n),i,j) c= BDD C)
 implies n >= 1;

Back to top