environ vocabulary EUCLID, PRE_TOPC, FINSEQ_1, RELAT_1, FUNCT_1, TOPREAL1, BOOLE, RELAT_2, TOPREAL2, MCART_1, METRIC_1, ARYTM_3, ARYTM_1, TARSKI, PCOMPS_1, SUBSET_1, TOPREAL4, FINSEQ_4, ARYTM; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, XREAL_0, REAL_1, NAT_1, RELAT_1, FUNCT_1, FINSEQ_1, FINSEQ_4, STRUCT_0, PRE_TOPC, CONNSP_1, METRIC_1, PCOMPS_1, EUCLID, TOPREAL1, TOPREAL2; constructors REAL_1, NAT_1, CONNSP_1, PCOMPS_1, TOPREAL1, TOPREAL2, FINSEQ_4, INT_1, MEMBERED, XBOOLE_0; clusters SUBSET_1, FUNCT_1, PRE_TOPC, RELSET_1, STRUCT_0, EUCLID, XREAL_0, TOPREAL1, INT_1, XBOOLE_0, MEMBERED, ZFMISC_1; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve P,P1,P2,R for Subset of TOP-REAL 2, W for non empty Subset of TOP-REAL 2, p,p1,p2,p3,p11,p22,q,q1,q2,q3,q4 for Point of TOP-REAL 2, f,h for FinSequence of TOP-REAL 2, r for Real, u for Point of Euclid 2, n,m,i,j,k for Nat, x,y for set; theorem :: TOPREAL4:1 for D being non empty set, f being FinSequence of D, p being Element of D holds (f^<*p*>)/.(len f + 1) = p; definition let P,p,q; pred P is_S-P_arc_joining p,q means :: TOPREAL4:def 1 ex f st f is_S-Seq & P = L~f & p=f/.1 & q=f/.len f; end; definition let P; attr P is being_special_polygon means :: TOPREAL4:def 2 ex p1,p2,P1,P2 st p1 <> p2 & p1 in P & p2 in P & P1 is_S-P_arc_joining p1,p2 & P2 is_S-P_arc_joining p1,p2 & P1 /\ P2 = {p1,p2} & P = P1 \/ P2; synonym P is_special_polygon; end; definition let P be Subset of TOP-REAL 2; attr P is being_Region means :: TOPREAL4:def 3 P is open & P is connected; synonym P is_Region; end; theorem :: TOPREAL4:2 P is_S-P_arc_joining p,q implies P is_S-P_arc; theorem :: TOPREAL4:3 W is_S-P_arc_joining p,q implies W is_an_arc_of p,q; theorem :: TOPREAL4:4 W is_S-P_arc_joining p,q implies p in W & q in W; theorem :: TOPREAL4:5 P is_S-P_arc_joining p,q implies p<>q; theorem :: TOPREAL4:6 W is_special_polygon implies W is_simple_closed_curve; theorem :: TOPREAL4:7 p`1 = q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & f =<* p,|[p`1,(p`2+q`2)/2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r); theorem :: TOPREAL4:8 p`1 <> q`1 & p`2 = q`2 & p in Ball(u,r) & q in Ball(u,r) & f = <* p,|[(p`1+q`1)/2,p`2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r); theorem :: TOPREAL4:9 p`1 <> q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & |[p`1,q`2]| in Ball(u,r) & f =<* p,|[p`1,q`2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r); theorem :: TOPREAL4:10 p`1 <> q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & |[q`1,p`2]| in Ball(u,r) & f =<* p,|[q`1,p`2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r); theorem :: TOPREAL4:11 p <> q & p in Ball(u,r) & q in Ball(u,r) implies ex P st P is_S-P_arc_joining p,q & P c= Ball(u,r); theorem :: TOPREAL4:12 p<>f/.1 & (f/.1)`2 = p`2 & f is_S-Seq & p in LSeg(f,1) & h = <* f/.1,|[((f/.1)`1+p`1)/2,(f/.1)`2]|,p *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,p); theorem :: TOPREAL4:13 p<>f/.1 & (f/.1)`1 = p`1 & f is_S-Seq & p in LSeg(f,1) & h = <* f/.1,|[(f/.1)`1,((f/.1)`2+p`2)/2]|,p *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,p); theorem :: TOPREAL4:14 p<>f/.1 & f is_S-Seq & i in dom f & i+1 in dom f & i>1 & p in LSeg(f,i) & p<>f/.i & p<>f/.(i+1) & h = (f|i)^<*p*> implies h is_S-Seq & h/.1=f/.1 & h/.len h=p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|i) \/ LSeg(f/.i,p); theorem :: TOPREAL4:15 f/.2<>f/.1 & f is_S-Seq & (f/.2)`2 = (f/.1)`2 & h = <* f/.1,|[((f/.1)`1+(f/.2)`1)/2,(f/.1)`2]|,f/.2 *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=f/.2 & L~h is_S-P_arc_joining f/.1,f/.2 & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,f/.2) & L~h = L~(f|2) \/ LSeg(f/.2,f/.2); theorem :: TOPREAL4:16 f/.2<>f/.1 & f is_S-Seq & (f/.2)`1 = (f/.1)`1 & h = <* f/.1,|[(f/.1)`1,((f/.1)`2+(f/.2)`2)/2]|,f/.2 *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=f/.2 & L~h is_S-P_arc_joining f/.1,f/.2 & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,f/.2) & L~h = L~(f|2) \/ LSeg(f/.2,f/.2); theorem :: TOPREAL4:17 f/.i<>f/.1 & f is_S-Seq & i>2 & i in dom f & h = f|i implies h is_S-Seq & h/.1=f/.1 & h/.len h=f/.i & L~h is_S-P_arc_joining f/.1,f/.i & L~h c= L~f & L~h = L~(f|i) \/ LSeg(f/.i,f/.i); theorem :: TOPREAL4:18 p<>f/.1 & f is_S-Seq & p in LSeg(f,n) implies ex h st h is_S-Seq & h/.1=f/.1 & h/.len h = p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(f/.n,p); theorem :: TOPREAL4:19 p<>f/.1 & f is_S-Seq & p in L~f implies ex h st h is_S-Seq & h/.1=f/.1 & h/.len h = p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f; theorem :: TOPREAL4:20 ( p`1=(f/.len f)`1 & p`2<>(f/.len f)`2 or p`1<>(f/.len f)`1 & p`2=(f/.len f)`2 ) & not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & f is_S-Seq & LSeg(f/.len f,p) /\ L~f = {f/.len f} & h=f^<*p*> implies h is_S-Seq & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r); theorem :: TOPREAL4:21 not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & |[p`1,(f/.len f)`2]| in Ball(u,r) & f is_S-Seq & p`1<>(f/.len f)`1 & p`2<>(f/.len f)`2 & h=f^<*|[p`1,(f/.len f)`2]|,p*> & (LSeg(f/.len f,|[p`1,(f/.len f)`2]|) \/ LSeg(|[p`1,(f/.len f)`2]|,p)) /\ L~f = {f/.len f} implies L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r); theorem :: TOPREAL4:22 not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & |[(f/.len f)`1,p`2]| in Ball(u,r) & f is_S-Seq & p`1<>(f/.len f)`1 & p`2<>(f/.len f)`2 & h=f^<*|[(f/.len f)`1,p`2]|,p*> & (LSeg(f/.len f,|[(f/.len f)`1,p`2]|) \/ LSeg(|[(f/.len f)`1,p`2]|,p)) /\ L~f = {f/.len f} implies L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r); theorem :: TOPREAL4:23 not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & f is_S-Seq & not p in L~f implies ex h st L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r); theorem :: TOPREAL4:24 for R,p,p1,p2,P,r,u st p<>p1 & P is_S-P_arc_joining p1,p2 & P c= R & p in Ball(u,r) & p2 in Ball(u,r) & Ball(u,r) c= R ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p1,p & P1 c= R; reserve P, R for Subset of TOP-REAL 2; theorem :: TOPREAL4:25 for p st R is_Region & P = {q: q<>p & q in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} holds P is open; theorem :: TOPREAL4:26 R is_Region & p in R & P = {q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies P is open; theorem :: TOPREAL4:27 p in R & P={q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies P c= R; theorem :: TOPREAL4:28 R is_Region & p in R & P={q: q=p or ex P1 be Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies R c= P; theorem :: TOPREAL4:29 R is_Region & p in R & P={q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies R = P; theorem :: TOPREAL4:30 R is_Region & p in R & q in R & p<>q implies ex P st P is_S-P_arc_joining p,q & P c=R;