environ vocabulary PRE_TOPC, EUCLID, FINSEQ_1, TOPREAL1, MCART_1, BOOLE, COMPTS_1, BORSUK_1, RELAT_1, TOPS_2, ORDINAL2, SUBSET_1, FUNCT_1, RCOMP_1, PCOMPS_1, FUNCT_4, TOPREAL2, FINSEQ_4; notation TARSKI, XBOOLE_0, SUBSET_1, XREAL_0, RELAT_1, FUNCT_1, FUNCT_2, FUNCT_4, STRUCT_0, GRCAT_1, PRE_TOPC, TOPS_2, COMPTS_1, RCOMP_1, FINSEQ_1, FINSEQ_4, PCOMPS_1, EUCLID, TOPMETR, TOPREAL1; constructors TOPS_2, COMPTS_1, RCOMP_1, TOPMETR, TOPREAL1, FINSEQ_4, GRCAT_1, XCMPLX_0, MEMBERED, XBOOLE_0; clusters SUBSET_1, FUNCT_1, PRE_TOPC, RELSET_1, STRUCT_0, EUCLID, BORSUK_1, TOPREAL1, XREAL_0, XBOOLE_0, MEMBERED, ZFMISC_1; requirements NUMERALS, REAL, BOOLE, SUBSET; begin reserve a for set; reserve p,p1,p2,q,q1,q2 for Point of TOP-REAL 2; reserve h1,h2 for FinSequence of TOP-REAL 2; theorem :: TOPREAL2:1 p1 <> p2 & p1 in R^2-unit_square & p2 in R^2-unit_square implies ex P1, P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2}; theorem :: TOPREAL2:2 R^2-unit_square is compact; theorem :: TOPREAL2:3 for Q, P being non empty Subset of TOP-REAL 2 for f being map of (TOP-REAL 2)|Q, (TOP-REAL 2)|P st f is_homeomorphism & Q is_an_arc_of q1,q2 holds for p1, p2 st p1 = f.q1 & p2 = f.q2 holds P is_an_arc_of p1,p2; definition let P be Subset of TOP-REAL 2; attr P is being_simple_closed_curve means :: TOPREAL2:def 1 ex f being map of (TOP-REAL 2)|R^2-unit_square, (TOP-REAL 2)|P st f is_homeomorphism; synonym P is_simple_closed_curve; end; definition cluster R^2-unit_square -> being_simple_closed_curve; end; definition cluster being_simple_closed_curve Subset of TOP-REAL 2; end; definition mode Simple_closed_curve is being_simple_closed_curve Subset of TOP-REAL 2; end; theorem :: TOPREAL2:4 for P being non empty Subset of TOP-REAL 2 st P is_simple_closed_curve ex p1,p2 st p1 <> p2 & p1 in P & p2 in P; theorem :: TOPREAL2:5 for P being non empty Subset of TOP-REAL 2 holds P is_simple_closed_curve iff (ex p1,p2 st p1 <> p2 & p1 in P & p2 in P) & for p1,p2 st p1 <> p2 & p1 in P & p2 in P ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2}; theorem :: TOPREAL2:6 for P being non empty Subset of TOP-REAL 2 holds P is_simple_closed_curve iff ex p1,p2 being Point of TOP-REAL 2, P1,P2 being non empty Subset of TOP-REAL 2 st p1 <> p2 & p1 in P & p2 in P & P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2};