Copyright (c) 1991 Association of Mizar Users
environ vocabulary PRE_TOPC, EUCLID, FINSEQ_1, TOPREAL1, MCART_1, BOOLE, COMPTS_1, BORSUK_1, RELAT_1, TOPS_2, ORDINAL2, SUBSET_1, FUNCT_1, RCOMP_1, PCOMPS_1, FUNCT_4, TOPREAL2, FINSEQ_4; notation TARSKI, XBOOLE_0, SUBSET_1, XREAL_0, RELAT_1, FUNCT_1, FUNCT_2, FUNCT_4, STRUCT_0, GRCAT_1, PRE_TOPC, TOPS_2, COMPTS_1, RCOMP_1, FINSEQ_1, FINSEQ_4, PCOMPS_1, EUCLID, TOPMETR, TOPREAL1; constructors TOPS_2, COMPTS_1, RCOMP_1, TOPMETR, TOPREAL1, FINSEQ_4, GRCAT_1, XCMPLX_0, MEMBERED, XBOOLE_0; clusters SUBSET_1, FUNCT_1, PRE_TOPC, RELSET_1, STRUCT_0, EUCLID, BORSUK_1, TOPREAL1, XREAL_0, XBOOLE_0, MEMBERED, ZFMISC_1; requirements NUMERALS, REAL, BOOLE, SUBSET; definitions TARSKI, PRE_TOPC, TOPS_2; theorems AXIOMS, BORSUK_1, COMPTS_1, ENUMSET1, EUCLID, FUNCT_1, FUNCT_2, HEINE, PCOMPS_1, PRE_TOPC, RCOMP_1, REAL_1, TARSKI, TOPMETR, TOPMETR2, TOPS_2, ZFMISC_1, TOPREAL1, RELAT_1, RELSET_1, GRCAT_1, XBOOLE_0, XBOOLE_1; begin reserve a for set; reserve p,p1,p2,q,q1,q2 for Point of TOP-REAL 2; reserve h1,h2 for FinSequence of TOP-REAL 2; Lm1: now let x,X be set; assume not x in X; then {x} misses X by ZFMISC_1:56; hence {x} /\ X = {} by XBOOLE_0:def 7; end; Lm2: LSeg(|[0,0]|,|[1,0]|) /\ LSeg(|[0,1]|,|[1,1]|) = {} by TOPREAL1:25,XBOOLE_0:def 7; Lm3: LSeg(|[0,0]|,|[0,1]|) /\ LSeg(|[1,0]|,|[1,1]|) = {} by TOPREAL1:26,XBOOLE_0:def 7; set p00 = |[ 0,0 ]|, p01 = |[ 0,1 ]|, p10 = |[ 1,0 ]|, p11 = |[ 1,1 ]|, L1 = LSeg(p00,p01),L2 = LSeg(p01,p11),L3 = LSeg(p00,p10),L4 = LSeg(p10,p11); Lm4: p00`1 = 0 & p00`2 = 0 & p01`1 = 0 & p01`2 = 1 & p10`1 = 1 & p10`2 = 0 & p11`1 = 1 & p11`2 = 1 by EUCLID:56; then Lm5: not p00 in L4 by TOPREAL1:9; Lm6: not p00 in L2 by Lm4,TOPREAL1:10; Lm7: not p01 in L3 by Lm4,TOPREAL1:10; Lm8: not p01 in L4 by Lm4,TOPREAL1:9; Lm9: not p10 in L1 by Lm4,TOPREAL1:9; Lm10: not p10 in L2 by Lm4,TOPREAL1:10; Lm11: not p11 in L1 by Lm4,TOPREAL1:9; Lm12: not p11 in L3 by Lm4,TOPREAL1:10; Lm13: p00 in L1 by TOPREAL1:6; Lm14: p00 in L3 by TOPREAL1:6; Lm15: p01 in L1 by TOPREAL1:6; Lm16: p01 in L2 by TOPREAL1:6; Lm17: p10 in L3 by TOPREAL1:6; Lm18: p10 in L4 by TOPREAL1:6; Lm19: p11 in L2 by TOPREAL1:6; Lm20: p11 in L4 by TOPREAL1:6; set L = { p : p`1 = 0 & p`2 <= 1 & p`2 >= 0 or p`1 <= 1 & p`1 >= 0 & p`2 = 1 or p`1 <= 1 & p`1 >= 0 & p`2 = 0 or p`1 = 1 & p`2 <= 1 & p`2 >= 0 }; Lm21:p00 in L by Lm4; Lm22:p11 in L by Lm4; Lm23: p1 <> p2 & p2 in R^2-unit_square & p1 in LSeg(p00, p01) implies ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof assume that A1: p1 <> p2 and A2: p2 in R^2-unit_square and A3: p1 in LSeg(p00, p01); A4: p2 in L1 \/ L2 or p2 in L3 \/ L4 by A2,TOPREAL1:20,XBOOLE_0:def 2; consider p such that A5: p = p1 and A6: p`1 = 0 & p`2 <= 1 & p`2 >= 0 by A3,TOPREAL1:19; A7: LSeg(p00,p1) c= L1 by A3,Lm13,TOPREAL1:12; A8: LSeg(p1,p01) c= L1 by A3,Lm15,TOPREAL1:12; A9: L1 /\ L4 = {} by TOPREAL1:26,XBOOLE_0:def 7; LSeg(p1,p00) /\ L4 c= L1 /\ L4 by A7,XBOOLE_1:26; then A10: LSeg(p1,p00) /\ L4 = {} by A9,XBOOLE_1:3; p00 in LSeg(p1,p00) by TOPREAL1:6; then p00 in LSeg(p1,p00) /\ L3 by Lm14,XBOOLE_0:def 3; then A11: {p00} c= LSeg(p1,p00) /\ L3 by ZFMISC_1:37; A12: LSeg(p1,p00) /\ L3 c= L1 /\ L3 & L1 /\ L3 = {p00} by A7,TOPREAL1:23,XBOOLE_1:26; then A13: LSeg(p1,p00) /\ L3 = {p00} by A11,XBOOLE_0:def 10; LSeg(p01,p1) /\ L4 c= L1 /\ L4 by A8,XBOOLE_1:26; then A14: LSeg(p01,p1) /\ L4 = {} by A9,XBOOLE_1:3; p01 in LSeg(p01,p1) by TOPREAL1:6; then p01 in LSeg(p01,p1) /\ L2 by Lm16,XBOOLE_0:def 3; then A15: {p01} c= LSeg(p01,p1) /\ L2 by ZFMISC_1:37; A16: LSeg(p01,p1) /\ L2 c= {p01} by A8,TOPREAL1:21,XBOOLE_1:26; per cases by A4,XBOOLE_0:def 2; suppose A17: p2 in L1; then consider q such that A18: q = p2 and A19: q`1 = 0 & q`2 <= 1 & q`2 >= 0 by TOPREAL1:19; A20: LSeg(p2,p1) c= L1 by A3,A17,TOPREAL1:12; A21: p = |[p`1,p`2]| & q = |[q`1,q`2]| by EUCLID:57; now per cases by A1,A5,A6,A18,A19,A21,REAL_1:def 5; case A22: p`2 < q`2; A23: LSeg(p01,p2) c= L1 by A17,Lm15,TOPREAL1:12; then A24: LSeg(p01,p2) /\ L3 c= {p00} by TOPREAL1:23,XBOOLE_1:26; set P1 = LSeg(p1,p2), P2 = LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p2)); now assume p00 in LSeg(p01,p2) /\ L3; then p00 in LSeg(p2,p01) & p2`2 <= p01`2 by A18,A19,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A6,A18,A22,Lm4,TOPREAL1:10; end; then {p00} <> LSeg(p01,p2) /\ L3 by ZFMISC_1:37; then A25: LSeg(p01,p2) /\ L3 = {} by A24,ZFMISC_1:39; A26: LSeg(p01,p2) /\ L4 c= L1 /\ L4 by A23,XBOOLE_1:26; A27: now assume A28: LSeg(p1,p00) /\ LSeg(p01,p2) <> {}; consider a being Element of LSeg(p1,p00) /\ LSeg(p01,p2); reconsider p = a as Point of TOP-REAL 2 by A28,TARSKI:def 3; p in LSeg(p00,p1) & p in LSeg(p2,p01) & p00`2 <= p1`2 & p2`2 <= p01`2 by A5,A6,A18,A19,A28,EUCLID:56,XBOOLE_0:def 3; then p`2 <= p1`2 & p2`2 <= p`2 by TOPREAL1:10; hence contradiction by A5,A18,A22,AXIOMS:22; end; p01 in LSeg(p01,p2) by TOPREAL1:6; then p01 in LSeg(p01,p2) /\ L2 by Lm16,XBOOLE_0:def 3; then A29: {p01} c= LSeg(p01,p2) /\ L2 by ZFMISC_1:37; A30: LSeg(p01,p2) /\ L2 c= L1 /\ L2 & L1 /\ L2 = {p01} by A23,TOPREAL1:21,XBOOLE_1:26; A31: LSeg(p1,p00) /\ L2 c= {p01} by A7,TOPREAL1:21,XBOOLE_1:26; now assume p01 in LSeg(p1,p00) /\ L2; then p01 in LSeg(p00,p1) & p00`2 <= p1`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p01`2 <= p1`2 by TOPREAL1:10; hence contradiction by A5,A6,A19,A22,Lm4,AXIOMS:21; end; then A32: {p01} <> LSeg(p1,p00) /\ L2 by ZFMISC_1:37; A33: LSeg(p01,p2) \/ LSeg(p2,p1) \/ LSeg(p1,p00) = L1 by A3,A17,TOPREAL1:13; A34: LSeg(p1,p2) c= L1 by A3,A17,TOPREAL1:12; then A35: LSeg(p1,p2) /\ L4 c= L1 /\ L4 by XBOOLE_1:26; p1 in LSeg(p1,p2) & p1 in LSeg(p1,p00) by TOPREAL1:6; then p1 in LSeg(p1,p2) /\ LSeg(p1,p00) by XBOOLE_0:def 3; then A36: {p1} c= LSeg(p1,p2) /\ LSeg(p1,p00) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p1,p00) c= {p1} proof let a; assume A37: a in LSeg(p1,p2) /\ LSeg(p1,p00); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p00,p1) & p1`2 <= p2`2 & p1`1 <= p2`1 & p00`2 <= p1`2 by A5,A6,A18,A19,A22,A37,EUCLID:56,XBOOLE_0:def 3; then p1`1 <= p`1 & p`1 <= p2`1 & p1`2 <= p`2 & p`2 <= p1`2 by TOPREAL1:9,10; then p1`2 = p`2 & p`1 = 0 by A5,A6,A18,A19,AXIOMS:21; then p = |[ 0, p1`2]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then A38: LSeg(p1,p2) /\ LSeg(p1,p00) = {p1} by A36,XBOOLE_0:def 10; p2 in LSeg(p1,p2) & p2 in LSeg(p01,p2) by TOPREAL1:6; then p2 in LSeg(p1,p2) /\ LSeg(p01,p2) by XBOOLE_0:def 3; then A39: {p2} c= LSeg(p1,p2) /\ LSeg(p01,p2) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p01,p2) c= {p2} proof let a; assume A40: a in LSeg(p1,p2) /\ LSeg(p01,p2); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p2,p01) & p1`2 <= p2`2 & p1`1 <= p2`1 & p2`2 <= p01`2 by A5,A6,A18,A19,A22,A40,EUCLID:56,XBOOLE_0:def 3; then p1`1 <= p`1 & p`1 <= p2`1 & p2`2 <= p`2 & p`2 <= p2`2 by TOPREAL1:9,10; then p2`2 = p`2 & p`1 = 0 by A5,A6,A18,A19,AXIOMS:21; then p = |[0,p2`2]| by EUCLID:57 .= p2 by A18,A19,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A41: LSeg(p1,p2) /\ LSeg(p01,p2) = {p2} by A39,XBOOLE_0:def 10; thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A42: L3 \/ L4 is_an_arc_of p00,p11 by Lm4,TOPREAL1:18,22; (L3 \/ L4) /\ LSeg(p11,p01) = {} \/ {p11} by Lm2,TOPREAL1:24,XBOOLE_1:23 .= {p11}; then A43: L3 \/ L4 \/ LSeg(p11,p01) is_an_arc_of p00,p01 by A42,TOPREAL1: 16; (L3 \/ L4 \/ LSeg(p11,p01)) /\ LSeg(p01,p2) = LSeg(p01,p2) /\ (L3 \/ L4) \/ (LSeg(p01,p2) /\ LSeg(p11,p01)) by XBOOLE_1:23 .= {} \/ (LSeg(p01,p2) /\ L4) \/ (LSeg(p01,p2) /\ LSeg(p11,p01)) by A25,XBOOLE_1:23 .= {} \/ (LSeg(p01,p2) /\ LSeg(p11,p01)) by A26,Lm3,XBOOLE_1:3 .= {p01} by A29,A30,XBOOLE_0:def 10; then A44: L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p2) is_an_arc_of p00,p2 by A43,TOPREAL1:16; LSeg(p1,p00) /\ (L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p2)) = LSeg(p1,p00) /\ (L3 \/ L4 \/ LSeg(p11,p01)) \/ LSeg(p1,p00) /\ LSeg(p01,p2) by XBOOLE_1:23 .= LSeg(p1,p00) /\ (L3 \/ L4) \/ LSeg(p1,p00) /\ LSeg(p11,p01) \/ LSeg(p1,p00) /\ LSeg(p01,p2) by XBOOLE_1:23 .= (LSeg(p1,p00) /\ L3) \/ (LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p11,p01)) \/ (LSeg(p1,p00) /\ LSeg(p01,p2)) by XBOOLE_1:23 .= {p00} by A10,A13,A27,A31,A32,ZFMISC_1:39; hence LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p2)) is_an_arc_of p1,p2 by A44,TOPREAL1:17; thus R^2-unit_square = LSeg(p1,p2) \/ LSeg(p01,p2) \/ LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p01)) by A33,TOPREAL1:20,XBOOLE_1:4 .= LSeg(p1,p2) \/ (LSeg(p1,p00) \/ LSeg(p01,p2)) \/ (L3 \/ L4 \/ LSeg(p11,p01)) by XBOOLE_1:4 .= LSeg(p1,p2) \/ ((LSeg(p1,p00) \/ LSeg(p01,p2)) \/ (L3 \/ L4 \/ LSeg(p11,p01))) by XBOOLE_1:4 .= P1 \/ P2 by XBOOLE_1:4; A45: P1 /\ P2 = (LSeg(p1,p2) /\ LSeg(p1,p00)) \/ LSeg(p1,p2) /\ (L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p2)) by XBOOLE_1:23 .= (LSeg(p1,p2) /\ LSeg(p1,p00)) \/ ((LSeg(p1,p2) /\ (L3 \/ L4 \/ LSeg(p11,p01))) \/ (LSeg(p1,p2) /\ LSeg(p01,p2))) by XBOOLE_1:23 .= (LSeg(p1,p2) /\ LSeg(p1,p00)) \/ ((LSeg(p1,p2) /\ (L3 \/ L4)) \/ (LSeg(p1,p2) /\ LSeg(p11,p01)) \/ (LSeg(p1,p2) /\ LSeg(p01,p2))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L3) \/ (LSeg(p1,p2) /\ L4) \/ (LSeg(p1,p2) /\ LSeg(p11,p01)) \/ (LSeg(p1,p2) /\ LSeg(p01,p2))) by A38,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L3) \/ {} \/ (LSeg(p1,p2) /\ LSeg(p11,p01)) \/ (LSeg(p1,p2) /\ LSeg(p01,p2))) by A35,Lm3,XBOOLE_1:3 .= {p1} \/ ((LSeg(p1,p2) /\ L3) \/ ((LSeg(p1,p2) /\ L2) \/ {p2})) by A41, XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p2) /\ L3) \/ ((LSeg(p1,p2) /\ L2) \/ {p2}) by XBOOLE_1:4; A46: LSeg(p1,p2) /\ L3 c= {p00} by A34,TOPREAL1:23,XBOOLE_1:26; A47: now per cases; suppose A48: p1 = p00; then p00 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L3 <> {} by Lm14,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L3 = {p1} by A46,A48,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L2) \/ {p2}) by A45; suppose A49: p1 <> p00; now assume p00 in LSeg(p1,p2) /\ L3; then p00 in LSeg(p1,p2) & p1`2 <= p2`2 & p00`2 <= p01`2 by A5,A18,A22,Lm4,XBOOLE_0:def 3; then p00`2 <= p1`2 & p1`2 <= p00`2 by A3,TOPREAL1:10; then p00`2 = p1`2 by AXIOMS:21; hence contradiction by A5,A6,A49,Lm4,EUCLID:57; end; then LSeg(p1,p2) /\ L3 <> {p00} by ZFMISC_1:37; then LSeg(p1,p2) /\ L3 = {} by A46,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L2) \/ {p2}) by A45; end; A50: LSeg(p1,p2) /\ L2 c= {p01} by A34,TOPREAL1:21,XBOOLE_1:26; now per cases; suppose A51: p2 <> p01; now assume p01 in LSeg(p1,p2) /\ L2; then p01 in LSeg(p1,p2) & p1`2 <= p2`2 & p00`2 <= p01`2 by A5,A18,A22,Lm4,XBOOLE_0:def 3; then p01`2 <= p2`2 & p2`2 <= p01`2 by A17,TOPREAL1:10; then A52: p01`2 = p2`2 by AXIOMS:21; p2 = |[p2`1,p2`2]| by EUCLID:57 .= |[0,1]| by A18,A19,A52,EUCLID:56; hence contradiction by A51; end; then LSeg(p1,p2) /\ L2 <> {p01} by ZFMISC_1:37; then LSeg(p1,p2) /\ L2 = {} by A50,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A47,ENUMSET1:41; suppose A53: p2 = p01; then p01 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L2 <> {} by Lm16,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L2 = {p2} by A50,A53,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A47,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; case A54: p`2 > q`2; take P1 = LSeg(p2,p1),P2 = LSeg(p2,p00) \/ (L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p1)); A55: LSeg(p01,p1) /\ L3 c= {p00} by A8,TOPREAL1:23,XBOOLE_1:26; now assume p00 in LSeg(p01,p1) /\ L3; then p00 in LSeg(p1,p01) & p1`2 <= p01`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A5,A19,A54,Lm4,TOPREAL1:10; end; then A56: {p00} <> LSeg(p01,p1) /\ L3 by ZFMISC_1:37; A57: LSeg(p2,p00) c= L1 by A17,Lm13,TOPREAL1:12; then A58: LSeg(p2,p00) /\ L4 c= L1 /\ L4 by XBOOLE_1:26; A59: now assume A60: LSeg(p2,p00) /\ LSeg(p01,p1) <> {}; consider a being Element of LSeg(p2,p00) /\ LSeg(p01,p1); reconsider p = a as Point of TOP-REAL 2 by A60,TARSKI:def 3; p in LSeg(p00,p2) & p in LSeg(p1,p01) & p00`2 <= p2`2 & p1`2 <= p01`2 by A5,A6,A18,A19,A60,EUCLID:56,XBOOLE_0:def 3; then p`2 <= p2`2 & p1`2 <= p`2 by TOPREAL1:10; hence contradiction by A5,A18,A54,AXIOMS:22; end; p00 in LSeg(p2,p00) by TOPREAL1:6; then p00 in LSeg(p2,p00) /\ L3 by Lm14,XBOOLE_0:def 3; then A61: {p00} c= LSeg(p2,p00) /\ L3 by ZFMISC_1:37; A62: LSeg(p2,p00) /\ L3 c= {p00} by A57,TOPREAL1:23,XBOOLE_1:26; A63: LSeg(p2,p00) /\ L2 c= {p01} by A57,TOPREAL1:21,XBOOLE_1:26; now assume p01 in LSeg(p2,p00) /\ L2; then p01 in LSeg(p00,p2) & p00`2 <= p2`2 by A18,A19,EUCLID:56,XBOOLE_0:def 3; then p01`2 <= p2`2 by TOPREAL1:10; hence contradiction by A6,A18,A19,A54,Lm4,AXIOMS:21; end; then A64: {p01} <> LSeg(p2,p00) /\ L2 by ZFMISC_1:37; A65: LSeg(p01,p1) \/ LSeg(p1,p2) \/ LSeg(p2,p00) = L1 by A3,A17,TOPREAL1:13; A66: LSeg(p2,p1) /\ L4 c= L1 /\ L4 by A20,XBOOLE_1:26; p2 in LSeg(p2,p1) & p2 in LSeg(p2,p00) by TOPREAL1:6; then p2 in LSeg(p2,p1) /\ LSeg(p2,p00) by XBOOLE_0:def 3; then A67: {p2} c= LSeg(p2,p1) /\ LSeg(p2,p00) by ZFMISC_1:37; A68: LSeg(p2,p1) /\ LSeg(p2,p00) c= {p2} proof let a; assume A69: a in LSeg(p2,p1) /\ LSeg(p2,p00); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p00,p2) & p2`2 <= p1`2 & p2`1 <= p1`1 & p00`2 <= p2`2 by A5,A6,A18,A19,A54,A69,EUCLID:56,XBOOLE_0:def 3; then p2`1 <= p`1 & p`1 <= p1`1 & p2`2 <= p`2 & p`2 <= p2`2 by TOPREAL1:9,10; then p2`2 = p`2 & p`1 = 0 by A5,A6,A18,A19,AXIOMS:21; then p = |[ 0, p2`2]| by EUCLID:57 .= p2 by A18,A19,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; p1 in LSeg(p2,p1) & p1 in LSeg(p01,p1) by TOPREAL1:6; then p1 in LSeg(p2,p1) /\ LSeg(p01,p1) by XBOOLE_0:def 3; then A70: {p1} c= LSeg(p2,p1) /\ LSeg(p01,p1) by ZFMISC_1:37; A71: LSeg(p2,p1) /\ LSeg(p01,p1) c= {p1} proof let a; assume A72: a in LSeg(p2,p1) /\ LSeg(p01,p1); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p1,p01) & p2`2 <= p1`2 & p2`1 <= p1`1 & p1`2 <= p01`2 by A5,A6,A18,A19,A54,A72,EUCLID:56,XBOOLE_0:def 3; then p2`1 <= p`1 & p`1 <= p1`1 & p1`2 <= p`2 & p`2 <= p1`2 by TOPREAL1:9,10; then p1`2 = p`2 & p`1 = 0 by A5,A6,A18,A19,AXIOMS:21; then p = |[0,p1`2]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A73: L3 \/ L4 is_an_arc_of p11,p00 by Lm4,TOPREAL1:18,22; L2 /\ (L3 \/ L4) = {} \/ {p11} by Lm2,TOPREAL1:24,XBOOLE_1:23 .= {p11}; then A74: L3 \/ L4 \/ LSeg(p11,p01) is_an_arc_of p01,p00 by A73,TOPREAL1: 17; LSeg(p1,p01) /\ (L3 \/ L4 \/ LSeg(p11,p01)) = LSeg(p01,p1) /\ (L3 \/ L4) \/ (LSeg(p01,p1) /\ LSeg(p11,p01)) by XBOOLE_1:23 .= (LSeg(p01,p1) /\ L3) \/ (LSeg(p01,p1) /\ L4) \/ (LSeg(p01,p1) /\ LSeg(p11,p01)) by XBOOLE_1:23 .= {} \/ (LSeg(p01,p1) /\ L4) \/ (LSeg(p01,p1) /\ LSeg(p11,p01)) by A55,A56,ZFMISC_1:39 .= {p01} by A14,A15,A16,XBOOLE_0:def 10; then A75: L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p1) is_an_arc_of p1,p00 by A74,TOPREAL1:17; (L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p1)) /\ LSeg(p00,p2) = LSeg(p2,p00) /\ (L3 \/ L4 \/ LSeg(p11,p01)) \/ LSeg(p2,p00) /\ LSeg(p01,p1) by XBOOLE_1:23 .= LSeg(p2,p00) /\ (L3 \/ L4) \/ LSeg(p2,p00) /\ LSeg(p11,p01) \/ LSeg(p2,p00) /\ LSeg(p01,p1) by XBOOLE_1:23 .= (LSeg(p2,p00) /\ L3) \/ (LSeg(p2,p00) /\ L4) \/ (LSeg(p2,p00) /\ LSeg(p11,p01)) \/ (LSeg(p2,p00) /\ LSeg(p01,p1)) by XBOOLE_1:23 .= (LSeg(p2,p00) /\ L3) \/ {} \/ (LSeg(p2,p00) /\ LSeg(p11,p01)) \/ (LSeg(p2,p00) /\ LSeg(p01,p1)) by A58,Lm3,XBOOLE_1:3 .= LSeg(p2,p00) /\ L3 \/ {} by A59,A63,A64,ZFMISC_1:39 .= {p00} by A61,A62,XBOOLE_0:def 10; hence P2 is_an_arc_of p1,p2 by A75,TOPREAL1:16; thus R^2-unit_square = LSeg(p2,p1) \/ LSeg(p01,p1) \/ LSeg(p2,p00) \/ (L3 \/ L4 \/ LSeg(p11,p01)) by A65,TOPREAL1:20,XBOOLE_1:4 .= LSeg(p2,p1) \/ (LSeg(p2,p00) \/ LSeg(p01,p1)) \/ (L3 \/ L4 \/ LSeg(p11,p01)) by XBOOLE_1:4 .= LSeg(p2,p1) \/ ((LSeg(p2,p00) \/ LSeg(p01,p1)) \/ (L3 \/ L4 \/ LSeg(p11,p01))) by XBOOLE_1:4 .= P1 \/ P2 by XBOOLE_1:4; A76: P1 /\ P2 = (LSeg(p2,p1) /\ LSeg(p2,p00)) \/ LSeg(p2,p1) /\ (L3 \/ L4 \/ LSeg(p11,p01) \/ LSeg(p01,p1)) by XBOOLE_1:23 .= (LSeg(p2,p1) /\ LSeg(p2,p00)) \/ ((LSeg(p2,p1) /\ (L3 \/ L4 \/ LSeg(p11,p01))) \/ (LSeg(p2,p1) /\ LSeg(p01,p1))) by XBOOLE_1:23 .= (LSeg(p2,p1) /\ LSeg(p2,p00)) \/ ((LSeg(p2,p1) /\ (L3 \/ L4)) \/ (LSeg(p2,p1) /\ LSeg(p11,p01)) \/ (LSeg(p2,p1) /\ LSeg(p01,p1))) by XBOOLE_1:23 .= (LSeg(p2,p1) /\ LSeg(p2,p00)) \/ ((LSeg(p2,p1) /\ L3) \/ (LSeg(p2,p1) /\ L4) \/ (LSeg(p2,p1) /\ LSeg(p11,p01)) \/ (LSeg(p2,p1) /\ LSeg(p01,p1))) by XBOOLE_1:23 .= {p2} \/ ((LSeg(p2,p1) /\ L3) \/ (LSeg(p2,p1) /\ L4) \/ (LSeg(p2,p1) /\ LSeg(p11,p01)) \/ (LSeg(p2,p1) /\ LSeg(p01,p1))) by A67,A68,XBOOLE_0:def 10 .= {p2} \/ ((LSeg(p2,p1) /\ L3) \/ {} \/ (LSeg(p2,p1) /\ LSeg(p11,p01)) \/ (LSeg(p2,p1) /\ LSeg(p01,p1))) by A66,Lm3,XBOOLE_1:3 .= {p2} \/ ((LSeg(p2,p1) /\ L3) \/ LSeg(p2,p1) /\ L2 \/ {p1}) by A70,A71,XBOOLE_0:def 10 .= {p2} \/ ((LSeg(p2,p1) /\ L3) \/ ((LSeg(p2,p1) /\ L2) \/ {p1})) by XBOOLE_1:4 .= {p2} \/ (LSeg(p2,p1) /\ L3) \/ ((LSeg(p2,p1) /\ L2) \/ {p1}) by XBOOLE_1:4; A77: LSeg(p2,p1) /\ L3 c= {p00} by A20,TOPREAL1:23,XBOOLE_1:26; A78: now per cases; suppose A79: p2 = p00; p2 in LSeg(p2,p1) by TOPREAL1:6; then LSeg(p2,p1) /\ L3 <> {} by A79,Lm14,XBOOLE_0:def 3; then LSeg(p2,p1) /\ L3 = {p2} by A77,A79,ZFMISC_1:39; hence P1 /\ P2 = {p2} \/ ((LSeg(p2,p1) /\ L2) \/ {p1}) by A76; suppose A80: p2 <> p00; now assume p00 in LSeg(p2,p1) /\ L3; then p00 in LSeg(p2,p1) & p2`2 <= p1`2 & p00`2 <= p01`2 by A5,A18,A54,Lm4,XBOOLE_0:def 3; then p00`2 <= p2`2 & p2`2 <= p00`2 by A17,TOPREAL1:10; then p00`2 = p2`2 by AXIOMS:21; hence contradiction by A18,A19,A80,Lm4,EUCLID:57; end; then LSeg(p2,p1) /\ L3 <> {p00} by ZFMISC_1:37; then LSeg(p2,p1) /\ L3 = {} by A77,ZFMISC_1:39; hence P1 /\ P2 = {p2} \/ ((LSeg(p2,p1) /\ L2) \/ {p1}) by A76; end; A81: LSeg(p2,p1) /\ L2 c= {p01} by A20,TOPREAL1:21,XBOOLE_1:26; now per cases; suppose A82: p1 <> p01; now assume p01 in LSeg(p2,p1) /\ L2; then p01 in LSeg(p2,p1) & p2`2 <= p1`2 & p00`2 <= p01`2 by A5,A18,A54,Lm4,XBOOLE_0:def 3; then p01`2 <= p1`2 & p1`2 <= p01`2 by A3,TOPREAL1:10; then A83: p01`2 = p1`2 by AXIOMS:21; p1 = |[p1`1,p1`2]| by EUCLID:57 .= |[0,1]| by A5,A6,A83,EUCLID:56; hence contradiction by A82; end; then LSeg(p2,p1) /\ L2 <> {p01} by ZFMISC_1:37; then LSeg(p2,p1) /\ L2 = {} by A81,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A78,ENUMSET1:41; suppose A84: p1 = p01; then p01 in LSeg(p2,p1) by TOPREAL1:6; then LSeg(p2,p1) /\ L2 <> {} by Lm16,XBOOLE_0:def 3; then LSeg(p2,p1) /\ L2 = {p1} by A81,A84,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A78,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; end; hence ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2}; suppose A85: p2 in L2; then A86: ex q st q = p2 & q`1 <= 1 & q`1 >= 0 & q`2 = 1 by TOPREAL1:19; A87: p1 <> p01 or p2 <> p01 by A1; take P1 = LSeg(p1,p01) \/ LSeg(p01,p2),P2 = LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p2)); p01 in LSeg(p1,p01) & p01 in LSeg(p01,p2) by TOPREAL1:6; then LSeg(p1,p01) c= L1 & LSeg(p01,p2) c= L2 & p01 in LSeg(p1,p01) /\ LSeg(p01,p2) by A3,A85,Lm15,Lm16,TOPREAL1:12, XBOOLE_0:def 3; then LSeg(p1,p01) /\ LSeg(p01,p2) c= L1 /\ L2 & L1 /\ L2 = {p01} & LSeg(p1,p01) /\ LSeg(p01,p2) <> {} by TOPREAL1:21,XBOOLE_1:27; then LSeg(p1,p01) /\ LSeg(p01,p2) = {p01} by ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by A87,TOPREAL1:18; L3 is_an_arc_of p00,p10 & L4 is_an_arc_of p10,p11 by Lm4,TOPREAL1:15; then A88: L3 \/ L4 is_an_arc_of p00,p11 by TOPREAL1:5,22; A89: LSeg(p11,p2) c= L2 by A85,Lm19,TOPREAL1:12; then L3 /\ LSeg(p11,p2) c= L3 /\ L2 by XBOOLE_1:26; then A90: L3 /\ LSeg(p11,p2) = {} by Lm2,XBOOLE_1:3; p11 in LSeg(p11,p2) by TOPREAL1:6; then A91: L4 /\ LSeg(p11,p2) c= L4 /\ L2 & p11 in L4 /\ LSeg(p11,p2) by A89,Lm20,XBOOLE_0:def 3,XBOOLE_1:27; (L3 \/ L4) /\ LSeg(p11,p2) = (L3 /\ LSeg(p11,p2)) \/ (L4 /\ LSeg(p11,p2)) by XBOOLE_1:23 .= {p11} by A90,A91,TOPREAL1:24,ZFMISC_1:39; then A92: L3 \/ L4 \/ LSeg(p11,p2) is_an_arc_of p00,p2 by A88,TOPREAL1:16; LSeg(p1,p00) /\ LSeg(p11,p2) c= {p01} by A7,A89,TOPREAL1:21,XBOOLE_1:27; then A93: LSeg(p1,p00) /\ LSeg(p11,p2) = {p01} or LSeg(p1,p00) /\ LSeg(p11,p2) = {} by ZFMISC_1:39; A94: now assume p01 in LSeg(p1,p00) /\ LSeg(p11,p2); then p01 in LSeg(p00,p1) & p01 in LSeg(p2,p11) & p00`2 <= p1`2 & p2`1 <= p11`1 by A5,A6,A86,EUCLID:56,XBOOLE_0:def 3; then p01`2 <= p1`2 & p2`1 <= p01`1 by TOPREAL1:9,10; then A95: p01`2 = p1`2 & p01`2 = p2`2 & p01`1 = p1`1 & p01`1 = p2`1 by A5,A6,A86,Lm4,AXIOMS:21; then p1 = |[p01`1,p01`2]| by EUCLID:57 .= p2 by A95,EUCLID:57; hence contradiction by A1; end; LSeg(p1,p00) /\ (L3 \/ L4 \/ LSeg(p11,p2)) = (LSeg(p1,p00) /\ (L3 \/ L4)) \/ (LSeg(p1,p00) /\ LSeg(p11,p2)) by XBOOLE_1:23 .= (LSeg(p1,p00) /\ L3) \/ (LSeg(p1,p00) /\ L4) by A93,A94,XBOOLE_1:23, ZFMISC_1:37 .= {p00} by A10,A11,A12,XBOOLE_0:def 10; hence P2 is_an_arc_of p1,p2 by A92,TOPREAL1:17; A96: L1 = LSeg(p1,p01) \/ LSeg(p1,p00) by A3,TOPREAL1:11; A97: L2 = LSeg(p11,p2) \/ LSeg(p01,p2) by A85,TOPREAL1:11; thus P1 \/ P2 = LSeg(p01,p2) \/ (LSeg(p1,p01) \/ (LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p2)))) by XBOOLE_1:4 .= L1 \/ (L3 \/ L4 \/ LSeg(p11,p2)) \/ LSeg(p01,p2) by A96,XBOOLE_1:4 .= L1 \/ ((L3 \/ L4 \/ LSeg(p11,p2)) \/ LSeg(p01,p2)) by XBOOLE_1:4 .= L1 \/ (L2 \/ (L3 \/ L4)) by A97,XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; A98: LSeg(p01,p2) c= L2 by A85,Lm16,TOPREAL1:12; A99: {p1} = LSeg(p1,p01) /\ LSeg(p1,p00) by A3,TOPREAL1:14; A100: LSeg(p01,p2) /\ LSeg(p11,p2) = {p2} by A85,TOPREAL1:14; LSeg(p01,p2) /\ L3 c= L2 /\ L3 by A98,XBOOLE_1:27; then A101: LSeg(p01,p2) /\ L3 = {} by Lm2,XBOOLE_1:3; A102: P1 /\ P2 = (LSeg(p1,p01) /\ (LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p2)))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p01) /\ LSeg(p1,p00)) \/ (LSeg(p1,p01) /\ (L3 \/ L4 \/ LSeg(p11,p2))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ (L3 \/ L4)) \/ (LSeg(p1,p01) /\ LSeg(p11,p2))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p2)))) by A99,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L3) \/ (LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p11,p2))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p00) \/ (L3 \/ L4 \/ LSeg(p11,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L3) \/ (LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ (LSeg(p01,p2) /\ (L3 \/ L4 \/ LSeg(p11,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L3) \/ (LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ ((LSeg(p01,p2) /\ (L3 \/ L4)) \/ {p2})) by A100,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L3) \/ (LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ ((LSeg(p01,p2) /\ L3) \/ (LSeg(p01,p2) /\ L4) \/ {p2})) by XBOOLE_1: 23 .= {p1} \/ ((LSeg(p1,p01) /\ L3) \/ (LSeg(p1,p01) /\ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ (LSeg(p01,p2) /\ L4 \/ {p2})) by A14,A101; A103: now per cases; suppose A104: p2 = p11; then A105: not p2 in LSeg(p1,p01) by A8,Lm4,TOPREAL1:9; LSeg(p1,p01) /\ LSeg(p11,p2) = LSeg(p1,p01) /\ {p2} by A104,TOPREAL1:7 .= {} by A105,Lm1; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p01) /\ L3) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ {p2}) by A102,A104,TOPREAL1:24; suppose A106: p2 <> p11 & p2 <> p01; A107: LSeg(p01,p2) /\ L4 c= {p11} by A98,TOPREAL1:24,XBOOLE_1:27; now assume p11 in LSeg(p01,p2) /\ L4; then p11 in LSeg(p01,p2) & p01`1 <= p2`1 by A86,EUCLID:56,XBOOLE_0:def 3; then p11`1 <= p2`1 by TOPREAL1:9; then p2`1 = p11`1 & p2`2 = p11`2 by A86,Lm4,AXIOMS:21; hence contradiction by A106,Lm4,EUCLID:57; end; then {p11} <> LSeg(p01,p2) /\ L4 by ZFMISC_1:37; then A108: LSeg(p01,p2) /\ L4 = {} by A107,ZFMISC_1:39; A109: LSeg(p1,p01) /\ LSeg(p11,p2) c= {p01} by A8,A89,TOPREAL1:21,XBOOLE_1:27; now assume p01 in LSeg(p1,p01) /\ LSeg(p11,p2); then p01 in LSeg(p2,p11) & p2`1 <= p11`1 by A86,EUCLID:56,XBOOLE_0:def 3; then p2`1 = 0 & p2`2 = 1 by A86,Lm4,TOPREAL1:9; hence contradiction by A106,EUCLID:57; end; then {p01} <> LSeg(p1,p01) /\ LSeg(p11,p2) by ZFMISC_1:37; then LSeg(p1,p01) /\ LSeg(p11,p2) = {} by A109,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p01) /\ L3) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ {p2}) by A102,A108; suppose A110: p2 = p01; then A111: LSeg(p01,p2) /\ L4 = {p01} /\ L4 by TOPREAL1:7 .= {} by Lm1,Lm8; A112: LSeg(p1,p01) /\ LSeg(p11,p2) c= {p2} by A8,A110,TOPREAL1:21,XBOOLE_1:27; p2 in LSeg(p1,p01) by A110,TOPREAL1:6; then LSeg(p1,p01) /\ LSeg(p11,p2) <> {} by A110,Lm16,XBOOLE_0:def 3; then LSeg(p1,p01) /\ LSeg(p11,p2) = {p2} by A112,ZFMISC_1:39; hence P1 /\ P2 = ({p1} \/ (LSeg(p1,p01) /\ L3)) \/ {p2} \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ {p2}) by A102,A111,XBOOLE_1:4 .= ({p1} \/ (LSeg(p1,p01) /\ L3)) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ {p2} \/ {p2}) by XBOOLE_1:4 .= ({p1} \/ (LSeg(p1,p01) /\ L3)) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ ({p2} \/ {p2})) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p01) /\ L3) \/ ((LSeg(p01,p2) /\ LSeg(p1,p00)) \/ {p2}); end; now per cases; suppose A113: p1 = p01; then A114: LSeg(p1,p01) /\ L3 = {p1} /\ L3 by TOPREAL1:7 .= {} by A113,Lm1,Lm7; LSeg(p01,p2) /\ LSeg(p1,p00) c= L2 /\ L1 & p1 in LSeg(p01,p2) by A98,A113,TOPREAL1:6,XBOOLE_1:27; then LSeg(p01,p2) /\ LSeg(p1,p00) c= {p1} & LSeg(p01,p2) /\ LSeg(p1,p00) <> {} by A113,Lm15,TOPREAL1:21,XBOOLE_0:def 3; then LSeg(p01,p2) /\ LSeg(p1,p00) = {p1} by ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ {p1} \/ {p2} by A103,A114,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A115: p1 = p00; A116: not p00 in LSeg(p01,p2) by A98,Lm4,TOPREAL1:10; LSeg(p01,p2) /\ LSeg(p1,p00) = LSeg(p01,p2) /\ {p00} by A115,TOPREAL1:7 .= {} by A116,Lm1; hence P1 /\ P2 = {p1,p2} by A103,A115,ENUMSET1:41,TOPREAL1:23; suppose A117: p1 <> p00 & p1 <> p01; A118: LSeg(p1,p01) /\ L3 c= {p00} by A8,TOPREAL1:23,XBOOLE_1:27; now assume p00 in LSeg(p1,p01) /\ L3; then p00 in LSeg(p1,p01) & p1`2 <= p01`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`2 = 0 by A5,A6,Lm4,TOPREAL1:10; hence contradiction by A5,A6,A117,EUCLID:57; end; then {p00} <> LSeg(p1,p01) /\ L3 by ZFMISC_1:37; then A119: LSeg(p1,p01) /\ L3 = {} by A118,ZFMISC_1:39; A120: LSeg(p01,p2) /\ LSeg(p1,p00) c= {p01} by A7,A98,TOPREAL1:21, XBOOLE_1:27; now assume p01 in LSeg(p01,p2) /\ LSeg(p1,p00); then p01 in LSeg(p00,p1) & p00`2 <= p1`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p01`2 <= p1`2 by TOPREAL1:10; then p1`2 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A117,EUCLID:57; end; then {p01} <> LSeg(p01,p2) /\ LSeg(p1,p00) by ZFMISC_1:37; then LSeg(p01,p2) /\ LSeg(p1,p00) = {} by A120,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A103,A119,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A121: p2 in L3; then A122: ex q st q = p2 & q`1 <= 1 & q`1 >= 0 & q`2 = 0 by TOPREAL1:19; take P1 = LSeg(p1,p00) \/ LSeg(p00,p2),P2 = LSeg(p1,p01) \/ (L2 \/ L4 \/ LSeg(p10,p2)); p00 in LSeg(p1,p00) & p00 in LSeg(p00,p2) by TOPREAL1:6; then LSeg(p1,p00) c= L1 & LSeg(p00,p2) c= L3 & p00 in LSeg(p1,p00) /\ LSeg(p00,p2) by A3,A121,Lm13,Lm14,TOPREAL1:12, XBOOLE_0:def 3; then LSeg(p1,p00) /\ LSeg(p00,p2) c= L1 /\ L3 & L1 /\ L3 = {p00} & LSeg(p1,p00) /\ LSeg(p00,p2) <> {} by TOPREAL1:23,XBOOLE_1:27; then LSeg(p1,p00) /\ LSeg(p00,p2) = {p00} & (p1 <> p00 or p00 <> p2) by A1,ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by TOPREAL1:18; L2 is_an_arc_of p01,p11 & L4 is_an_arc_of p11,p10 by Lm4,TOPREAL1:15; then A123: L2 \/ L4 is_an_arc_of p01,p10 by TOPREAL1:5,24; A124: LSeg(p10,p2) c= L3 by A121,Lm17,TOPREAL1:12; then L2 /\ LSeg(p10,p2) c= L2 /\ L3 by XBOOLE_1:26; then A125: L2 /\ LSeg(p10,p2) = {} by Lm2,XBOOLE_1:3; p10 in LSeg(p10,p2) by TOPREAL1:6; then A126: L4 /\ LSeg(p10,p2) c= L4 /\ L3 & p10 in L4 /\ LSeg(p10,p2) by A124,Lm18,XBOOLE_0:def 3,XBOOLE_1:27; (L2 \/ L4) /\ LSeg(p10,p2) = (L2 /\ LSeg(p10,p2)) \/ (L4 /\ LSeg(p10,p2)) by XBOOLE_1:23 .= {p10} by A125,A126,TOPREAL1:22,ZFMISC_1:39; then A127: L2 \/ L4 \/ LSeg(p10,p2) is_an_arc_of p01,p2 by A123,TOPREAL1:16; LSeg(p1,p01) /\ LSeg(p10,p2) c= {p00} by A8,A124,TOPREAL1:23,XBOOLE_1:27; then A128: LSeg(p1,p01) /\ LSeg(p10,p2) = {p00} or LSeg(p1,p01) /\ LSeg(p10,p2) = {} by ZFMISC_1:39; A129: now assume p00 in LSeg(p1,p01) /\ LSeg(p10,p2); then p00 in LSeg(p1,p01) & p00 in LSeg(p2,p10) & p1`2 <= p01`2 & p2`1 <= p10`1 by A5,A6,A122,EUCLID:56,XBOOLE_0:def 3; then A130: p00`2 = p1`2 & p00`2 = p2`2 & p00`1 = p1`1 & p00`1 = p2`1 by A5,A6,A122,Lm4,TOPREAL1:9,10; then p1 = |[p00`1,p00`2]| by EUCLID:57 .= p2 by A130,EUCLID:57; hence contradiction by A1; end; LSeg(p1,p01) /\ (L2 \/ L4 \/ LSeg(p10,p2)) = (LSeg(p1,p01) /\ (L2 \/ L4)) \/ (LSeg(p1,p01) /\ LSeg(p10,p2)) by XBOOLE_1:23 .= (LSeg(p1,p01) /\ L2) \/ (LSeg(p01,p1) /\ L4) by A128,A129,XBOOLE_1:23, ZFMISC_1:37 .= {p01} by A14,A15,A16,XBOOLE_0:def 10; hence P2 is_an_arc_of p1,p2 by A127,TOPREAL1:17; A131: L1 = LSeg(p1,p00) \/ LSeg(p1,p01) by A3,TOPREAL1:11; A132: L3 = LSeg(p10,p2) \/ LSeg(p00,p2) by A121,TOPREAL1:11; thus P1 \/ P2 = LSeg(p00,p2) \/ (LSeg(p1,p00) \/ (LSeg(p1,p01) \/ (L2 \/ L4 \/ LSeg(p10,p2)))) by XBOOLE_1:4 .= L1 \/ (L2 \/ L4 \/ LSeg(p10,p2)) \/ LSeg(p00,p2) by A131,XBOOLE_1:4 .= L1 \/ ((L2 \/ L4 \/ LSeg(p10,p2)) \/ LSeg(p00,p2)) by XBOOLE_1:4 .= L1 \/ (L2 \/ L4 \/ (LSeg(p10,p2) \/ LSeg(p00,p2))) by XBOOLE_1:4 .= L1 \/ (L2 \/ (L3 \/ L4)) by A132,XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; A133: LSeg(p00,p2) c= L3 by A121,Lm14,TOPREAL1:12; A134: {p1} = LSeg(p1,p00) /\ LSeg(p1,p01) by A3,TOPREAL1:14; A135: LSeg(p00,p2) /\ LSeg(p10,p2) = {p2} by A121,TOPREAL1:14; LSeg(p00,p2) /\ L2 c= L3 /\ L2 by A133,XBOOLE_1:27; then A136: LSeg(p00,p2) /\ L2 = {} by Lm2,XBOOLE_1:3; A137: P1 /\ P2 = (LSeg(p1,p00) /\ (LSeg(p1,p01) \/ (L2 \/ L4 \/ LSeg(p10,p2)))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p01) \/ (L2 \/ L4 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p00) /\ LSeg(p1,p01)) \/ (LSeg(p1,p00) /\ (L2 \/ L4 \/ LSeg(p10,p2))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p01) \/ (L2 \/ L4 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ (L2 \/ L4)) \/ (LSeg(p1,p00) /\ LSeg(p10,p2))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p01) \/ (L2 \/ L4 \/ LSeg(p10,p2)))) by A134,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L2) \/ (LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p10,p2))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p01) \/ (L2 \/ L4 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L2) \/ (LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p10,p2))) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ (LSeg(p00,p2) /\ (L2 \/ L4 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L2) \/ (LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p10,p2))) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ ((LSeg(p00,p2) /\ (L2 \/ L4)) \/ {p2})) by A135,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L2) \/ (LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p10,p2))) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ ((LSeg(p00,p2) /\ L2) \/ (LSeg(p00,p2) /\ L4) \/ {p2})) by XBOOLE_1: 23 .= {p1} \/ ((LSeg(p1,p00) /\ L2) \/ (LSeg(p1,p00) /\ LSeg(p10,p2))) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ (LSeg(p00,p2) /\ L4 \/ {p2})) by A10,A136; A138: now per cases; suppose A139: p2 = p10; then not p2 in LSeg(p1,p00) by A7,Lm4,TOPREAL1:9; then A140: LSeg(p1,p00) misses {p2} by ZFMISC_1:56; LSeg(p1,p00) /\ LSeg(p10,p2) = LSeg(p1,p00) /\ {p2} by A139,TOPREAL1:7 .= {} by A140,XBOOLE_0:def 7; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ {p2}) by A137,A139,TOPREAL1:22; suppose A141: p2 <> p10 & p2 <> p00; A142: LSeg(p00,p2) /\ L4 c= {p10} by A133,TOPREAL1:22,XBOOLE_1:27; now assume p10 in LSeg(p00,p2) /\ L4; then p10 in LSeg(p00,p2) & p00`1 <= p2`1 by A122,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p2`1 by TOPREAL1:9; then p2`1 = p10`1 & p2`2 = p10`2 by A122,Lm4,AXIOMS:21; hence contradiction by A141,Lm4,EUCLID:57; end; then {p10} <> LSeg(p00,p2) /\ L4 by ZFMISC_1:37; then A143: LSeg(p00,p2) /\ L4 = {} by A142,ZFMISC_1:39; A144: LSeg(p1,p00) /\ LSeg(p10,p2) c= {p00} by A7,A124,TOPREAL1:23, XBOOLE_1:27; now assume p00 in LSeg(p1,p00) /\ LSeg(p10,p2); then p00 in LSeg(p2,p10) & p2`1 <= p10`1 by A122,EUCLID:56,XBOOLE_0:def 3; then p2`1 = 0 & p2`2 = 0 by A122,Lm4,TOPREAL1:9; hence contradiction by A141,EUCLID:57; end; then {p00} <> LSeg(p1,p00) /\ LSeg(p10,p2) by ZFMISC_1:37; then LSeg(p1,p00) /\ LSeg(p10,p2) = {} by A144,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ {p2}) by A137,A143; suppose A145: p2 = p00; then A146: LSeg(p00,p2) /\ L4 = {p00} /\ L4 by TOPREAL1:7 .= {} by Lm1,Lm5; A147: LSeg(p1,p00) /\ LSeg(p10,p2) c= {p2} by A7,A145,TOPREAL1:23,XBOOLE_1:27; p2 in LSeg(p1,p00) by A145,TOPREAL1:6; then LSeg(p1,p00) /\ LSeg(p10,p2) <> {} by A145,Lm14,XBOOLE_0:def 3; then LSeg(p1,p00) /\ LSeg(p10,p2) = {p2} by A147,ZFMISC_1:39; hence P1 /\ P2 = ({p1} \/ (LSeg(p1,p00) /\ L2)) \/ {p2} \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ {p2}) by A137,A146,XBOOLE_1:4 .= ({p1} \/ (LSeg(p1,p00) /\ L2)) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ {p2} \/ {p2}) by XBOOLE_1:4 .= ({p1} \/ (LSeg(p1,p00) /\ L2)) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ ({p2} \/ {p2})) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((LSeg(p00,p2) /\ LSeg(p1,p01)) \/ {p2}); end; now per cases; suppose A148: p1 = p01; then A149: LSeg(p00,p2) /\ LSeg(p1,p01) = LSeg(p00,p2) /\ {p1} by TOPREAL1:7; not p1 in LSeg(p00,p2) by A133,A148,Lm4,TOPREAL1:10; then LSeg(p00,p2) /\ LSeg(p1,p01) = {} by A149,Lm1; hence P1 /\ P2 = {p1,p2} by A138,A148,ENUMSET1:41,TOPREAL1:21; suppose A150: p1 = p00; then LSeg(p1,p00) /\ L2 = {p1} /\ L2 by TOPREAL1:7; then A151:LSeg(p1,p00) /\ L2 = {} by A150,Lm1,Lm6; A152: LSeg(p00,p2) /\ LSeg(p1,p01) c= L3 /\ L1 by A133,A150,XBOOLE_1:26; p00 in LSeg(p00,p2) by TOPREAL1:6; then LSeg(p00,p2) /\ LSeg(p1,p01) <> {} by A150,Lm13,XBOOLE_0:def 3 ; then LSeg(p00,p2) /\ LSeg(p1,p01) = {p1} by A150,A152,TOPREAL1:23, ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ {p1} \/ {p2} by A138,A151,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A153: p1 <> p00 & p1 <> p01; A154: LSeg(p1,p00) /\ L2 c= {p01} by A7,TOPREAL1:21,XBOOLE_1:27; now assume p01 in LSeg(p1,p00) /\ L2; then p01 in LSeg(p00,p1) & p00`2 <= p1`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p01`2 <= p1`2 by TOPREAL1:10; then p1`2 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A153,EUCLID:57; end; then {p01} <> LSeg(p1,p00) /\ L2 by ZFMISC_1:37; then A155: LSeg(p1,p00) /\ L2 = {} by A154,ZFMISC_1:39; A156: LSeg(p00,p2) /\ LSeg(p1,p01) c= L3 /\ L1 by A8,A133,XBOOLE_1:27; now assume p00 in LSeg(p00,p2) /\ LSeg(p1,p01); then p00 in LSeg(p1,p01) & p1`2 <= p01`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`2 = 0 by A5,A6,Lm4,TOPREAL1:10; hence contradiction by A5,A6,A153,EUCLID:57; end; then {p00} <> LSeg(p00,p2) /\ LSeg(p1,p01) by ZFMISC_1:37; then LSeg(p00,p2) /\ LSeg(p1,p01) = {} by A156,TOPREAL1:23,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A138,A155,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A157: p2 in L4; then A158: ex q st q = p2 & q`1 = 1 & q`2 <= 1 & q`2 >= 0 by TOPREAL1:19; take P1 = LSeg(p1,p00) \/ L3 \/ LSeg(p10,p2),P2 = LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2); LSeg(p10,p2) c= L4 & p10 in L3 & p10 in LSeg(p10,p2) by A157,Lm18,TOPREAL1:6,12; then L3 /\ LSeg(p10,p2) c= {p10} & L3 /\ LSeg(p10,p2) <> {} by TOPREAL1:22,XBOOLE_0:def 3,XBOOLE_1:27; then L3 /\ LSeg(p10,p2) = {p10} by ZFMISC_1:39; then A159: L3 \/ LSeg(p10,p2) is_an_arc_of p00,p2 by Lm4,TOPREAL1:18; LSeg(p10,p2) c= L4 by A157,Lm18,TOPREAL1:12; then LSeg(p1,p00) /\ LSeg(p10,p2) c= L1 /\ L4 by A7,XBOOLE_1:27; then A160: LSeg(p1,p00) /\ LSeg(p10,p2) = {} by Lm3,XBOOLE_1:3; LSeg(p1,p00) /\ (L3 \/ LSeg(p10,p2)) = (LSeg(p1,p00) /\ L3) \/ (LSeg(p1,p00) /\ LSeg(p10,p2)) by XBOOLE_1:23 .= {p00} by A11,A12,A160,XBOOLE_0:def 10; then LSeg(p1,p00) \/ (L3 \/ LSeg(p10,p2)) is_an_arc_of p1,p2 by A159,TOPREAL1:17; hence P1 is_an_arc_of p1,p2 by XBOOLE_1:4; A161: LSeg(p11,p2) c= L4 by A157,Lm20,TOPREAL1:12; then L2 /\ LSeg(p11,p2) c= L2 /\ L4 & p11 in LSeg(p11,p2) by TOPREAL1:6,XBOOLE_1:27; then L2 /\ LSeg(p11,p2) c= {p11} & L2 /\ LSeg(p11,p2) <> {} by Lm19,TOPREAL1:24,XBOOLE_0:def 3; then L2 /\ LSeg(p11,p2) = {p11} by ZFMISC_1:39; then A162: L2 \/ LSeg(p11,p2) is_an_arc_of p01,p2 by Lm4,TOPREAL1:18; LSeg(p1,p01) /\ LSeg(p11,p2) c= L1 /\ L4 by A8,A161,XBOOLE_1:27; then A163: LSeg(p1,p01) /\ LSeg(p11,p2) = {} by Lm3,XBOOLE_1:3; LSeg(p1,p01) /\ (L2 \/ LSeg(p11,p2)) = (LSeg(p1,p01) /\ L2) \/ (LSeg(p1,p01) /\ LSeg(p11,p2)) by XBOOLE_1:23 .= {p01} by A15,A16,A163,XBOOLE_0:def 10; then LSeg(p1,p01) \/ (L2 \/ LSeg(p11,p2)) is_an_arc_of p1,p2 by A162,TOPREAL1:17; hence P2 is_an_arc_of p1,p2 by XBOOLE_1:4; thus R^2-unit_square = LSeg(p1,p00) \/ LSeg(p1,p01) \/ L2 \/ (L3 \/ L4) by A3,TOPREAL1:11,20 .= LSeg(p1,p00) \/ (LSeg(p1,p01) \/ L2) \/ (L3 \/ L4) by XBOOLE_1:4 .= LSeg(p1,p00) \/ ((LSeg(p1,p01) \/ L2) \/ (L3 \/ L4)) by XBOOLE_1:4 .= LSeg(p1,p00) \/ (L3 \/ (LSeg(p1,p01) \/ L2 \/ L4)) by XBOOLE_1:4 .= LSeg(p1,p00) \/ L3 \/ (LSeg(p1,p01) \/ L2 \/ L4) by XBOOLE_1:4 .= LSeg(p1,p00) \/ L3 \/ (LSeg(p1,p01) \/ L2 \/ (LSeg(p11,p2) \/ LSeg(p10,p2))) by A157,TOPREAL1:11 .= LSeg(p1,p00) \/ L3 \/ (LSeg(p10,p2) \/ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) by XBOOLE_1:4 .= P1 \/ P2 by XBOOLE_1:4; p1 in LSeg(p1,p00) & p1 in LSeg(p1,p01) by TOPREAL1:6; then p1 in LSeg(p1,p00) /\ LSeg(p1,p01) by XBOOLE_0:def 3; then A164: {p1} c= LSeg(p1,p00) /\ LSeg(p1,p01) by ZFMISC_1:37; now let a; assume A165: a in LSeg(p1,p00) /\ LSeg(p1,p01); then A166: a in LSeg(p00,p1) & a in LSeg(p1,p01) by XBOOLE_0:def 3; reconsider p = a as Point of TOP-REAL 2 by A165; p`1 <= p1`1 & p1`1 <= p`1 & p`2 <= p1`2 & p1`2 <= p`2 by A5,A6,A166,Lm4,TOPREAL1:9,10; then p`1 = p1`1 & p`2 = p1`2 by AXIOMS:21; then a = |[p1`1,p1`2]| by EUCLID:57 .= p1 by EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then LSeg(p1,p00) /\ LSeg(p1,p01) c= {p1} by TARSKI:def 3; then A167: LSeg(p1,p00) /\ LSeg(p1,p01) = {p1} by A164,XBOOLE_0:def 10; LSeg(p1,p00) /\ LSeg(p11,p2) c= L1 /\ L4 by A7,A161,XBOOLE_1:27; then A168: LSeg(p1,p00) /\ LSeg(p11,p2) = {} by Lm3,XBOOLE_1:3; p2 in LSeg(p10,p2) & p2 in LSeg(p11,p2) by TOPREAL1:6; then p2 in LSeg(p10,p2) /\ LSeg(p11,p2) by XBOOLE_0:def 3; then A169: {p2} c= LSeg(p10,p2) /\ LSeg(p11,p2) by ZFMISC_1:37; now let a; assume A170: a in LSeg(p10,p2) /\ LSeg(p11,p2); then A171: a in LSeg(p10,p2) & a in LSeg(p2,p11) by XBOOLE_0:def 3; reconsider p = a as Point of TOP-REAL 2 by A170; p`2 <= p2`2 & p2`2 <= p`2 & p`1 <= p2`1 & p2`1 <= p`1 by A158,A171,Lm4,TOPREAL1:9,10; then p`2 = p2`2 & p`1 = p2`1 by AXIOMS:21; then a = |[p2`1,p2`2]| by EUCLID:57 .= p2 by EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A172: LSeg(p10,p2) /\ LSeg(p11,p2) c= {p2} by TARSKI:def 3; A173: LSeg(p10,p2) c= L4 by A157,Lm18,TOPREAL1:12; then LSeg(p10,p2) /\ LSeg(p1,p01) c= L4 /\ L1 by A8,XBOOLE_1:27; then A174: LSeg(p10,p2) /\ LSeg(p1,p01) = {} by Lm3,XBOOLE_1:3; A175: P1 /\ P2 = (LSeg(p1,p00) \/ L3) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2)) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) by XBOOLE_1: 23 .= (LSeg(p1,p00) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) \/ (L3 /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) by XBOOLE_1: 23 .= (LSeg(p1,p00) /\ (LSeg(p1,p01) \/ L2)) \/ (LSeg(p1,p00) /\ LSeg(p11,p2)) \/ (L3 /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) by XBOOLE_1: 23 .= (LSeg(p1,p00) /\ LSeg(p1,p01)) \/ (LSeg(p1,p00) /\ L2) \/ (L3 /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) by A168,XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ (LSeg(p1,p01) \/ L2)) \/ (L3 /\ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) by A167,XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ LSeg(p1,p01)) \/ (L3 /\ L2) \/ (L3 /\ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2 \/ LSeg(p11,p2))) by XBOOLE_1: 23 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ LSeg(p1,p01)) \/ (L3 /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2)) \/ (LSeg(p10,p2) /\ LSeg(p11,p2))) by Lm2,XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ LSeg(p1,p01)) \/ (L3 /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L2)) \/ {p2}) by A169,A172,XBOOLE_0:def 10 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ LSeg(p1,p01)) \/ (L3 /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p01)) \/ (LSeg(p10,p2) /\ L2) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ LSeg(p1,p01)) \/ (L3 /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ L2) \/ {p2}) by A174; A176: now per cases; suppose A177: p2 = p11; then L3 /\ LSeg(p11,p2) = L3 /\ {p11} by TOPREAL1:7 .= {} by Lm1,Lm12; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p00) /\ L2) \/ (L3 /\ LSeg(p1,p01)) \/ {p2} by A175,A177,TOPREAL1:24; suppose A178: p2 = p10; then LSeg(p10,p2) /\ L2 = {p10} /\ L2 by TOPREAL1:7 .= {} by Lm1,Lm10; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ LSeg(p1,p01)) \/ {p2} \/ {p2}) by A175,A178,TOPREAL1:22,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ ((L3 /\ LSeg(p1,p01)) \/ ({p2} \/ {p2})) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p00) /\ L2) \/ (L3 /\ LSeg(p1,p01)) \/ {p2} by XBOOLE_1:4; suppose A179: p2 <> p10 & p2 <> p11; A180: L3 /\ LSeg(p11,p2) c= {p10} by A161,TOPREAL1:22,XBOOLE_1:27; now assume p10 in L3 /\ LSeg(p11,p2); then p10 in LSeg(p2,p11) & p2`2 <= p11`2 by A158,EUCLID:56,XBOOLE_0:def 3; then p2`2 = p10`2 & p2`1 = p10`1 by A158,Lm4,TOPREAL1:10; then p2 = |[p10`1,p10`2]| by EUCLID:57 .= p10 by EUCLID:57; hence contradiction by A179; end; then L3 /\ LSeg(p11,p2) <> {p10} by ZFMISC_1:37; then A181: L3 /\ LSeg(p11,p2) = {} by A180,ZFMISC_1:39; A182: LSeg(p10,p2) /\ L2 c= L4 /\ L2 by A173,XBOOLE_1:27; now assume p11 in LSeg(p10,p2) /\ L2; then p11 in LSeg(p10,p2) & p10`2 <= p2`2 by A158,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p2`2 by TOPREAL1:10; then p11`2 = p2`2 & p11`1 = p2`1 by A158,Lm4,AXIOMS:21; then p2 = |[p11`1,p11`2]| by EUCLID:57 .= p11 by EUCLID:57; hence contradiction by A179; end; then {p11} <> LSeg(p10,p2) /\ L2 by ZFMISC_1:37; then LSeg(p10,p2) /\ L2 = {} by A182,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p00) /\ L2) \/ (L3 /\ LSeg(p1,p01)) \/ {p2} by A175,A181; end; now per cases; suppose A183: p1 = p01; then L3 /\ LSeg(p1,p01) = L3 /\ {p01} by TOPREAL1:7 .= {} by Lm1,Lm7; hence P1 /\ P2 = {p1,p2} by A176,A183,ENUMSET1:41,TOPREAL1:21; suppose A184: p1 <> p01 & p1 <> p00; A185: L3 /\ LSeg(p1,p01) c= L3 /\ L1 by A8,XBOOLE_1:27; now assume p00 in L3 /\ LSeg(p1,p01); then p00 in LSeg(p1,p01) by XBOOLE_0:def 3; then p1`2 = p00`2 & p1`1 = p00`1 by A5,A6,Lm4,TOPREAL1:10; then p1 = |[p00`1,p00`2]| by EUCLID:57 .= p00 by EUCLID:57; hence contradiction by A184; end; then {p00} <> L3 /\ LSeg(p1,p01) by ZFMISC_1:37; then A186: L3 /\ LSeg(p1,p01) = {} by A185,TOPREAL1:23,ZFMISC_1:39; A187: LSeg(p1,p00) /\ L2 c= {p01} by A7,TOPREAL1:21,XBOOLE_1:27; now assume p01 in LSeg(p1,p00) /\ L2; then A188: p01 in LSeg(p00,p1) by XBOOLE_0:def 3; p00`2 <= p1`2 by A5,A6,EUCLID:56; then p01`2 <= p1`2 by A188,TOPREAL1:10; then p1`2 = p01`2 & p1`1 = p01`1 by A5,A6,Lm4,AXIOMS:21; then p1 = |[p01`1,p01`2]| by EUCLID:57 .= p01 by EUCLID:57; hence contradiction by A184; end; then {p01} <> LSeg(p1,p00) /\ L2 by ZFMISC_1:37; then LSeg(p1,p00) /\ L2 = {} by A187,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A176,A186,ENUMSET1:41; suppose A189: p1 = p00; then LSeg(p1,p00) /\ L2 = {p00} /\ L2 by TOPREAL1:7 .= {} by Lm1,Lm6; hence P1 /\ P2 = {p1,p2} by A176,A189,ENUMSET1:41,TOPREAL1:23; end; hence P1 /\ P2 = {p1,p2}; end; Lm24: p1 <> p2 & p2 in R^2-unit_square & p1 in LSeg(p01, p11) implies ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof assume that A1: p1 <> p2 and A2: p2 in R^2-unit_square and A3: p1 in LSeg(p01, p11); A4: p2 in L1 \/ L2 or p2 in L3 \/ L4 by A2,TOPREAL1:20,XBOOLE_0:def 2; consider q1 such that A5: q1 = p1 and A6: q1`1 <= 1 & q1`1 >= 0 & q1`2 = 1 by A3,TOPREAL1:19; A7: LSeg(p01,p1) c= L2 by A3,Lm16,TOPREAL1:12; A8: LSeg(p1,p11) c= L2 by A3,Lm19,TOPREAL1:12; LSeg(p1,p01) /\ L3 c= L2 /\ L3 by A7,XBOOLE_1:26; then A9: LSeg(p1,p01) /\ L3 = {} by Lm2,XBOOLE_1:3; p01 in LSeg(p01,p1) by TOPREAL1:6; then A10: LSeg(p01,p1) /\ L1 <> {} by Lm15,XBOOLE_0:def 3; A11: LSeg(p01,p1) /\ L1 c= L2 /\ L1 by A7,XBOOLE_1:26; LSeg(p1,p11) /\ L3 c= L2 /\ L3 by A8,XBOOLE_1:26; then A12: LSeg(p1,p11) /\ L3 = {} by Lm2,XBOOLE_1:3; p11 in LSeg(p1,p11) by TOPREAL1:6; then A13: LSeg(p1,p11) /\ L4 <> {} by Lm20,XBOOLE_0:def 3; A14: LSeg(p1,p11) /\ L4 c= {p11} by A8,TOPREAL1:24,XBOOLE_1:26; per cases by A4,XBOOLE_0:def 2; suppose A15: p2 in L1; then A16: ex q2 st q2 = p2 & q2`1 = 0 & q2`2 <= 1 & q2`2 >= 0 by TOPREAL1: 19; A17: p1 <> p01 or p2 <> p01 by A1; take P1 = LSeg(p1,p01) \/ LSeg(p01,p2),P2 = LSeg(p1,p11) \/ (L3 \/ L4 \/ LSeg(p00,p2)); p01 in LSeg(p1,p01) & p01 in LSeg(p01,p2) by TOPREAL1:6; then LSeg(p1,p01) c= L2 & LSeg(p01,p2) c= L1 & p01 in LSeg(p1,p01) /\ LSeg(p01,p2) by A3,A15,Lm15,Lm16,TOPREAL1:12, XBOOLE_0:def 3; then LSeg(p1,p01) /\ LSeg(p01,p2) c= L2 /\ L1 & LSeg(p1,p01) /\ LSeg(p01,p2) <> {} by XBOOLE_1:27; then LSeg(p1,p01) /\ LSeg(p01,p2) = {p01} by TOPREAL1:21,ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by A17,TOPREAL1:18; L3 is_an_arc_of p10,p00 & L4 is_an_arc_of p11,p10 by Lm4,TOPREAL1:15; then A18: L3 \/ L4 is_an_arc_of p11,p00 by TOPREAL1:5,22; A19: LSeg(p00,p2) c= L1 & p00 in LSeg(p00,p2) by A15,Lm13,TOPREAL1:6,12; then A20: L3 /\ LSeg(p00,p2) c= {p00} & {} <> L3 /\ LSeg(p00,p2) by Lm14,TOPREAL1:23,XBOOLE_0:def 3,XBOOLE_1:26; L4 /\ LSeg(p00,p2) c= L4 /\ L1 by A19,XBOOLE_1:27; then A21: L4 /\ LSeg(p00,p2) = {} by Lm3,XBOOLE_1:3; A22: LSeg(p2,p01) c= L1 by A15,Lm15,TOPREAL1:12; (L3 \/ L4) /\ LSeg(p00,p2) = (L3 /\ LSeg(p00,p2)) \/ (L4 /\ LSeg(p00,p2)) by XBOOLE_1:23 .= {p00} by A20,A21,ZFMISC_1:39; then A23: L3 \/ L4 \/ LSeg(p00,p2) is_an_arc_of p11,p2 by A18,TOPREAL1:16; LSeg(p1,p11) /\ LSeg(p00,p2) c= L2 /\ L1 by A8,A19,XBOOLE_1:27; then A24: LSeg(p1,p11) /\ LSeg(p00,p2) = {p01} or LSeg(p1,p11) /\ LSeg(p00,p2) = {} by TOPREAL1:21,ZFMISC_1:39; A25: now assume p01 in LSeg(p1,p11) /\ LSeg(p00,p2); then p01 in LSeg(p1,p11) & p01 in LSeg(p00,p2) & p1`1 <= p11`1 & p00`2 <= p2`2 by A5,A6,A16,EUCLID:56,XBOOLE_0:def 3; then p01`2 <= p2`2 & p1`1 <= p01`1 by TOPREAL1:9,10; then A26: p01`2 = p1`2 & p01`2 = p2`2 & p01`1 = p1`1 & p01`1 = p2`1 by A5,A6,A16,Lm4,AXIOMS:21; then p1 = |[p01`1,p01`2]| by EUCLID:57 .= p2 by A26,EUCLID:57; hence contradiction by A1; end; LSeg(p1,p11) /\ (L3 \/ L4 \/ LSeg(p00,p2)) = (LSeg(p1,p11) /\ (L3 \/ L4)) \/ (LSeg(p1,p11) /\ LSeg(p00,p2)) by XBOOLE_1:23 .= (LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ L4) by A24,A25,XBOOLE_1:23, ZFMISC_1:37 .= {p11} by A12,A13,A14,ZFMISC_1:39; hence P2 is_an_arc_of p1,p2 by A23,TOPREAL1:17; A27: LSeg(p1,p01) \/ LSeg(p1,p11) = L2 by A3,TOPREAL1:11; A28: LSeg(p00,p2) \/ LSeg(p01,p2) = L1 by A15,TOPREAL1:11; thus P1 \/ P2 = LSeg(p01,p2) \/ (LSeg(p1,p01) \/ (LSeg(p1,p11) \/ (L3 \/ L4 \/ LSeg(p00,p2)))) by XBOOLE_1:4 .= LSeg(p01,p2) \/ (L2 \/ (L3 \/ L4 \/ LSeg(p00,p2))) by A27,XBOOLE_1:4 .= LSeg(p01,p2) \/ (L2 \/ (L3 \/ L4) \/ LSeg(p00,p2)) by XBOOLE_1:4 .= LSeg(p00,p2) \/ LSeg(p01,p2) \/ (L2 \/ (L3 \/ L4)) by XBOOLE_1:4 .= R^2-unit_square by A28,TOPREAL1:20,XBOOLE_1:4; A29: {p1} = LSeg(p1,p01) /\ LSeg(p1,p11) by A3,TOPREAL1:14; A30: LSeg(p01,p2) /\ LSeg(p00,p2) = {p2} by A15,TOPREAL1:14; LSeg(p01,p2) /\ L4 c= {} by A22,Lm3,XBOOLE_1:27; then A31: LSeg(p01,p2) /\ L4 = {} by XBOOLE_1:3; A32: P1 /\ P2 = (LSeg(p1,p01) /\ (LSeg(p1,p11) \/ (L3 \/ L4 \/ LSeg(p00,p2)))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p11) \/ (L3 \/ L4 \/ LSeg(p00,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p01) /\ LSeg(p1,p11)) \/ (LSeg(p1,p01) /\ (L3 \/ L4 \/ LSeg(p00,p2))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p11) \/ (L3 \/ L4 \/ LSeg(p00,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ (L3 \/ L4)) \/ (LSeg(p1,p01) /\ LSeg(p00,p2))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p11) \/ (L3 \/ L4 \/ LSeg(p00,p2)))) by A29,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L3) \/ (LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p00,p2))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p11) \/ (L3 \/ L4 \/ LSeg(p00,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L3) \/ (LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p11)) \/ (LSeg(p01,p2) /\ (L3 \/ L4 \/ LSeg(p00,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p11)) \/ ((LSeg(p01,p2) /\ (L3 \/ L4)) \/ {p2})) by A9,A30,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p11)) \/ ((LSeg(p01,p2) /\ L3) \/ (LSeg(p01,p2) /\ L4) \/ {p2})) by XBOOLE_1: 23 .= {p1} \/ ((LSeg(p1,p01) /\ L4) \/ (LSeg(p1,p01) /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p11)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2})) by A31; A33: now per cases; suppose A34: p1 = p01; then LSeg(p1,p01) /\ L4 = {p1} /\ L4 by TOPREAL1:7; then A35: LSeg(p1,p01) /\ L4 = {} by A34,Lm1,Lm8; A36: LSeg(p01,p2) /\ LSeg(p1,p11) c= {p1} by A22,A34,TOPREAL1:21,XBOOLE_1:27; p1 in LSeg(p01,p2) by A34,TOPREAL1:6; then LSeg(p01,p2) /\ LSeg(p1,p11) <> {} by A34,Lm16,XBOOLE_0:def 3; then LSeg(p01,p2) /\ LSeg(p1,p11) = {p1} by A36,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ({p1} \/ (LSeg(p1,p01) /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A32,A35,XBOOLE_1:4 .= {p1} \/ {p1} \/ (LSeg(p1,p01) /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p01) /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}); suppose A37: p1 = p11; then A38: LSeg(p01,p2) /\ LSeg(p1,p11) = LSeg(p01,p2) /\ {p1} by TOPREAL1:7; not p1 in LSeg(p01,p2) by A16,A37,Lm4,TOPREAL1:9; then LSeg(p01,p2) /\ LSeg(p1,p11) = {} by A38,Lm1; hence P1 /\ P2 = {p1} \/ {p1} \/ (LSeg(p1,p01) /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A32,A37,TOPREAL1:24,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p01) /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}); suppose A39: p1 <> p11 & p1 <> p01; A40: LSeg(p1,p01) /\ L4 c= {p11} by A7,TOPREAL1:24,XBOOLE_1:27; now assume p11 in LSeg(p1,p01) /\ L4; then p11 in LSeg(p01,p1) & p01`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p11`1 <= p1`1 by TOPREAL1:9; then p1`1 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A39,EUCLID:57; end; then {p11} <> LSeg(p1,p01) /\ L4 by ZFMISC_1:37; then A41: LSeg(p1,p01) /\ L4 = {} by A40,ZFMISC_1:39; A42: LSeg(p01,p2) /\ LSeg(p1,p11) c= {p01} by A8,A22,TOPREAL1:21,XBOOLE_1:27; now assume p01 in LSeg(p01,p2) /\ LSeg(p1,p11); then p01 in LSeg(p1,p11) & p1`1 <= p11`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`1 = 0 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A39,EUCLID:57; end; then {p01} <> LSeg(p01,p2) /\ LSeg(p1,p11) by ZFMISC_1:37; then LSeg(p01,p2) /\ LSeg(p1,p11) = {} by A42,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p01) /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A32,A41; end; now per cases; suppose A43: p2 <> p00 & p2 <> p01; A44: LSeg(p1,p01) /\ LSeg(p00,p2) c= L2 /\ L1 by A7,A19,XBOOLE_1:27; now assume p01 in LSeg(p1,p01) /\ LSeg(p00,p2); then p01 in LSeg(p00,p2) & p00`2 <= p2`2 by A16,EUCLID:56,XBOOLE_0:def 3 ; then p01`2 <= p2`2 by TOPREAL1:10; then p2`2 = 1 by A16,Lm4,AXIOMS:21; hence contradiction by A16,A43,EUCLID:57; end; then {p01} <> LSeg(p1,p01) /\ LSeg(p00,p2) by ZFMISC_1:37; then A45: LSeg(p1,p01) /\ LSeg(p00,p2) = {} by A44,TOPREAL1:21,ZFMISC_1:39; A46: LSeg(p01,p2) /\ L3 c= {p00} by A22,TOPREAL1:23,XBOOLE_1:27; now assume p00 in LSeg(p01,p2) /\ L3; then p00 in LSeg(p2,p01) & p2`2 <= p01`2 by A16,EUCLID:56,XBOOLE_0:def 3; then 0 = p2`2 by A16,Lm4,TOPREAL1:10; hence contradiction by A16,A43,EUCLID:57; end; then {p00} <> LSeg(p01,p2) /\ L3 by ZFMISC_1:37; then LSeg(p01,p2) /\ L3 = {} by A46,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A33,A45,ENUMSET1:41; suppose A47:p2 = p00; then A48: LSeg(p1,p01) /\ LSeg(p00,p2) = LSeg(p1,p01) /\ {p00} by TOPREAL1:7; not p00 in LSeg(p1,p01) by A7,Lm4,TOPREAL1:10; then LSeg(p1,p01) /\ LSeg(p00,p2) = {} by A48,Lm1; hence P1 /\ P2 = {p1,p2} by A33,A47,ENUMSET1:41,TOPREAL1:23; suppose A49: p2 = p01; then LSeg(p01,p2) /\ L3 = {p01} /\ L3 by TOPREAL1:7; then A50: LSeg(p01,p2) /\ L3 = {} by Lm1,Lm7; A51: LSeg(p1,p01) /\ LSeg(p00,p2) c= L2 /\ L1 by A7,A19,XBOOLE_1:27; p2 in LSeg(p1,p01) by A49,TOPREAL1:6; then {} <> LSeg(p1,p01) /\ LSeg(p00,p2) by A49,Lm15,XBOOLE_0:def 3; then LSeg(p1,p01) /\ LSeg(p00,p2) = {p2} by A49,A51,TOPREAL1:21,ZFMISC_1:39 ; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A33,A50,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A52: p2 in L2; then consider q such that A53: q = p2 and A54: q`1 <= 1 & q`1 >= 0 & q`2 = 1 by TOPREAL1:19; A55: q1 = |[q1`1,q1`2]| & q = |[q`1,q`2]| by EUCLID:57; A56: LSeg(p2,p11) c= L2 by A52,Lm19,TOPREAL1:12; A57: LSeg(p2,p01) c= L2 by A52,Lm16,TOPREAL1:12; A58: LSeg(p1,p2) c= L2 by A3,A52,TOPREAL1:12; now per cases by A1,A5,A6,A53,A54,A55,REAL_1:def 5; suppose A59: q1`1 < q`1; take P1 = LSeg(p1,p2),P2 = LSeg(p1,p01) \/ (L1 \/ L3 \/ L4 \/ LSeg(p11,p2)); thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A60: now assume A61: LSeg(p1,p01) /\ LSeg(p11,p2) <> {}; consider a being Element of LSeg(p1,p01) /\ LSeg(p11,p2); reconsider p = a as Point of TOP-REAL 2 by A61,TARSKI:def 3; p in LSeg(p01,p1) & p in LSeg(p2,p11) & p01`1 <= p1`1 & p2`1 <= p11 `1 by A5,A6,A53,A54,A61,EUCLID:56,XBOOLE_0:def 3; then p`1 <= p1`1 & p2`1 <= p`1 by TOPREAL1:9; hence contradiction by A5,A53,A59,AXIOMS:22; end; A62: LSeg(p1,p01) /\ L4 c= {p11} by A7,TOPREAL1:24,XBOOLE_1:26; now assume p11 in LSeg(p1,p01) /\ L4; then p11 in LSeg(p01,p1) & p01`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p11`1 <= p1`1 by TOPREAL1:9; hence contradiction by A5,A6,A54,A59,Lm4,AXIOMS:21; end; then {p11} <> LSeg(p1,p01) /\ L4 by ZFMISC_1:37; then A63: LSeg(p1,p01) /\ L4 = {} by A62,ZFMISC_1:39; LSeg(p1,p01) /\ L3 c= L2 /\ L3 & L3 /\ L2 = {} by A7,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A64: LSeg(p1,p01) /\ L3 = {} by XBOOLE_1:3; A65: LSeg(p1,p01) /\ L1 c= L2 /\ L1 by A7,XBOOLE_1:26; p01 in LSeg(p1,p01) by TOPREAL1:6; then A66: LSeg(p1,p01) /\ L1 <> {} by Lm15,XBOOLE_0:def 3; A67: LSeg(p1,p01) /\ (L1 \/ L3 \/ L4 \/ LSeg(p11,p2)) = LSeg(p1,p01) /\ (L1 \/ L3 \/ L4) \/ (LSeg(p1,p01) /\ LSeg(p11,p2)) by XBOOLE_1:23 .= LSeg(p1,p01) /\ (L1 \/ L3) \/ (LSeg(p1,p01) /\ L4) by A60,XBOOLE_1: 23 .= LSeg(p1,p01) /\ L1 \/ (LSeg(p1,p01) /\ L3) by A63,XBOOLE_1:23 .= {p01} by A64,A65,A66,TOPREAL1:21,ZFMISC_1:39; L1 is_an_arc_of p01,p00 by Lm4,TOPREAL1:15; then A68: L1 \/ L3 is_an_arc_of p01,p10 by TOPREAL1:16,23; (L1 \/ L3) /\ L4 = L1 /\ L4 \/ L3 /\ L4 by XBOOLE_1:23 .= {p10} by Lm3,TOPREAL1:22; then A69: L1 \/ L3 \/ L4 is_an_arc_of p01,p11 by A68,TOPREAL1:16; A70: L4 /\ LSeg(p11,p2) c= L4 /\ L2 by A56,XBOOLE_1:26; p11 in LSeg(p11,p2) by TOPREAL1:6; then L4 /\ LSeg(p11,p2) <> {} by Lm20,XBOOLE_0:def 3; then A71: L4 /\ LSeg(p11,p2) = {p11} by A70,TOPREAL1:24,ZFMISC_1:39; A72: L1 /\ LSeg(p11,p2) c= {p01} by A56,TOPREAL1:21,XBOOLE_1:26; now assume p01 in L1 /\ LSeg(p11,p2); then p01 in LSeg(p2,p11) & p2`1 <= p11`1 by A53,A54,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A6,A53,A59,Lm4,TOPREAL1:9; end; then {p01} <> L1 /\ LSeg(p11,p2) by ZFMISC_1:37; then A73: L1 /\ LSeg(p11,p2) = {} by A72,ZFMISC_1:39; L3 /\ LSeg(p11,p2) c= L3 /\ L2 & L3 /\ L2 = {} by A56,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A74: L3 /\ LSeg(p11,p2) = {} by XBOOLE_1:3; (L1 \/ L3 \/ L4) /\ LSeg(p11,p2) = (L1 \/ L3) /\ LSeg(p11,p2) \/ L4 /\ LSeg(p11,p2) by XBOOLE_1:23 .= (L1 /\ LSeg(p11,p2)) \/ (L3 /\ LSeg(p11,p2)) \/ {p11} by A71,XBOOLE_1:23 .= {p11} by A73,A74; then L1 \/ L3 \/ L4 \/ LSeg(p11,p2) is_an_arc_of p01,p2 by A69,TOPREAL1:16; hence P2 is_an_arc_of p1,p2 by A67,TOPREAL1:17; thus P1 \/ P2 = LSeg(p01,p1) \/ LSeg(p1,p2) \/ (L1 \/ L3 \/ L4 \/ LSeg(p11,p2)) by XBOOLE_1:4 .= LSeg(p01,p1) \/ LSeg(p1,p2) \/ LSeg(p2,p11) \/ (L1 \/ L3 \/ L4) by XBOOLE_1:4 .= L2 \/ (L1 \/ L3 \/ L4) by A3,A52,TOPREAL1:13 .= L2 \/ (L1 \/ (L3 \/ L4)) by XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; p1 in LSeg(p1,p2) & p1 in LSeg(p1,p01) by TOPREAL1:6; then p1 in LSeg(p1,p2) /\ LSeg(p1,p01) by XBOOLE_0:def 3; then A75: {p1} c= LSeg(p1,p2) /\ LSeg(p1,p01) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p1,p01) c= {p1} proof let a; assume A76: a in LSeg(p1,p2) /\ LSeg(p1,p01); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p01,p1) & p1`2 <= p2`2 & p1`1 <= p2`1 & p01`1 <= p1`1 by A5,A6,A53,A54,A59,A76,EUCLID:56,XBOOLE_0:def 3; then p1`2 <= p`2 & p`2 <= p2`2 & p1`1 <= p`1 & p`1 <= p1`1 by TOPREAL1:9,10; then p1`1 = p`1 & p`2 = 1 by A5,A6,A53,A54,AXIOMS:21; then p = |[p1`1, 1]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then A77: LSeg(p1,p2) /\ LSeg(p1,p01) = {p1} by A75,XBOOLE_0:def 10; p2 in LSeg(p1,p2) & p2 in LSeg(p11,p2) by TOPREAL1:6; then p2 in LSeg(p1,p2) /\ LSeg(p11,p2) by XBOOLE_0:def 3; then A78: {p2} c= LSeg(p1,p2) /\ LSeg(p11,p2) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p11,p2) c= {p2} proof let a; assume A79: a in LSeg(p1,p2) /\ LSeg(p11,p2); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p2,p11) & p1`2 <= p2`2 & p1`1 <= p2`1 & p2`1 <= p11`1 by A5,A6,A53,A54,A59,A79,EUCLID:56,XBOOLE_0:def 3; then p1`2 <= p`2 & p`2 <= p2`2 & p2`1 <= p`1 & p`1 <= p2`1 by TOPREAL1:9,10; then p2`1 = p`1 & p`2 = 1 by A5,A6,A53,A54,AXIOMS:21; then p = |[ p2`1, 1]| by EUCLID:57 .= p2 by A53,A54,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A80: LSeg(p1,p2) /\ LSeg(p11,p2) = {p2} by A78,XBOOLE_0:def 10; LSeg(p1,p2) /\ L3 c= L2 /\ L3 & L3 /\ L2 = {} by A58,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A81: LSeg(p1,p2) /\ L3 = {} by XBOOLE_1:3; A82: P1 /\ P2 = (LSeg(p1,p2) /\ LSeg(p1,p01)) \/ (LSeg(p1,p2) /\ (L1 \/ L3 \/ L4 \/ LSeg(p11,p2))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L1 \/ L3 \/ L4)) \/ {p2}) by A77,A80,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L1 \/ L3)) \/ (LSeg(p1,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L1) \/ (LSeg(p1,p2) /\ L3) \/ (LSeg(p1,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L1) \/ ((LSeg(p1,p2) /\ L4) \/ {p2})) by A81,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p2) /\ L1) \/ ((LSeg(p1,p2) /\ L4) \/ {p2}) by XBOOLE_1:4; A83: LSeg(p1,p2) /\ L1 c= L2 /\ L1 by A58,XBOOLE_1:26; A84: now per cases; suppose A85: p1 = p01; p1 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L1 <> {} by A85,Lm15,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L1 = {p1} by A83,A85,TOPREAL1:21,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L4) \/ {p2}) by A82; suppose A86: p1 <> p01; now assume p01 in LSeg(p1,p2) /\ L1; then p01 in LSeg(p1,p2) & p1`1 <= p2`1 by A5,A53,A59,XBOOLE_0:def 3; then p1`1 = 0 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A86,EUCLID:57; end; then {p01} <> LSeg(p1,p2) /\ L1 by ZFMISC_1:37; then LSeg(p1,p2) /\ L1 = {} by A83,TOPREAL1:21,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L4) \/ {p2}) by A82; end; A87: LSeg(p1,p2) /\ L4 c= {p11} by A58,TOPREAL1:24,XBOOLE_1:26; now per cases; suppose A88: p2 = p11; p2 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L4 <> {} by A88,Lm20,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L4 = {p2} by A87,A88,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A84,ENUMSET1:41; suppose A89: p2 <> p11; now assume p11 in LSeg(p1,p2) /\ L4; then p11 in LSeg(p1,p2) & p1`1 <= p2`1 by A5,A53,A59,XBOOLE_0:def 3; then p11`1 <= p2`1 by TOPREAL1:9; then p2`1 = 1 by A53,A54,Lm4,AXIOMS:21; hence contradiction by A53,A54,A89,EUCLID:57; end; then {p11} <> LSeg(p1,p2) /\ L4 by ZFMISC_1:37; then LSeg(p1,p2) /\ L4 = {} by A87,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A84,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A90: q`1 < q1`1; take P1 = LSeg(p1,p2),P2 = LSeg(p1,p11) \/ (L4 \/ L3 \/ L1 \/ LSeg(p01,p2)); thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A91: now assume A92: LSeg(p1,p11) /\ LSeg(p01,p2) <> {}; consider a being Element of LSeg(p1,p11) /\ LSeg(p01,p2); reconsider p = a as Point of TOP-REAL 2 by A92,TARSKI:def 3; p in LSeg(p1,p11) & p in LSeg(p01,p2) & p1`1 <= p11`1 & p01`1 <= p2 `1 by A5,A6,A53,A54,A92,EUCLID:56,XBOOLE_0:def 3; then p1`1 <= p`1 & p`1 <= p2`1 by TOPREAL1:9; hence contradiction by A5,A53,A90,AXIOMS:22; end; A93: LSeg(p1,p11) /\ L1 c= L2 /\ L1 by A8,XBOOLE_1:26; now assume p01 in LSeg(p1,p11) /\ L1; then p01 in LSeg(p1,p11) & p1`1 <= p11`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A5,A54,A90,Lm4,TOPREAL1:9; end; then {p01} <> LSeg(p1,p11) /\ L1 by ZFMISC_1:37; then A94: LSeg(p1,p11) /\ L1 = {} by A93,TOPREAL1:21,ZFMISC_1:39; LSeg(p1,p11) /\ L3 c= L2 /\ L3 & L3 /\ L2 = {} by A8,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A95: LSeg(p1,p11) /\ L3 = {} by XBOOLE_1:3; A96: LSeg(p1,p11) /\ L4 c= {p11} by A8,TOPREAL1:24,XBOOLE_1:26; p11 in LSeg(p1,p11) by TOPREAL1:6; then A97: LSeg(p1,p11) /\ L4 <> {} by Lm20,XBOOLE_0:def 3; A98: LSeg(p1,p11) /\ (L4 \/ L3 \/ L1 \/ LSeg(p01,p2)) = LSeg(p1,p11) /\ (L4 \/ L3 \/ L1) \/ (LSeg(p1,p11) /\ LSeg(p01,p2)) by XBOOLE_1:23 .= LSeg(p1,p11) /\ (L4 \/ L3) \/ (LSeg(p1,p11) /\ L1) by A91,XBOOLE_1: 23 .= LSeg(p1,p11) /\ L4 \/ (LSeg(p1,p11) /\ L3) by A94,XBOOLE_1:23 .= {p11} by A95,A96,A97,ZFMISC_1:39; L4 is_an_arc_of p11,p10 by Lm4,TOPREAL1:15; then A99: L4 \/ L3 is_an_arc_of p11,p00 by TOPREAL1:16,22; (L4 \/ L3) /\ L1 = L1 /\ L4 \/ L3 /\ L1 by XBOOLE_1:23 .= {p00} by Lm3,TOPREAL1:23; then A100: L4 \/ L3 \/ L1 is_an_arc_of p11,p01 by A99,TOPREAL1:16; A101: L1 /\ LSeg(p01,p2) c= {p01} by A57,TOPREAL1:21,XBOOLE_1:26; p01 in LSeg(p01,p2) by TOPREAL1:6; then L1 /\ LSeg(p01,p2) <> {} by Lm15,XBOOLE_0:def 3; then A102: L1 /\ LSeg(p01,p2) = {p01} by A101,ZFMISC_1:39; A103: L4 /\ LSeg(p01,p2) c= L4 /\ L2 by A57,XBOOLE_1:26; now assume p11 in L4 /\ LSeg(p01,p2); then p11 in LSeg(p01,p2) & p01`1 <= p2`1 by A53,A54,EUCLID:56,XBOOLE_0:def 3; then p11`1 <= p2`1 by TOPREAL1:9; hence contradiction by A6,A53,A54,A90,Lm4,AXIOMS:21; end; then {p11} <> L4 /\ LSeg(p01,p2) by ZFMISC_1:37; then A104: L4 /\ LSeg(p01,p2) = {} by A103,TOPREAL1:24,ZFMISC_1:39; L3 /\ LSeg(p01,p2) c= L3 /\ L2 & L3 /\ L2 = {} by A57,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A105: L3 /\ LSeg(p01,p2) = {} by XBOOLE_1:3; (L4 \/ L3 \/ L1) /\ LSeg(p01,p2) = (L4 \/ L3) /\ LSeg(p01,p2) \/ L1 /\ LSeg(p01,p2) by XBOOLE_1:23 .= (L4 /\ LSeg(p01,p2)) \/ (L3 /\ LSeg(p01,p2)) \/ {p01} by A102,XBOOLE_1:23 .= {p01} by A104,A105; then L4 \/ L3 \/ L1 \/ LSeg(p01,p2) is_an_arc_of p11,p2 by A100,TOPREAL1:16 ; hence P2 is_an_arc_of p1,p2 by A98,TOPREAL1:17; thus P1 \/ P2 = LSeg(p2,p1) \/ LSeg(p1,p11) \/ (L4 \/ L3 \/ L1 \/ LSeg(p01,p2)) by XBOOLE_1:4 .= LSeg(p01,p2) \/ (LSeg(p2,p1) \/ LSeg(p1,p11)) \/ (L4 \/ L3 \/ L1) by XBOOLE_1:4 .= L2 \/ (L4 \/ L3 \/ L1) by A3,A52,TOPREAL1:13 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; p1 in LSeg(p1,p2) & p1 in LSeg(p1,p11) by TOPREAL1:6; then p1 in LSeg(p1,p2) /\ LSeg(p1,p11) by XBOOLE_0:def 3; then A106: {p1} c= LSeg(p1,p2) /\ LSeg(p1,p11) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p1,p11) c= {p1} proof let a; assume A107: a in LSeg(p1,p2) /\ LSeg(p1,p11); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p1,p11) & p2`2 <= p1`2 & p2`1 <= p1`1 & p1`1 <= p11`1 by A5,A6,A53,A54,A90,A107,EUCLID:56,XBOOLE_0:def 3; then p2`2 <= p`2 & p`2 <= p1`2 & p1`1 <= p`1 & p`1 <= p1`1 by TOPREAL1:9,10; then p1`1 = p`1 & p`2 = 1 by A5,A6,A53,A54,AXIOMS:21; then p = |[p1`1, 1]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then A108: LSeg(p1,p2) /\ LSeg(p1,p11) = {p1} by A106,XBOOLE_0:def 10; p2 in LSeg(p1,p2) & p2 in LSeg(p01,p2) by TOPREAL1:6; then p2 in LSeg(p1,p2) /\ LSeg(p01,p2) by XBOOLE_0:def 3; then A109: {p2} c= LSeg(p1,p2) /\ LSeg(p01,p2) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p01,p2) c= {p2} proof let a; assume A110: a in LSeg(p1,p2) /\ LSeg(p01,p2); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p01,p2) & p2`1 <= p1`1 & p2`2 <= p1`2 & p01`1 <= p2`1 by A5,A6,A53,A54,A90,A110,EUCLID:56,XBOOLE_0:def 3; then p2`2 <= p`2 & p`2 <= p1`2 & p2`1 <= p`1 & p`1 <= p2`1 by TOPREAL1:9,10; then p2`1 = p`1 & p`2 = 1 by A5,A6,A53,A54,AXIOMS:21; then p = |[ p2`1, 1]| by EUCLID:57 .= p2 by A53,A54,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A111: LSeg(p1,p2) /\ LSeg(p01,p2) = {p2} by A109,XBOOLE_0:def 10; LSeg(p1,p2) /\ L3 c= L2 /\ L3 & L3 /\ L2 = {} by A58,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A112: LSeg(p1,p2) /\ L3 = {} by XBOOLE_1:3; A113: P1 /\ P2 = {p1} \/ LSeg(p1,p2) /\ (L4 \/ L3 \/ L1 \/ LSeg(p01,p2)) by A108,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L4 \/ L3 \/ L1)) \/ {p2}) by A111,XBOOLE_1 :23 .= {p1} \/ ((LSeg(p1,p2) /\ (L4 \/ L3)) \/ (LSeg(p1,p2) /\ L1) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L4) \/ (LSeg(p1,p2) /\ L3) \/ (LSeg(p1,p2) /\ L1) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L4) \/ ((LSeg(p1,p2) /\ L1) \/ {p2})) by A112,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p2) /\ L4) \/ ((LSeg(p1,p2) /\ L1) \/ {p2}) by XBOOLE_1:4; A114: LSeg(p1,p2) /\ L1 c= L2 /\ L1 by A58,XBOOLE_1:26; A115: now per cases; suppose A116: p2 = p01; p2 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L1 <> {} by A116,Lm15,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L1 = {p2} by A114,A116,TOPREAL1:21,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p2) /\ L4) \/ {p2} by A113; suppose A117: p2 <> p01; now assume p01 in LSeg(p1,p2) /\ L1; then p01 in LSeg(p2,p1) & p2`1 <= p1`1 by A5,A53,A90,XBOOLE_0:def 3; then p2`1 = 0 by A53,A54,Lm4,TOPREAL1:9; hence contradiction by A53,A54,A117,EUCLID:57; end; then {p01} <> LSeg(p1,p2) /\ L1 by ZFMISC_1:37; then LSeg(p1,p2) /\ L1 = {} by A114,TOPREAL1:21,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p2) /\ L4) \/ {p2} by A113; end; A118: LSeg(p1,p2) /\ L4 c= {p11} by A58,TOPREAL1:24,XBOOLE_1:26; now per cases; suppose A119: p1 = p11; p1 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L4 <> {} by A119,Lm20,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L4 = {p1} by A118,A119,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A115,ENUMSET1:41; suppose A120: p1 <> p11; now assume p11 in LSeg(p1,p2) /\ L4; then p11 in LSeg(p2,p1) & p2`1 <= p1`1 by A5,A53,A90,XBOOLE_0:def 3; then p11`1 <= p1`1 by TOPREAL1:9; then p1`1 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A120,EUCLID:57; end; then {p11} <> LSeg(p1,p2) /\ L4 by ZFMISC_1:37; then LSeg(p1,p2) /\ L4 = {} by A118,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A115,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; end; hence ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2}; suppose A121: p2 in L3; then A122: ex q2 st q2 = p2 & q2`1 <= 1 & q2`1 >= 0 & q2`2 = 0 by TOPREAL1 :19; take P1 = LSeg(p1,p11) \/ L4 \/ LSeg(p10,p2),P2 = LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2); LSeg(p10,p2) c= L3 & p10 in LSeg(p10,p2) by A121,Lm17,TOPREAL1:6,12; then LSeg(p11,p10) /\ LSeg(p10,p2) c= L4 /\ L3 & p10 in LSeg(p11,p10) /\ LSeg(p10,p2) by Lm18,XBOOLE_0:def 3,XBOOLE_1:27; then LSeg(p11,p10) /\ LSeg(p10,p2) = {p10} by TOPREAL1:22,ZFMISC_1:39; then A123: L4 \/ LSeg(p10,p2) is_an_arc_of p11,p2 by Lm4,TOPREAL1:18; A124: LSeg(p2,p10) c= L3 by A121,Lm17,TOPREAL1:12; then LSeg(p1,p11) /\ LSeg(p10,p2) c= L2 /\ L3 by A8,XBOOLE_1:27; then A125: LSeg(p1,p11) /\ LSeg(p10,p2) = {} by Lm2,XBOOLE_1:3; LSeg(p1,p11) /\ (L4 \/ LSeg(p10,p2)) = (LSeg(p1,p11) /\ L4) \/ (LSeg(p1,p11) /\ LSeg(p10,p2)) by XBOOLE_1:23 .= {p11} by A13,A14,A125,ZFMISC_1:39; then LSeg(p1,p11) \/ (L4 \/ LSeg(p10,p2)) is_an_arc_of p1,p2 by A123,TOPREAL1:17; hence P1 is_an_arc_of p1,p2 by XBOOLE_1:4; LSeg(p00,p2) c= L3 & p00 in LSeg(p00,p2) by A121,Lm14,TOPREAL1:6,12; then LSeg(p01,p00) /\ LSeg(p00,p2) c= {p00} & LSeg(p01,p00) /\ LSeg(p00,p2) <> {} by Lm13,TOPREAL1:23,XBOOLE_0:def 3,XBOOLE_1:27; then LSeg(p01,p00) /\ LSeg(p00,p2) = {p00} by ZFMISC_1:39; then A126: L1 \/ LSeg(p00,p2) is_an_arc_of p01,p2 by Lm4,TOPREAL1:18; A127: LSeg(p2,p00) c= L3 by A121,Lm14,TOPREAL1:12; then LSeg(p1,p01) /\ LSeg(p00,p2) c= L2 /\ L3 by A7,XBOOLE_1:27; then A128: LSeg(p1,p01) /\ LSeg(p00,p2) = {} by Lm2,XBOOLE_1:3; LSeg(p1,p01) /\ (L1 \/ LSeg(p00,p2)) = (LSeg(p01,p1) /\ L1) \/ (LSeg(p1,p01) /\ LSeg(p00,p2)) by XBOOLE_1:23 .= {p01} by A10,A11,A128,TOPREAL1:21,ZFMISC_1:39; then LSeg(p1,p01) \/ (L1 \/ LSeg(p00,p2)) is_an_arc_of p1,p2 by A126,TOPREAL1:17; hence P2 is_an_arc_of p1,p2 by XBOOLE_1:4; A129: LSeg(p10,p2) \/ LSeg(p00,p2) = L3 by A121,TOPREAL1:11; A130: LSeg(p1,p11) \/ LSeg(p1,p01) = L2 by A3,TOPREAL1:11; thus R^2-unit_square = L2 \/ (L4 \/ (LSeg(p10,p2) \/ LSeg(p00,p2)) \/ L1) by A129,TOPREAL1:20,XBOOLE_1:4 .= L2 \/ (L4 \/ LSeg(p10,p2) \/ LSeg(p00,p2) \/ L1) by XBOOLE_1:4 .= L2 \/ (L4 \/ LSeg(p10,p2) \/ (L1 \/ LSeg(p00,p2))) by XBOOLE_1:4 .= LSeg(p1,p11) \/ ((L4 \/ LSeg(p10,p2) \/ (L1 \/ LSeg(p00,p2))) \/ LSeg(p1,p01)) by A130,XBOOLE_1:4 .= LSeg(p1,p11) \/ (L4 \/ LSeg(p10,p2) \/ (L1 \/ LSeg(p00,p2) \/ LSeg(p1,p01))) by XBOOLE_1:4 .= LSeg(p1,p11) \/ (L4 \/ LSeg(p10,p2)) \/ (L1 \/ LSeg(p00,p2) \/ LSeg(p1,p01)) by XBOOLE_1:4 .= LSeg(p1,p11) \/ L4 \/ LSeg(p10,p2) \/ (LSeg(p1,p01) \/ (L1 \/ LSeg(p00,p2))) by XBOOLE_1:4 .= P1 \/ P2 by XBOOLE_1:4; LSeg(p1,p11) /\ LSeg(p00,p2) c= L2 /\ LSeg(p00,p2) & L2 /\ LSeg(p00,p2) c= L2 /\ L3 by A8,A127,XBOOLE_1:26; then LSeg(p1,p11) /\ LSeg(p00,p2) c= L3 /\ L2 by XBOOLE_1:1; then A131: LSeg(p1,p11) /\ LSeg(p00,p2) = {} by Lm2,XBOOLE_1:3; A132: LSeg(p1,p11) /\ LSeg(p1,p01) = {p1} by A3,TOPREAL1:14; A133: LSeg(p10,p2) /\ LSeg(p00,p2) = {p2} by A121,TOPREAL1:14; LSeg(p10,p2) /\ LSeg(p1,p01) c= L3 /\ L2 by A7,A124,XBOOLE_1:27; then A134: LSeg(p10,p2) /\ LSeg(p1,p01) = {} by Lm2,XBOOLE_1:3; A135: P1 /\ P2 = (LSeg(p1,p11) \/ L4) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2)) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) by XBOOLE_1: 23 .= (LSeg(p1,p11) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) \/ (L4 /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) by XBOOLE_1: 23 .= (LSeg(p1,p11) /\ (LSeg(p1,p01) \/ L1)) \/ (LSeg(p1,p11) /\ LSeg(p00,p2)) \/ (L4 /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) by XBOOLE_1: 23 .= (LSeg(p1,p11) /\ LSeg(p1,p01)) \/ (LSeg(p1,p11) /\ L1) \/ (L4 /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) by A131,XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((L4 /\ (LSeg(p1,p01) \/ L1)) \/ (L4 /\ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) by A132,XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((L4 /\ LSeg(p1,p01)) \/ (L1 /\ L4) \/ (L4 /\ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L1 \/ LSeg(p00,p2))) by XBOOLE_1: 23 .= {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((L4 /\ LSeg(p1,p01)) \/ (L4 /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ (LSeg(p1,p01) \/ L1)) \/ {p2}) by A133,Lm3, XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((L4 /\ LSeg(p1,p01)) \/ (L4 /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p01)) \/ (LSeg(p10,p2) /\ L1) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((L4 /\ LSeg(p1,p01)) \/ (L4 /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by A134; A136: now per cases; suppose A137: p1 = p01; then L4 /\ LSeg(p1,p01) = L4 /\ {p01} by TOPREAL1:7 .= {} by Lm1,Lm8; hence P1 /\ P2 = {p1} \/ (L4 /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by A135,A137,TOPREAL1:21; suppose A138: p1 = p11; then LSeg(p1,p11) /\ L1 = {p11} /\ L1 by TOPREAL1:7 .= {} by Lm1,Lm11; hence P1 /\ P2 = {p1} \/ {p1} \/ (L4 /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by A135,A138,TOPREAL1:24,XBOOLE_1: 4 .= {p1} \/ (L4 /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}); suppose A139: p1 <> p11 & p1 <> p01; A140: LSeg(p1,p11) /\ L1 c= L2 /\ L1 by A8,XBOOLE_1:26; now assume p01 in LSeg(p1,p11) /\ L1; then p01 in LSeg(p1,p11) & p1`1 <= p11`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`1 = 0 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A139,EUCLID:57; end; then {p01} <> LSeg(p1,p11) /\ L1 by ZFMISC_1:37; then A141: LSeg(p1,p11) /\ L1 = {} by A140,TOPREAL1:21,ZFMISC_1:39; A142: L4 /\ LSeg(p1,p01) c= L4 /\ L2 by A7,XBOOLE_1:26; now assume p11 in L4 /\ LSeg(p1,p01); then p11 in LSeg(p01,p1) & p01`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then 1 <= p1`1 by Lm4,TOPREAL1:9; then p1`1 = 1 by A5,A6,AXIOMS:21; hence contradiction by A5,A6,A139,EUCLID:57; end; then {p11} <> L4 /\ LSeg(p1,p01) by ZFMISC_1:37; then L4 /\ LSeg(p1,p01) = {} by A142,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (L4 /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by A135,A141; end; now per cases; suppose A143: p2 = p00; then L4 /\ LSeg(p00,p2) = L4 /\ {p00} by TOPREAL1:7 .= {} by Lm1,Lm5; hence P1 /\ P2 = {p1,p2} by A136,A143,ENUMSET1:41,TOPREAL1:23; suppose A144: p2 = p10; then LSeg(p10,p2) /\ L1 = {p10} /\ L1 by TOPREAL1:7 .= {} by Lm1,Lm9; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A136,A144,TOPREAL1:22,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A145: p2 <> p10 & p2 <> p00; A146: L4 /\ LSeg(p00,p2) c= L4 /\ L3 by A127,XBOOLE_1:26; now assume p10 in L4 /\ LSeg(p00,p2); then p10 in LSeg(p00,p2) & p00`1 <= p2`1 by A122,EUCLID:56,XBOOLE_0:def 3; then 1 <= p2`1 by Lm4,TOPREAL1:9; then p2`1 = 1 by A122,AXIOMS:21; hence contradiction by A122,A145,EUCLID:57; end; then {p10} <> L4 /\ LSeg(p00,p2) by ZFMISC_1:37; then A147: L4 /\ LSeg(p00,p2) = {} by A146,TOPREAL1:22,ZFMISC_1:39; A148: LSeg(p10,p2) /\ L1 c= L3 /\ L1 by A124,XBOOLE_1:26; now assume p00 in LSeg(p10,p2) /\ L1; then p00 in LSeg(p2,p10) & p2`1 <= p10`1 by A122,EUCLID:56,XBOOLE_0:def 3; then p2`1 = 0 by A122,Lm4,TOPREAL1:9; hence contradiction by A122,A145,EUCLID:57; end; then {p00} <> LSeg(p10,p2) /\ L1 by ZFMISC_1:37; then LSeg(p10,p2) /\ L1 = {} by A148,TOPREAL1:23,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A136,A147,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A149: p2 in L4; then A150: ex q st q = p2 & q`1 = 1 & q`2 <= 1 & q`2 >= 0 by TOPREAL1:19; take P1 = LSeg(p1,p11) \/ LSeg(p11,p2),P2 = LSeg(p1,p01) \/ (L1 \/ L3 \/ LSeg(p10,p2)); p11 in LSeg(p1,p11) & p11 in LSeg(p11,p2) by TOPREAL1:6; then LSeg(p1,p11) c= L2 & LSeg(p11,p2) c= L4 & p11 in LSeg(p1,p11) /\ LSeg(p11,p2) by A3,A149,Lm19,Lm20,TOPREAL1:12, XBOOLE_0:def 3; then LSeg(p1,p11) /\ LSeg(p11,p2) c= L2 /\ L4 & L2 /\ L4 = {p11} & LSeg(p1,p11) /\ LSeg(p11,p2) <> {} by TOPREAL1:24,XBOOLE_1:27; then LSeg(p1,p11) /\ LSeg(p11,p2) = {p11} & (p1 <> p11 or p11 <> p2) by A1,ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by TOPREAL1:18; L1 is_an_arc_of p01,p00 & L3 is_an_arc_of p00,p10 by Lm4,TOPREAL1:15; then A151: L1 \/ L3 is_an_arc_of p01,p10 by TOPREAL1:5,23; A152: LSeg(p10,p2) c= L4 by A149,Lm18,TOPREAL1:12; then L1 /\ LSeg(p10,p2) c= L1 /\ L4 by XBOOLE_1:26; then A153: L1 /\ LSeg(p10,p2) = {} by Lm3,XBOOLE_1:3; p10 in LSeg(p10,p2) by TOPREAL1:6; then A154: L3 /\ LSeg(p10,p2) c= {p10} & L3 /\ LSeg(p10,p2) <> {} by A152,Lm17,TOPREAL1:22,XBOOLE_0:def 3,XBOOLE_1:27; (L1 \/ L3) /\ LSeg(p10,p2) = (L1 /\ LSeg(p10,p2)) \/ (L3 /\ LSeg(p10,p2)) by XBOOLE_1:23 .= {p10} by A153,A154,ZFMISC_1:39; then A155: L1 \/ L3 \/ LSeg(p10,p2) is_an_arc_of p01,p2 by A151,TOPREAL1:16; A156: LSeg(p1,p01) /\ LSeg(p10,p2) c= {p11} by A7,A152,TOPREAL1:24,XBOOLE_1:27; now assume p11 in LSeg(p1,p01) /\ LSeg(p10,p2); then p11 in LSeg(p01,p1) & p11 in LSeg(p10,p2) & p01`1 <= p1`1 & p10`2 <= p2`2 by A5,A6,A150,EUCLID:56,XBOOLE_0:def 3; then p11`1 <= p1`1 & p11`2 <= p2`2 by TOPREAL1:9,10; then A157: p11`2 = p1`2 & p11`2 = p2`2 & p11`1 = p1`1 & p11`1 = p2`1 by A5,A6,A150,Lm4,AXIOMS:21; then p1 = |[p11`1,p11`2]| by EUCLID:57 .= p2 by A157,EUCLID:57; hence contradiction by A1; end; then {p11} <> LSeg(p1,p01) /\ LSeg(p10,p2) by ZFMISC_1:37; then A158: LSeg(p1,p01) /\ LSeg(p10,p2) = {} by A156,ZFMISC_1:39; LSeg(p1,p01) /\ (L1 \/ L3 \/ LSeg(p10,p2)) = (LSeg(p1,p01) /\ (L1 \/ L3)) \/ (LSeg(p1,p01) /\ LSeg(p10,p2)) by XBOOLE_1:23 .= (LSeg(p1,p01) /\ L1) \/ (LSeg(p1,p01) /\ L3) by A158,XBOOLE_1:23 .= {p01} by A9,A10,A11,TOPREAL1:21,ZFMISC_1:39; hence P2 is_an_arc_of p1,p2 by A155,TOPREAL1:17; A159: L2 = LSeg(p1,p11) \/ LSeg(p1,p01) by A3,TOPREAL1:11; A160: L4 = LSeg(p10,p2) \/ LSeg(p11,p2) by A149,TOPREAL1:11; thus P1 \/ P2 = LSeg(p11,p2) \/ (LSeg(p1,p11) \/ (LSeg(p1,p01) \/ (L1 \/ L3 \/ LSeg(p10,p2)))) by XBOOLE_1:4 .= L2 \/ (L1 \/ L3 \/ LSeg(p10,p2)) \/ LSeg(p11,p2) by A159,XBOOLE_1:4 .= L2 \/ ((L1 \/ L3 \/ LSeg(p10,p2)) \/ LSeg(p11,p2)) by XBOOLE_1:4 .= L2 \/ (L1 \/ L3 \/ (LSeg(p10,p2) \/ LSeg(p11,p2))) by XBOOLE_1:4 .= L2 \/ (L1 \/ (L3 \/ L4)) by A160,XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; A161: LSeg(p2,p11) c= L4 by A149,Lm20,TOPREAL1:12; A162: {p1} = LSeg(p1,p11) /\ LSeg(p1,p01) by A3,TOPREAL1:14; A163: LSeg(p11,p2) /\ LSeg(p10,p2) = {p2} by A149,TOPREAL1:14; LSeg(p11,p2) /\ L1 c= L4 /\ L1 by A161,XBOOLE_1:27; then A164: LSeg(p11,p2) /\ L1 = {} by Lm3,XBOOLE_1:3; A165: P1 /\ P2 = (LSeg(p1,p11) /\ (LSeg(p1,p01) \/ (L1 \/ L3 \/ LSeg(p10,p2)))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p01) \/ (L1 \/ L3 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p11) /\ LSeg(p1,p01)) \/ (LSeg(p1,p11) /\ (L1 \/ L3 \/ LSeg(p10,p2))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p01) \/ (L1 \/ L3 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ (L1 \/ L3)) \/ (LSeg(p1,p11) /\ LSeg(p10,p2))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p01) \/ (L1 \/ L3 \/ LSeg(p10,p2)))) by A162,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L1) \/ (LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p10,p2))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p01) \/ (L1 \/ L3 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L1) \/ (LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p10,p2))) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ (LSeg(p11,p2) /\ (L1 \/ L3 \/ LSeg(p10,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L1) \/ (LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p10,p2))) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ ((LSeg(p11,p2) /\ (L1 \/ L3)) \/ {p2})) by A163,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L1) \/ (LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p10,p2))) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ ((LSeg(p11,p2) /\ L1) \/ (LSeg(p11,p2) /\ L3) \/ {p2})) by XBOOLE_1: 23 .= {p1} \/ ((LSeg(p1,p11) /\ L1) \/ (LSeg(p1,p11) /\ LSeg(p10,p2))) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ (LSeg(p11,p2) /\ L3 \/ {p2})) by A12,A164; A166: now per cases; suppose A167: p2 = p10; then A168: not p2 in LSeg(p1,p11) by A8,Lm4,TOPREAL1:10; LSeg(p1,p11) /\ LSeg(p10,p2) = LSeg(p1,p11) /\ {p2} by A167,TOPREAL1:7 .= {} by A168,Lm1; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ {p2}) by A165,A167,TOPREAL1:22; suppose A169: p2 = p11; then A170: LSeg(p11,p2) /\ L3 = {p11} /\ L3 by TOPREAL1:7 .= {} by Lm1,Lm12; A171: LSeg(p1,p11) /\ LSeg(p10,p2) c= {p2} by A8,A169,TOPREAL1:24, XBOOLE_1:27; p2 in LSeg(p1,p11) by A169,TOPREAL1:6; then LSeg(p1,p11) /\ LSeg(p10,p2) <> {} by A169,Lm20,XBOOLE_0:def 3; then LSeg(p1,p11) /\ LSeg(p10,p2) = {p2} by A171,ZFMISC_1:39; hence P1 /\ P2 = ({p1} \/ (LSeg(p1,p11) /\ L1)) \/ {p2} \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ {p2}) by A165,A170,XBOOLE_1:4 .= ({p1} \/ (LSeg(p1,p11) /\ L1)) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ {p2} \/ {p2}) by XBOOLE_1:4 .= ({p1} \/ (LSeg(p1,p11) /\ L1)) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ ({p2} \/ {p2})) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ {p2}); suppose A172: p2 <> p11 & p2 <> p10; A173: LSeg(p11,p2) /\ L3 c= L4 /\ L3 by A161,XBOOLE_1:27; now assume p10 in LSeg(p11,p2) /\ L3; then p10 in LSeg(p2,p11) & p2`2 <= p11`2 by A150,EUCLID:56,XBOOLE_0:def 3; then p2`1 = 1 & p2`2 = 0 by A150,Lm4,TOPREAL1:10; hence contradiction by A172,EUCLID:57; end; then {p10} <> LSeg(p11,p2) /\ L3 by ZFMISC_1:37; then A174: LSeg(p11,p2) /\ L3 = {} by A173,TOPREAL1:22,ZFMISC_1:39; A175: LSeg(p1,p11) /\ LSeg(p10,p2) c= {p11} by A8,A152,TOPREAL1:24, XBOOLE_1:27; now assume p11 in LSeg(p1,p11) /\ LSeg(p10,p2); then p11 in LSeg(p10,p2) & p10`2 <= p2`2 by A150,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p2`2 by TOPREAL1:10; then p2`1 = 1 & p2`2 = 1 by A150,Lm4,AXIOMS:21; hence contradiction by A172,EUCLID:57; end; then {p11} <> LSeg(p1,p11) /\ LSeg(p10,p2) by ZFMISC_1:37; then LSeg(p1,p11) /\ LSeg(p10,p2) = {} by A175,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p11) /\ L1) \/ ((LSeg(p11,p2) /\ LSeg(p1,p01)) \/ {p2}) by A165,A174; end; now per cases; suppose A176: p1 = p01; then A177: LSeg(p11,p2) /\ LSeg(p1,p01) = LSeg(p11,p2) /\ {p1} by TOPREAL1:7; p1 in LSeg(p11,p2) implies contradiction by A161,A176,Lm4,TOPREAL1:9; then LSeg(p11,p2) /\ LSeg(p1,p01) = {} by A177,Lm1; hence P1 /\ P2 = {p1,p2} by A166,A176,ENUMSET1:41,TOPREAL1:21; suppose A178: p1 = p11; then LSeg(p1,p11) /\ L1 = {p1} /\ L1 by TOPREAL1:7; then A179: LSeg(p1,p11) /\ L1 = {} by A178,Lm1,Lm11; A180: LSeg(p11,p2) /\ LSeg(p1,p01) c= L4 /\ L2 by A7,A161,XBOOLE_1: 27; p11 in LSeg(p11,p2) by TOPREAL1:6; then LSeg(p11,p2) /\ LSeg(p1,p01) <> {} by A178,Lm19,XBOOLE_0:def 3 ; then LSeg(p11,p2) /\ LSeg(p1,p01) = {p1} by A178,A180,TOPREAL1:24, ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ {p1} \/ {p2} by A166,A179,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A181: p1 <> p11 & p1 <> p01; A182: LSeg(p1,p11) /\ L1 c= L2 /\ L1 by A8,XBOOLE_1:27; now assume p01 in LSeg(p1,p11) /\ L1; then p01 in LSeg(p1,p11) & p1`1 <= p11`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`1 = 0 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A181,EUCLID:57; end; then {p01} <> LSeg(p1,p11) /\ L1 by ZFMISC_1:37; then A183: LSeg(p1,p11) /\ L1 = {} by A182,TOPREAL1:21,ZFMISC_1:39; A184: LSeg(p11,p2) /\ LSeg(p1,p01) c= L4 /\ L2 by A7,A161,XBOOLE_1:27; now assume p11 in LSeg(p11,p2) /\ LSeg(p1,p01); then p11 in LSeg(p01,p1) & p01`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p11`1 <= p1`1 by TOPREAL1:9; then p1`1 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A181,EUCLID:57; end; then {p11} <> LSeg(p11,p2) /\ LSeg(p1,p01) by ZFMISC_1:37; then LSeg(p11,p2) /\ LSeg(p1,p01) = {} by A184,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A166,A183,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; end; Lm25: p1 <> p2 & p2 in R^2-unit_square & p1 in LSeg(p00, p10) implies ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof assume that A1: p1 <> p2 and A2: p2 in R^2-unit_square and A3: p1 in LSeg(p00, p10); A4: p2 in L1 \/ L2 or p2 in L3 \/ L4 by A2,TOPREAL1:20,XBOOLE_0:def 2; consider p such that A5: p = p1 and A6: p`1 <= 1 & p`1 >= 0 & p`2 = 0 by A3,TOPREAL1:19; A7: LSeg(p00,p1) c= L3 by A3,Lm14,TOPREAL1:12; A8: LSeg(p10,p1) c= L3 by A3,Lm17,TOPREAL1:12; then LSeg(p10,p1) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A9: LSeg(p10,p1) /\ L2 = {} by XBOOLE_1:3; p10 in LSeg(p10,p1) by TOPREAL1:6; then A10: LSeg(p10,p1) /\ L4 c= L3 /\ L4 & LSeg(p10,p1) /\ L4 <> {} by A8,Lm18,XBOOLE_0:def 3,XBOOLE_1:26; p00 in LSeg(p1,p00) by TOPREAL1:6; then A11: LSeg(p1,p00) /\ L1 c= L3 /\ L1 & p00 in LSeg(p1,p00) /\ L1 by A7,Lm13,XBOOLE_0:def 3,XBOOLE_1:26; A12: LSeg(p1,p00) /\ LSeg(p1,p10) = {p1} by A3,TOPREAL1:14; LSeg(p1,p00) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by A7,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A13: LSeg(p1,p00) /\ L2 = {} by XBOOLE_1:3; per cases by A4,XBOOLE_0:def 2; suppose A14: p2 in L1; then A15: ex q st q = p2 & q`1 = 0 & q`2 <= 1 & q`2 >= 0 by TOPREAL1:19; A16: LSeg(p00,p2) c= L1 by A14,Lm13,TOPREAL1:12; A17: LSeg(p2,p01) c= L1 by A14,Lm15,TOPREAL1:12; take P1 = LSeg(p1,p00) \/ LSeg(p00,p2),P2 = LSeg(p1,p10) \/ (L4 \/ L2 \/ LSeg(p01,p2)); p00 in LSeg(p1,p00) & p00 in LSeg(p00,p2) by TOPREAL1:6; then LSeg(p1,p00) /\ LSeg(p00,p2) c= L3 /\ L1 & p00 in LSeg(p1,p00) /\ LSeg(p00,p2) & L1 /\ L3 = {p00} by A7,A16,TOPREAL1:23,XBOOLE_0:def 3,XBOOLE_1:27; then LSeg(p1,p00) /\ LSeg(p00,p2) = {p00} & (p1 <> p00 or p00 <> p2) by A1,ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by TOPREAL1:18; L4 is_an_arc_of p10,p11 & L2 is_an_arc_of p11,p01 by Lm4,TOPREAL1:15; then A18: L4 \/ L2 is_an_arc_of p10,p01 by TOPREAL1:5,24; L4 /\ LSeg(p01,p2) c= L4 /\ L1 by A17,XBOOLE_1:26; then A19: L4 /\ LSeg(p01,p2) = {} by Lm3,XBOOLE_1:3; p01 in LSeg(p01,p2) by TOPREAL1:6; then A20: L2 /\ LSeg(p01,p2) c= L2 /\ L1 & p01 in L2 /\ LSeg(p01,p2) by A17,Lm16,XBOOLE_0:def 3,XBOOLE_1:27; (L4 \/ L2) /\ LSeg(p01,p2) = (L4 /\ LSeg(p01,p2)) \/ (L2 /\ LSeg(p01,p2)) by XBOOLE_1:23 .= {p01} by A19,A20,TOPREAL1:21,ZFMISC_1:39; then A21: L4 \/ L2 \/ LSeg(p01,p2) is_an_arc_of p10,p2 by A18,TOPREAL1:16; A22: LSeg(p1,p10) /\ LSeg(p01,p2) c= L3 /\ L1 by A8,A17,XBOOLE_1:27; now assume p00 in LSeg(p1,p10) /\ LSeg(p01,p2); then p00 in LSeg(p1,p10) & p00 in LSeg(p2,p01) & p1`1 <= p10`1 & p2`2 <= p01`2 by A5,A6,A15,EUCLID:56,XBOOLE_0:def 3; then A23: 0 = p1`2 & 0 = p2`2 & 0 = p1`1 & 0 = p2`1 by A5,A6,A15,Lm4, TOPREAL1:9,10; then p1 = p00 by EUCLID:57 .= p2 by A23,EUCLID:57; hence contradiction by A1; end; then {p00} <> LSeg(p1,p10) /\ LSeg(p01,p2) by ZFMISC_1:37; then A24: LSeg(p1,p10) /\ LSeg(p01,p2) = {} by A22,TOPREAL1:23,ZFMISC_1:39; LSeg(p1,p10) /\ (L4 \/ L2 \/ LSeg(p01,p2)) = (LSeg(p1,p10) /\ (L4 \/ L2)) \/ (LSeg(p1,p10) /\ LSeg(p01,p2)) by XBOOLE_1:23 .= (LSeg(p1,p10) /\ L4) \/ (LSeg(p10,p1) /\ L2) by A24,XBOOLE_1:23 .= {p10} by A9,A10,TOPREAL1:22,ZFMISC_1:39; hence P2 is_an_arc_of p1,p2 by A21,TOPREAL1:17; A25: LSeg(p1,p00) \/ LSeg(p1,p10) = L3 by A3,TOPREAL1:11; A26: LSeg(p01,p2) \/ LSeg(p00,p2) = L1 by A14,TOPREAL1:11; thus P1 \/ P2 = LSeg(p00,p2) \/ (LSeg(p1,p00) \/ (LSeg(p1,p10) \/ (L4 \/ L2 \/ LSeg(p01,p2)))) by XBOOLE_1:4 .= LSeg(p00,p2) \/ (L3 \/ (L4 \/ L2 \/ LSeg(p01,p2))) by A25,XBOOLE_1:4 .= LSeg(p00,p2) \/ (L3 \/ (L4 \/ L2) \/ LSeg(p01,p2)) by XBOOLE_1:4 .= LSeg(p00,p2) \/ (L3 \/ L4 \/ L2 \/ LSeg(p01,p2)) by XBOOLE_1:4 .= LSeg(p00,p2) \/ (L3 \/ L4 \/ (L2 \/ LSeg(p01,p2))) by XBOOLE_1:4 .= (L2 \/ LSeg(p01,p2) \/ LSeg(p00,p2)) \/ (L3 \/ L4) by XBOOLE_1:4 .= R^2-unit_square by A26,TOPREAL1:20,XBOOLE_1:4; A27: {p1} = LSeg(p1,p00) /\ LSeg(p1,p10) by A3,TOPREAL1:14; LSeg(p1,p00) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by A7,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A28: LSeg(p1,p00) /\ L2 = {} by XBOOLE_1:3; A29: {p2} = LSeg(p00,p2) /\ LSeg(p01,p2) by A14,TOPREAL1:14; LSeg(p00,p2) /\ L4 c= L1 /\ L4 & L1 /\ L4 = {} by A16,TOPREAL1:26, XBOOLE_0:def 7,XBOOLE_1:26 ; then A30: LSeg(p00,p2) /\ L4 = {} by XBOOLE_1:3; A31: P1 /\ P2 = (LSeg(p1,p00) /\ (LSeg(p1,p10) \/ (L4 \/ L2 \/ LSeg(p01,p2)))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p10) \/ (L4 \/ L2 \/ LSeg(p01,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p00) /\ LSeg(p1,p10)) \/ (LSeg(p1,p00) /\ (L4 \/ L2 \/ LSeg(p01,p2))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p10) \/ (L4 \/ L2 \/ LSeg(p01,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ (L4 \/ L2)) \/ (LSeg(p1,p00) /\ LSeg(p01,p2))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p10) \/ (L4 \/ L2 \/ LSeg(p01,p2)))) by A27,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ L2) \/ (LSeg(p1,p00) /\ LSeg(p01,p2))) \/ (LSeg(p00,p2) /\ (LSeg(p1,p10) \/ (L4 \/ L2 \/ LSeg(p01,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p01,p2))) \/ ((LSeg(p00,p2) /\ LSeg(p1,p10)) \/ (LSeg(p00,p2) /\ (L4 \/ L2 \/ LSeg(p01,p2)))) by A28,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p01,p2))) \/ ((LSeg(p00,p2) /\ (LSeg(p1,p10)) \/ ((LSeg(p00,p2) /\ (L4 \/ L2)) \/ {p2}))) by A29,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p01,p2))) \/ ((LSeg(p00,p2) /\ (LSeg(p1,p10)) \/ (((LSeg(p00,p2) /\ L4) \/ (LSeg(p00,p2) /\ L2)) \/ {p2}))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p00) /\ L4) \/ (LSeg(p1,p00) /\ LSeg(p01,p2))) \/ ((LSeg(p00,p2) /\ LSeg(p1,p10)) \/ ((LSeg(p00,p2) /\ L2) \/ {p2})) by A30; A32: now per cases; suppose A33: p1 = p00; then LSeg(p1,p00) /\ L4 = {p00} /\ L4 by TOPREAL1:7; then A34: LSeg(p1,p00) /\ L4 = {} by Lm1,Lm5; p1 in LSeg(p00,p2) & p1 in LSeg(p1,p10) by A33,TOPREAL1:6; then LSeg(p00,p2) /\ LSeg(p1,p10) c= {p1} & LSeg(p00,p2) /\ LSeg(p1,p10) <> {} by A16,A33,TOPREAL1:23,XBOOLE_0:def 3,XBOOLE_1:26; then LSeg(p00,p2) /\ LSeg(p1,p10) = {p1} by ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ({p1} \/ LSeg(p1,p00) /\ LSeg(p01,p2)) \/ ((LSeg(p00,p2) /\ L2) \/ {p2}) by A31,A34,XBOOLE_1:4 .= {p1} \/ {p1} \/ LSeg(p1,p00) /\ LSeg(p01,p2) \/ ((LSeg(p00,p2) /\ L2) \/ {p2}) by XBOOLE_1:4 .= {p1} \/ LSeg(p1,p00) /\ LSeg(p01,p2) \/ ((LSeg(p00,p2) /\ L2) \/ {p2}); suppose A35: p1 = p10; then A36: LSeg(p00,p2) /\ LSeg(p1,p10) = LSeg(p00,p2) /\ {p10} by TOPREAL1:7; not p10 in LSeg(p00,p2) by A16,Lm4,TOPREAL1:9; then LSeg(p00,p2) /\ LSeg(p1,p10) = {} by A36,Lm1; hence P1 /\ P2 = {p1} \/ {p1} \/ (LSeg(p1,p00) /\ LSeg(p01,p2)) \/ ((LSeg(p00,p2) /\ L2) \/ {p2}) by A31,A35,TOPREAL1:22,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p00) /\ LSeg(p01,p2)) \/ ((LSeg(p00,p2) /\ L2) \/ {p2}); suppose A37: p1 <> p10 & p1 <> p00; A38: LSeg(p1,p00) /\ L4 c= {p10} by A7,TOPREAL1:22,XBOOLE_1:26; now assume p10 in LSeg(p1,p00) /\ L4; then p10 in LSeg(p00,p1) & p00`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p1`1 by TOPREAL1:9; then p1`1 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A37,EUCLID:57; end; then {p10} <> LSeg(p1,p00) /\ L4 by ZFMISC_1:37; then A39: LSeg(p1,p00) /\ L4 = {} by A38,ZFMISC_1:39; A40: LSeg(p00,p2) /\ LSeg(p1,p10) c= {p00} by A8,A16,TOPREAL1:23,XBOOLE_1: 27; now assume p00 in LSeg(p00,p2) /\ LSeg(p1,p10); then p00 in LSeg(p1,p10) & p1`1 <= p10`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then 0 = p1`1 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A37,EUCLID:57; end; then {p00} <> LSeg(p00,p2) /\ LSeg(p1,p10) by ZFMISC_1:37; then LSeg(p00,p2) /\ LSeg(p1,p10) = {} by A40,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p00) /\ LSeg(p01,p2)) \/ ((LSeg(p00,p2) /\ L2) \/ {p2}) by A31,A39; end; now per cases; suppose A41: p2 = p00; A42: LSeg(p1,p00) /\ LSeg(p01,p2) c= L3 /\ L1 by A7,A17,XBOOLE_1:27; p00 in LSeg(p1,p00) by TOPREAL1:6; then LSeg(p1,p00) /\ LSeg(p01,p2) <> {} by A41,Lm13,XBOOLE_0:def 3 ; then A43: LSeg(p1,p00) /\ LSeg(p01,p2) = {p2} by A41,A42,TOPREAL1:23,ZFMISC_1:39; LSeg(p00,p2) /\ L2 = {p00} /\ L2 by A41,TOPREAL1:7; then LSeg(p00,p2) /\ L2 = {} by Lm1,Lm6; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A32,A43,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; hence P1 /\ P2 = {p1,p2}; suppose A44: p2 = p01; then A45: LSeg(p1,p00) /\ LSeg(p01,p2) = LSeg(p1,p00) /\ {p01} by TOPREAL1 :7; not p01 in LSeg(p1,p00) by A7,Lm4,TOPREAL1:10; then A46: LSeg(p1,p00) /\ LSeg(p01,p2) = {} by A45,Lm1; hence P1 /\ P2 = {p1,p2} by A32,A44,ENUMSET1:41,TOPREAL1:21; thus P1 /\ P2 = {p1,p2} by A32,A44,A46,ENUMSET1:41,TOPREAL1:21; suppose A47: p2 <> p01 & p2 <> p00; A48: LSeg(p1,p00) /\ LSeg(p01,p2) c= L3 /\ L1 by A7,A17,XBOOLE_1:27; now assume p00 in LSeg(p1,p00) /\ LSeg(p01,p2); then p00 in LSeg(p2,p01) & p2`2 <= p01`2 by A15,EUCLID:56,XBOOLE_0:def 3; then p2`2 = 0 by A15,Lm4,TOPREAL1:10; hence contradiction by A15,A47,EUCLID:57; end; then {p00} <> LSeg(p1,p00) /\ LSeg(p01,p2) by ZFMISC_1:37; then A49: LSeg(p1,p00) /\ LSeg(p01,p2) = {} by A48,TOPREAL1:23,ZFMISC_1:39; A50: LSeg(p00,p2) /\ L2 c= {p01} by A16,TOPREAL1:21,XBOOLE_1:26; now assume p01 in LSeg(p00,p2) /\ L2; then p01 in LSeg(p00,p2) & p00`2 <= p2`2 by A15,EUCLID:56,XBOOLE_0:def 3; then p01`2 <= p2`2 by TOPREAL1:10; then 1 = p2`2 by A15,Lm4,AXIOMS:21; hence contradiction by A15,A47,EUCLID:57; end; then {p01} <> LSeg(p00,p2) /\ L2 by ZFMISC_1:37; then A51: LSeg(p00,p2) /\ L2 = {} by A50,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A32,A49,ENUMSET1:41; thus P1 /\ P2 = {p1,p2} by A32,A49,A51,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A52: p2 in L2; then A53: ex q st q = p2 & q`1 <= 1 & q`1 >= 0 & q`2 = 1 by TOPREAL1:19; take P1 = LSeg(p1,p00) \/ L1 \/ LSeg(p01,p2),P2 = LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2); A54: LSeg(p2,p01) c= L2 by A52,Lm16,TOPREAL1:12; A55: LSeg(p2,p11) c= L2 by A52,Lm19,TOPREAL1:12; p01 in LSeg(p01,p2) by TOPREAL1:6; then L1 /\ LSeg(p01,p2) c= {p01} & L1 /\ LSeg(p01,p2) <> {} by A54,Lm15,TOPREAL1:21,XBOOLE_0:def 3,XBOOLE_1:26; then L1 /\ LSeg(p01,p2) = {p01} by ZFMISC_1:39; then A56: L1 \/ LSeg(p01,p2) is_an_arc_of p00,p2 by Lm4,TOPREAL1:18; LSeg(p1,p00) /\ LSeg(p01,p2) c= L3 /\ L2 by A7,A54,XBOOLE_1:27; then A57: LSeg(p1,p00) /\ LSeg(p01,p2) = {} by Lm2,XBOOLE_1:3; LSeg(p1,p00) /\ (L1 \/ LSeg(p01,p2)) = (LSeg(p1,p00) /\ L1) \/ (LSeg(p1,p00) /\ LSeg(p01,p2)) by XBOOLE_1:23 .= {p00} by A11,A57,TOPREAL1:23,ZFMISC_1:39; then LSeg(p1,p00) \/ (L1 \/ LSeg(p01,p2)) is_an_arc_of p1,p2 by A56,TOPREAL1:17; hence P1 is_an_arc_of p1,p2 by XBOOLE_1:4; L4 /\ LSeg(p11,p2) c= L4 /\ L2 & p11 in LSeg(p11,p2) by A55,TOPREAL1:6,XBOOLE_1:26; then L4 /\ LSeg(p11,p2) c= {p11} & L4 /\ LSeg(p11,p2) <> {} by Lm20,TOPREAL1:24,XBOOLE_0:def 3; then L4 /\ LSeg(p11,p2) = {p11} by ZFMISC_1:39; then A58: L4 \/ LSeg(p11,p2) is_an_arc_of p10,p2 by Lm4,TOPREAL1:18; LSeg(p1,p10) /\ LSeg(p11,p2) c= L3 /\ L2 by A8,A55,XBOOLE_1:27; then A59: LSeg(p1,p10) /\ LSeg(p11,p2) = {} by Lm2,XBOOLE_1:3; LSeg(p1,p10) /\ (L4 \/ LSeg(p11,p2)) = (LSeg(p1,p10) /\ L4) \/ (LSeg(p1,p10) /\ LSeg(p11,p2)) by XBOOLE_1:23 .= {p10} by A10,A59,TOPREAL1:22,ZFMISC_1:39; then LSeg(p1,p10) \/ (L4 \/ LSeg(p11,p2)) is_an_arc_of p1,p2 by A58,TOPREAL1:17; hence P2 is_an_arc_of p1,p2 by XBOOLE_1:4; thus R^2-unit_square = L1 \/ (LSeg(p01,p2) \/ LSeg(p11,p2)) \/ (L3 \/ L4) by A52,TOPREAL1:11,20 .= L1 \/ LSeg(p01,p2) \/ LSeg(p11,p2) \/ (L3 \/ L4) by XBOOLE_1:4 .= L1 \/ LSeg(p01,p2) \/ ((L3 \/ L4) \/ LSeg(p11,p2)) by XBOOLE_1:4 .= L1 \/ LSeg(p01,p2) \/ (L3 \/ (L4 \/ LSeg(p11,p2))) by XBOOLE_1:4 .= L1 \/ LSeg(p01,p2) \/ (LSeg(p1,p00) \/ LSeg(p1,p10) \/ (L4 \/ LSeg(p11,p2))) by A3,TOPREAL1:11 .= L1 \/ LSeg(p01,p2) \/ (LSeg(p1,p00) \/ (LSeg(p1,p10) \/ (L4 \/ LSeg(p11,p2)))) by XBOOLE_1:4 .= L1 \/ LSeg(p01,p2) \/ (LSeg(p1,p00) \/ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2))) by XBOOLE_1:4 .= (LSeg(p1,p00) \/ (L1 \/ LSeg(p01,p2))) \/ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2)) by XBOOLE_1:4 .= P1 \/ P2 by XBOOLE_1:4; A60: LSeg(p01,p2) /\ LSeg(p11,p2) = {p2} by A52,TOPREAL1:14; LSeg(p01,p2) /\ LSeg(p1,p10) c= L2 /\ L3 by A8,A54,XBOOLE_1:27; then A61: LSeg(p01,p2) /\ LSeg(p1,p10) = {} by Lm2,XBOOLE_1:3; LSeg(p1,p00) /\ LSeg(p11,p2) c= L3 /\ L2 & L3 /\ L2 = {} by A7,A55,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:27; then A62: LSeg(p1,p00) /\ LSeg(p11,p2) = {} by XBOOLE_1:3; A63: P1 /\ P2 = (LSeg(p1,p00) \/ L1) /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2)) \/ (LSeg(p01,p2) /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2))) by XBOOLE_1: 23 .= (LSeg(p1,p00) \/ L1) /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2)) \/ (LSeg(p01,p2) /\ (LSeg(p1,p10) \/ L4) \/ {p2}) by A60,XBOOLE_1:23 .= (LSeg(p1,p00) \/ L1) /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2)) \/ ((LSeg(p01,p2) /\ LSeg(p1,p10)) \/ (LSeg(p01,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= (LSeg(p1,p00) /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2))) \/ (L1 /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by A61,XBOOLE_1:23 .= ((LSeg(p1,p00) /\ (LSeg(p1,p10) \/ L4)) \/ (LSeg(p1,p00) /\ LSeg(p11,p2))) \/ (L1 /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= ({p1} \/ (LSeg(p1,p00) /\ L4)) \/ (L1 /\ (LSeg(p1,p10) \/ L4 \/ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by A12,A62,XBOOLE_1:23 .= ({p1} \/ (LSeg(p1,p00) /\ L4)) \/ ((L1 /\ (LSeg(p1,p10) \/ L4)) \/ (L1 /\ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= ({p1} \/ (LSeg(p1,p00) /\ L4)) \/ ((L1 /\ LSeg(p1,p10)) \/ (L1 /\ L4) \/ (L1 /\ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= ({p1} \/ (LSeg(p1,p00) /\ L4)) \/ ((L1 /\ LSeg(p1,p10)) \/ (L1 /\ LSeg(p11,p2))) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by Lm3; A64: now per cases; suppose A65: p1 = p00; then LSeg(p1,p00) /\ L4 = {p00} /\ L4 by TOPREAL1:7; then LSeg(p1,p00) /\ L4 = {} by Lm1,Lm5; hence P1 /\ P2 = {p1} \/ {p1} \/ (L1 /\ LSeg(p11,p2)) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by A63,A65,TOPREAL1:23,XBOOLE_1:4 .= {p1} \/ (L1 /\ LSeg(p11,p2)) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}); suppose A66: p1 = p10; then L1 /\ LSeg(p1,p10) = L1 /\ {p10} by TOPREAL1:7; then L1 /\ LSeg(p1,p10) = {} by Lm1,Lm9; hence P1 /\ P2 = {p1} \/ (L1 /\ LSeg(p11,p2)) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by A63,A66,TOPREAL1:22; suppose A67: p1 <> p10 & p1 <> p00; A68: LSeg(p1,p00) /\ L4 c= {p10} by A7,TOPREAL1:22,XBOOLE_1:26; now assume p10 in LSeg(p1,p00) /\ L4; then p10 in LSeg(p00,p1) & p00`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p1`1 by TOPREAL1:9; then 1 = p1`1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A67,EUCLID:57; end; then {p10} <> LSeg(p1,p00) /\ L4 by ZFMISC_1:37; then A69: LSeg(p1,p00) /\ L4 = {} by A68,ZFMISC_1:39; A70: L1 /\ LSeg(p1,p10) c= {p00} by A8,TOPREAL1:23,XBOOLE_1:26; now assume p00 in L1 /\ LSeg(p1,p10); then p00 in LSeg(p1,p10) & p1`1 <= p10`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then 0 = p1`1 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A67,EUCLID:57; end; then {p00} <> L1 /\ LSeg(p1,p10) by ZFMISC_1:37; then L1 /\ LSeg(p1,p10) = {} by A70,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (L1 /\ LSeg(p11,p2)) \/ ((LSeg(p01,p2) /\ L4) \/ {p2}) by A63,A69; end; now per cases; suppose A71: p2 = p01; then LSeg(p01,p2) /\ L4 = {p01} /\ L4 by TOPREAL1:7; then LSeg(p01,p2) /\ L4 = {} by Lm1,Lm8; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A64,A71,TOPREAL1:21,XBOOLE_1 :4 .= {p1,p2} by ENUMSET1:41; suppose A72: p2 = p11; then L1 /\ LSeg(p11,p2) = L1 /\ {p11} by TOPREAL1:7; then L1 /\ LSeg(p11,p2) = {} by Lm1,Lm11; hence P1 /\ P2 = {p1,p2} by A64,A72,ENUMSET1:41,TOPREAL1:24; suppose A73: p2 <> p11 & p2 <> p01; A74: L1 /\ LSeg(p11,p2) c= {p01} by A55,TOPREAL1:21,XBOOLE_1:26; now assume p01 in L1 /\ LSeg(p11,p2); then p01 in LSeg(p2,p11) & p2`1 <= p11`1 by A53,EUCLID:56,XBOOLE_0:def 3; then p2`1 = 0 by A53,Lm4,TOPREAL1:9; hence contradiction by A53,A73,EUCLID:57; end; then {p01} <> L1 /\ LSeg(p11,p2) by ZFMISC_1:37; then A75: L1 /\ LSeg(p11,p2) = {} by A74,ZFMISC_1:39; A76: LSeg(p01,p2) /\ L4 c= {p11} by A54,TOPREAL1:24,XBOOLE_1:26; now assume p11 in LSeg(p01,p2) /\ L4; then p11 in LSeg(p01,p2) & p01`1 <= p2`1 by A53,EUCLID:56,XBOOLE_0:def 3; then p11`1 <= p2`1 by TOPREAL1:9; then 1 = p2`1 by A53,Lm4,AXIOMS:21; hence contradiction by A53,A73,EUCLID:57; end; then {p11} <> LSeg(p01,p2) /\ L4 by ZFMISC_1:37; then LSeg(p01,p2) /\ L4 = {} by A76,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A64,A75,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A77: p2 in L3; then consider q such that A78: q = p2 and A79: q`1 <= 1 & q`1 >= 0 & q`2 = 0 by TOPREAL1:19; A80: p = |[p`1,p`2]| & q = |[q`1,q`2]| by EUCLID:57; A81: LSeg(p2,p10) c= L3 by A77,Lm17,TOPREAL1:12; A82: LSeg(p2,p00) c= L3 by A77,Lm14,TOPREAL1:12; A83: LSeg(p1,p2) c= L3 by A3,A77,TOPREAL1:12; now per cases by A1,A5,A6,A78,A79,A80,REAL_1:def 5; suppose A84: p`1 < q`1; take P1 = LSeg(p1,p2),P2 = LSeg(p1,p00) \/ (L1 \/ L2 \/ L4 \/ LSeg(p10,p2)); thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A85: now assume A86: LSeg(p1,p00) /\ LSeg(p10,p2) <> {}; consider a being Element of LSeg(p1,p00) /\ LSeg(p10,p2); reconsider p = a as Point of TOP-REAL 2 by A86,TARSKI:def 3; p in LSeg(p00,p1) & p in LSeg(p2,p10) & p00`1 <= p1`1 & p2`1 <= p10 `1 by A5,A6,A78,A79,A86,EUCLID:56,XBOOLE_0:def 3; then p`1 <= p1`1 & p2`1 <= p`1 by TOPREAL1:9; hence contradiction by A5,A78,A84,AXIOMS:22; end; A87: LSeg(p1,p00) /\ L4 c= {p10} by A7,TOPREAL1:22,XBOOLE_1:26; now assume p10 in LSeg(p1,p00) /\ L4; then p10 in LSeg(p00,p1) & p00`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p1`1 by TOPREAL1:9; hence contradiction by A5,A6,A79,A84,Lm4,AXIOMS:21; end; then {p10} <> LSeg(p1,p00) /\ L4 by ZFMISC_1:37; then A88: LSeg(p1,p00) /\ L4 = {} by A87,ZFMISC_1:39; LSeg(p1,p00) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by A7,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A89: LSeg(p1,p00) /\ L2 = {} by XBOOLE_1:3; A90: LSeg(p1,p00) /\ L1 c= L3 /\ L1 by A7,XBOOLE_1:26; p00 in LSeg(p1,p00) by TOPREAL1:6; then A91: LSeg(p1,p00) /\ L1 <> {} by Lm13,XBOOLE_0:def 3; A92: LSeg(p1,p00) /\ (L1 \/ L2 \/ L4 \/ LSeg(p10,p2)) = LSeg(p1,p00) /\ (L1 \/ L2 \/ L4) \/ (LSeg(p1,p00) /\ LSeg(p10,p2)) by XBOOLE_1:23 .= LSeg(p1,p00) /\ (L1 \/ L2) \/ (LSeg(p1,p00) /\ L4) by A85,XBOOLE_1: 23 .= LSeg(p1,p00) /\ L1 \/ (LSeg(p1,p00) /\ L2) by A88,XBOOLE_1:23 .= {p00} by A89,A90,A91,TOPREAL1:23,ZFMISC_1:39; L1 is_an_arc_of p00,p01 by Lm4,TOPREAL1:15; then A93: L1 \/ L2 is_an_arc_of p00,p11 by TOPREAL1:16,21; (L1 \/ L2) /\ L4 = L1 /\ L4 \/ L2 /\ L4 by XBOOLE_1:23 .= {p11} by Lm3,TOPREAL1:24; then A94: L1 \/ L2 \/ L4 is_an_arc_of p00,p10 by A93,TOPREAL1:16; A95: L4 /\ LSeg(p10,p2) c= L4 /\ L3 by A81,XBOOLE_1:26; p10 in LSeg(p10,p2) by TOPREAL1:6; then L4 /\ LSeg(p10,p2) <> {} by Lm18,XBOOLE_0:def 3; then A96: L4 /\ LSeg(p10,p2) = {p10} by A95,TOPREAL1:22,ZFMISC_1:39; A97: L1 /\ LSeg(p10,p2) c= {p00} by A81,TOPREAL1:23,XBOOLE_1:26; now assume p00 in L1 /\ LSeg(p10,p2); then p00 in LSeg(p2,p10) & p2`1 <= p10`1 by A78,A79,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A6,A78,A84,Lm4,TOPREAL1:9; end; then {p00} <> L1 /\ LSeg(p10,p2) by ZFMISC_1:37; then A98: L1 /\ LSeg(p10,p2) = {} by A97,ZFMISC_1:39; L2 /\ LSeg(p10,p2) c= L2 /\ L3 & L3 /\ L2 = {} by A81,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A99: L2 /\ LSeg(p10,p2) = {} by XBOOLE_1:3; (L1 \/ L2 \/ L4) /\ LSeg(p10,p2) = (L1 \/ L2) /\ LSeg(p10,p2) \/ L4 /\ LSeg(p10,p2) by XBOOLE_1:23 .= (L1 /\ LSeg(p10,p2)) \/ (L2 /\ LSeg(p10,p2)) \/ {p10} by A96,XBOOLE_1:23 .= {p10} by A98,A99; then L1 \/ L2 \/ L4 \/ LSeg(p10,p2) is_an_arc_of p00,p2 by A94,TOPREAL1:16; hence P2 is_an_arc_of p1,p2 by A92,TOPREAL1:17; thus P1 \/ P2 = LSeg(p00,p1) \/ LSeg(p1,p2) \/ (L1 \/ L2 \/ L4 \/ LSeg(p10,p2)) by XBOOLE_1:4 .= LSeg(p00,p1) \/ LSeg(p1,p2) \/ LSeg(p2,p10) \/ (L1 \/ L2 \/ L4) by XBOOLE_1:4 .= (L1 \/ L2 \/ L4) \/ L3 by A3,A77,TOPREAL1:13 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; p1 in LSeg(p1,p2) & p1 in LSeg(p1,p00) by TOPREAL1:6; then p1 in LSeg(p1,p2) /\ LSeg(p1,p00) by XBOOLE_0:def 3; then A100: {p1} c= LSeg(p1,p2) /\ LSeg(p1,p00) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p1,p00) c= {p1} proof let a; assume A101: a in LSeg(p1,p2) /\ LSeg(p1,p00); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p00,p1) & p1`2 <= p2`2 & p1`1 <= p2`1 & p00`1 <= p1`1 by A5,A6,A78,A79,A84,A101,EUCLID:56,XBOOLE_0:def 3; then p1`2 <= p`2 & p`2 <= p2`2 & p1`1 <= p`1 & p`1 <= p1`1 by TOPREAL1:9,10; then p1`1 = p`1 & p`2 = 0 by A5,A6,A78,A79,AXIOMS:21; then p = |[p1`1, 0]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then A102: LSeg(p1,p2) /\ LSeg(p1,p00) = {p1} by A100,XBOOLE_0:def 10; p2 in LSeg(p1,p2) & p2 in LSeg(p10,p2) by TOPREAL1:6; then p2 in LSeg(p1,p2) /\ LSeg(p10,p2) by XBOOLE_0:def 3; then A103: {p2} c= LSeg(p1,p2) /\ LSeg(p10,p2) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p10,p2) c= {p2} proof let a; assume A104: a in LSeg(p1,p2) /\ LSeg(p10,p2); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p2,p10) & p1`2 <= p2`2 & p1`1 <= p2`1 & p2`1 <= p10`1 by A5,A6,A78,A79,A84,A104,EUCLID:56,XBOOLE_0:def 3; then p1`2 <= p`2 & p`2 <= p2`2 & p2`1 <= p`1 & p`1 <= p2`1 by TOPREAL1:9,10; then p2`1 = p`1 & p`2 = 0 by A5,A6,A78,A79,AXIOMS:21; then p = |[ p2`1, 0]| by EUCLID:57 .= p2 by A78,A79,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A105: LSeg(p1,p2) /\ LSeg(p10,p2) = {p2} by A103,XBOOLE_0:def 10; LSeg(p1,p2) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by A83,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A106: LSeg(p1,p2) /\ L2 = {} by XBOOLE_1:3; A107: P1 /\ P2 = (LSeg(p1,p2) /\ LSeg(p1,p00)) \/ (LSeg(p1,p2) /\ (L1 \/ L2 \/ L4 \/ LSeg(p10,p2))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L1 \/ L2 \/ L4)) \/ {p2}) by A102,A105,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L1 \/ L2)) \/ (LSeg(p1,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L1) \/ (LSeg(p1,p2) /\ L2) \/ (LSeg(p1,p2) /\ L4) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L1) \/ ((LSeg(p1,p2) /\ L4) \/ {p2})) by A106,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p2) /\ L1) \/ ((LSeg(p1,p2) /\ L4) \/ {p2}) by XBOOLE_1:4; A108: now per cases; suppose A109: p1 = p00; A110: LSeg(p1,p2) /\ L1 c= L3 /\ L1 by A83,XBOOLE_1:26; p1 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L1 <> {} by A109,Lm13,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L1 = {p1} by A109,A110,TOPREAL1:23,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L4) \/ {p2}) by A107; suppose A111: p1 <> p00; A112: LSeg(p1,p2) /\ L1 c= L3 /\ L1 by A83,XBOOLE_1:26; now assume p00 in LSeg(p1,p2) /\ L1; then p00 in LSeg(p1,p2) & p1`1 <= p2`1 by A5,A78,A84,XBOOLE_0:def 3; then p1`1 = 0 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A111,EUCLID:57; end; then {p00} <> LSeg(p1,p2) /\ L1 by ZFMISC_1:37; then LSeg(p1,p2) /\ L1 = {} by A112,TOPREAL1:23,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L4) \/ {p2}) by A107; end; now per cases; suppose A113: p2 = p10; then A114: LSeg(p1,p2) /\ L4 c= {p2} by A83,TOPREAL1:22,XBOOLE_1:26; p2 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L4 <> {} by A113,Lm18,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L4 = {p2} by A114,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A108,ENUMSET1:41; suppose A115: p2 <> p10; A116: LSeg(p1,p2) /\ L4 c= {p10} by A83,TOPREAL1:22,XBOOLE_1:26; now assume p10 in LSeg(p1,p2) /\ L4; then p10 in LSeg(p1,p2) & p1`1 <= p2`1 by A5,A78,A84,XBOOLE_0:def 3; then p10`1 <= p2`1 by TOPREAL1:9; then p2`1 = 1 by A78,A79,Lm4,AXIOMS:21; hence contradiction by A78,A79,A115,EUCLID:57; end; then {p10} <> LSeg(p1,p2) /\ L4 by ZFMISC_1:37; then LSeg(p1,p2) /\ L4 = {} by A116,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A108,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A117: q`1 < p`1; take P1 = LSeg(p1,p2),P2 = LSeg(p1,p10) \/ (L4 \/ L2 \/ L1 \/ LSeg(p00,p2)); thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A118: now assume A119: LSeg(p1,p10) /\ LSeg(p00,p2) <> {}; consider a being Element of LSeg(p1,p10) /\ LSeg(p00,p2); reconsider p = a as Point of TOP-REAL 2 by A119,TARSKI:def 3; p in LSeg(p1,p10) & p in LSeg(p00,p2) & p1`1 <= p10`1 & p00`1 <= p2 `1 by A5,A6,A78,A79,A119,EUCLID:56,XBOOLE_0:def 3; then p1`1 <= p`1 & p`1 <= p2`1 by TOPREAL1:9; hence contradiction by A5,A78,A117,AXIOMS:22; end; A120: LSeg(p1,p10) /\ L1 c= L3 /\ L1 by A8,XBOOLE_1:26; now assume p00 in LSeg(p1,p10) /\ L1; then p00 in LSeg(p1,p10) & p1`1 <= p10`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A5,A79,A117,Lm4,TOPREAL1:9; end; then {p00} <> LSeg(p1,p10) /\ L1 by ZFMISC_1:37; then A121: LSeg(p1,p10) /\ L1 = {} by A120,TOPREAL1:23,ZFMISC_1:39; LSeg(p1,p10) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by A8,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A122: LSeg(p1,p10) /\ L2 = {} by XBOOLE_1:3; A123: LSeg(p1,p10) /\ L4 c= {p10} by A8,TOPREAL1:22,XBOOLE_1:26; p10 in LSeg(p1,p10) by TOPREAL1:6; then A124: LSeg(p1,p10) /\ L4 <> {} by Lm18,XBOOLE_0:def 3; A125: LSeg(p1,p10) /\ (L4 \/ L2 \/ L1 \/ LSeg(p00,p2)) = LSeg(p1,p10) /\ (L4 \/ L2 \/ L1) \/ (LSeg(p1,p10) /\ LSeg(p00,p2)) by XBOOLE_1:23 .= LSeg(p1,p10) /\ (L4 \/ L2) \/ (LSeg(p1,p10) /\ L1) by A118,XBOOLE_1: 23 .= LSeg(p1,p10) /\ L4 \/ (LSeg(p1,p10) /\ L2) by A121,XBOOLE_1:23 .= {p10} by A122,A123,A124,ZFMISC_1:39; L4 is_an_arc_of p10,p11 by Lm4,TOPREAL1:15; then A126: L4 \/ L2 is_an_arc_of p10,p01 by TOPREAL1:16,24; (L4 \/ L2) /\ L1 = L1 /\ L4 \/ L2 /\ L1 by XBOOLE_1:23 .= {p01} by Lm3,TOPREAL1:21; then A127: L4 \/ L2 \/ L1 is_an_arc_of p10,p00 by A126,TOPREAL1:16; A128: L1 /\ LSeg(p00,p2) c= {p00} by A82,TOPREAL1:23,XBOOLE_1:26; p00 in LSeg(p00,p2) by TOPREAL1:6; then L1 /\ LSeg(p00,p2) <> {} by Lm13,XBOOLE_0:def 3; then A129: L1 /\ LSeg(p00,p2) = {p00} by A128,ZFMISC_1:39; A130: L4 /\ LSeg(p00,p2) c= L4 /\ L3 by A82,XBOOLE_1:26; now assume p10 in L4 /\ LSeg(p00,p2); then p10 in LSeg(p00,p2) & p00`1 <= p2`1 by A78,A79,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p2`1 by TOPREAL1:9; hence contradiction by A6,A78,A79,A117,Lm4,AXIOMS:21; end; then {p10} <> L4 /\ LSeg(p00,p2) by ZFMISC_1:37; then A131: L4 /\ LSeg(p00,p2) = {} by A130,TOPREAL1:22,ZFMISC_1:39; L2 /\ LSeg(p00,p2) c= L2 /\ L3 & L3 /\ L2 = {} by A82,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A132: L2 /\ LSeg(p00,p2) = {} by XBOOLE_1:3; (L4 \/ L2 \/ L1) /\ LSeg(p00,p2) = (L4 \/ L2) /\ LSeg(p00,p2) \/ L1 /\ LSeg(p00,p2) by XBOOLE_1:23 .= (L4 /\ LSeg(p00,p2)) \/ (L2 /\ LSeg(p00,p2)) \/ {p00} by A129,XBOOLE_1:23 .= {p00} by A131,A132; then L4 \/ L2 \/ L1 \/ LSeg(p00,p2) is_an_arc_of p10,p2 by A127,TOPREAL1:16 ; hence P2 is_an_arc_of p1,p2 by A125,TOPREAL1:17; thus P1 \/ P2 = LSeg(p2,p1) \/ LSeg(p1,p10) \/ (L4 \/ L2 \/ L1 \/ LSeg(p00,p2)) by XBOOLE_1:4 .= LSeg(p00,p2) \/ (LSeg(p2,p1) \/ LSeg(p1,p10)) \/ (L4 \/ L2 \/ L1) by XBOOLE_1:4 .= L3 \/ (L4 \/ L2 \/ L1) by A3,A77,TOPREAL1:13 .= L3 \/ (L4 \/ (L1 \/ L2)) by XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; p1 in LSeg(p1,p2) & p1 in LSeg(p1,p10) by TOPREAL1:6; then p1 in LSeg(p1,p2) /\ LSeg(p1,p10) by XBOOLE_0:def 3; then A133: {p1} c= LSeg(p1,p2) /\ LSeg(p1,p10) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p1,p10) c= {p1} proof let a; assume A134: a in LSeg(p1,p2) /\ LSeg(p1,p10); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p1,p10) & p2`2 <= p1`2 & p2`1 <= p1`1 & p1`1 <= p10`1 by A5,A6,A78,A79,A117,A134,EUCLID:56,XBOOLE_0:def 3; then p2`2 <= p`2 & p`2 <= p1`2 & p1`1 <= p`1 & p`1 <= p1`1 by TOPREAL1:9,10; then p1`1 = p`1 & p`2 = 0 by A5,A6,A78,A79,AXIOMS:21; then p = |[p1`1, 0]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then A135: LSeg(p1,p2) /\ LSeg(p1,p10) = {p1} by A133,XBOOLE_0:def 10; p2 in LSeg(p1,p2) & p2 in LSeg(p00,p2) by TOPREAL1:6; then p2 in LSeg(p1,p2) /\ LSeg(p00,p2) by XBOOLE_0:def 3; then A136: {p2} c= LSeg(p1,p2) /\ LSeg(p00,p2) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p00,p2) c= {p2} proof let a; assume A137: a in LSeg(p1,p2) /\ LSeg(p00,p2); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p00,p2) & p2`1 <= p1`1 & p2`2 <= p1`2 & p00`1 <= p2`1 by A5,A6,A78,A79,A117,A137,EUCLID:56,XBOOLE_0:def 3; then p2`2 <= p`2 & p`2 <= p1`2 & p2`1 <= p`1 & p`1 <= p2`1 by TOPREAL1:9,10; then p2`1 = p`1 & p`2 = 0 by A5,A6,A78,A79,AXIOMS:21; then p = |[ p2`1, 0]| by EUCLID:57 .= p2 by A78,A79,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A138: LSeg(p1,p2) /\ LSeg(p00,p2) = {p2} by A136,XBOOLE_0:def 10; LSeg(p1,p2) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by A83,TOPREAL1:25,XBOOLE_0:def 7,XBOOLE_1:26; then A139: LSeg(p1,p2) /\ L2 = {} by XBOOLE_1:3; A140: P1 /\ P2 = {p1} \/ LSeg(p1,p2) /\ (L4 \/ L2 \/ L1 \/ LSeg(p00,p2)) by A135,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L4 \/ L2 \/ L1)) \/ {p2}) by A138,XBOOLE_1 :23 .= {p1} \/ ((LSeg(p1,p2) /\ (L4 \/ L2)) \/ (LSeg(p1,p2) /\ L1) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L4) \/ (LSeg(p1,p2) /\ L2) \/ (LSeg(p1,p2) /\ L1) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L4) \/ ((LSeg(p1,p2) /\ L1) \/ {p2})) by A139,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p2) /\ L4) \/ ((LSeg(p1,p2) /\ L1) \/ {p2}) by XBOOLE_1:4; A141: now per cases; suppose A142: p2 = p00; A143: LSeg(p1,p2) /\ L1 c= L3 /\ L1 by A83,XBOOLE_1:26; p2 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L1 <> {} by A142,Lm13,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L1 = {p2} by A142,A143,TOPREAL1:23,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p2) /\ L4) \/ {p2} by A140; suppose A144: p2 <> p00; A145: LSeg(p1,p2) /\ L1 c= L3 /\ L1 by A83,XBOOLE_1:26; now assume p00 in LSeg(p1,p2) /\ L1; then p00 in LSeg(p2,p1) & p2`1 <= p1`1 by A5,A78,A117,XBOOLE_0:def 3; then p2`1 = 0 by A78,A79,Lm4,TOPREAL1:9; hence contradiction by A78,A79,A144,EUCLID:57; end; then {p00} <> LSeg(p1,p2) /\ L1 by ZFMISC_1:37; then LSeg(p1,p2) /\ L1 = {} by A145,TOPREAL1:23,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p2) /\ L4) \/ {p2} by A140; end; now per cases; suppose A146: p1 = p10; then A147: LSeg(p1,p2) /\ L4 c= {p1} by A83,TOPREAL1:22,XBOOLE_1:26; p1 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L4 <> {} by A146,Lm18,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L4 = {p1} by A147,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A141,ENUMSET1:41; suppose A148: p1 <> p10; A149: LSeg(p1,p2) /\ L4 c= {p10} by A83,TOPREAL1:22,XBOOLE_1:26; now assume p10 in LSeg(p1,p2) /\ L4; then p10 in LSeg(p2,p1) & p2`1 <= p1`1 by A5,A78,A117,XBOOLE_0:def 3; then p10`1 <= p1`1 by TOPREAL1:9; then p1`1 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A148,EUCLID:57; end; then {p10} <> LSeg(p1,p2) /\ L4 by ZFMISC_1:37; then LSeg(p1,p2) /\ L4 = {} by A149,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A141,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; end; hence ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2}; suppose A150: p2 in L4; then A151: ex q st q = p2 & q`1 = 1 & q`2 <= 1 & q`2 >= 0 by TOPREAL1:19; A152: LSeg(p2,p10) c= L4 by A150,Lm18,TOPREAL1:12; A153: LSeg(p2,p11) c= L4 by A150,Lm20,TOPREAL1:12; take P1 = LSeg(p1,p10) \/ LSeg(p10,p2),P2 = LSeg(p1,p00) \/ (L1 \/ L2 \/ LSeg(p11,p2)); p10 in LSeg(p1,p10) & p10 in LSeg(p10,p2) by TOPREAL1:6; then LSeg(p1,p10) /\ LSeg(p10,p2) c= L3 /\ L4 & L3 /\ L4 = {p10} & LSeg(p1,p10) /\ LSeg(p10,p2) <> {} by A8,A152,TOPREAL1:22,XBOOLE_0:def 3,XBOOLE_1:27; then LSeg(p1,p10) /\ LSeg(p10,p2) = {p10} & (p1 <> p10 or p2 <> p10) by A1,ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by TOPREAL1:18; L1 is_an_arc_of p00,p01 & L2 is_an_arc_of p01,p11 by Lm4,TOPREAL1:15; then A154: L1 \/ L2 is_an_arc_of p00,p11 by TOPREAL1:5,21; L1 /\ LSeg(p11,p2) c= L1 /\ L4 by A153,XBOOLE_1:26; then A155: L1 /\ LSeg(p11,p2) = {} by Lm3,XBOOLE_1:3; p11 in LSeg(p11,p2) by TOPREAL1:6; then A156: L2 /\ LSeg(p11,p2) c= {p11} & L2 /\ LSeg(p11,p2) <> {} by A153,Lm19,TOPREAL1:24,XBOOLE_0:def 3,XBOOLE_1:27; (L1 \/ L2) /\ LSeg(p11,p2) = (L1 /\ LSeg(p11,p2)) \/ (L2 /\ LSeg(p11,p2)) by XBOOLE_1:23 .= {p11} by A155,A156,ZFMISC_1:39; then A157: L1 \/ L2 \/ LSeg(p11,p2) is_an_arc_of p00,p2 by A154,TOPREAL1:16; A158: LSeg(p1,p00) /\ LSeg(p11,p2) c= {p10} by A7,A153,TOPREAL1:22,XBOOLE_1:27 ; now assume p10 in LSeg(p1,p00) /\ LSeg(p11,p2); then p10 in LSeg(p00,p1) & p10 in LSeg(p2,p11) & p00`1 <= p1`1 & p2`2 <= p11`2 by A5,A6,A151,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p1`1 & p2`2 <= p10`2 by TOPREAL1:9,10; then 0 = p1`2 & 0 = p2`2 & 1 = p1`1 & 1 = p2`1 by A5,A6,A151,Lm4,AXIOMS:21; then p1 = p10 & p2 = p10 by EUCLID:57; hence contradiction by A1; end; then {p10} <> LSeg(p1,p00) /\ LSeg(p11,p2) by ZFMISC_1:37; then A159: LSeg(p1,p00) /\ LSeg(p11,p2) = {} by A158,ZFMISC_1:39; LSeg(p1,p00) /\ (L1 \/ L2 \/ LSeg(p11,p2)) = (LSeg(p1,p00) /\ (L1 \/ L2)) \/ (LSeg(p1,p00) /\ LSeg(p11,p2)) by XBOOLE_1:23 .= (LSeg(p1,p00) /\ L1) \/ (LSeg(p1,p00) /\ L2) by A159,XBOOLE_1:23 .= {p00} by A11,A13,TOPREAL1:23,ZFMISC_1:39; hence P2 is_an_arc_of p1,p2 by A157,TOPREAL1:17; A160: L3 = LSeg(p1,p10) \/ LSeg(p1,p00) by A3,TOPREAL1:11; A161: L4 = LSeg(p11,p2) \/ LSeg(p10,p2) by A150,TOPREAL1:11; thus P1 \/ P2 = LSeg(p10,p2) \/ (LSeg(p1,p10) \/ (LSeg(p1,p00) \/ (L1 \/ L2 \/ LSeg(p11,p2)))) by XBOOLE_1:4 .= LSeg(p10,p2) \/ (L3 \/ (L1 \/ L2 \/ LSeg(p11,p2))) by A160,XBOOLE_1:4 .= (L1 \/ L2) \/ L3 \/ LSeg(p11,p2) \/ LSeg(p10,p2) by XBOOLE_1:4 .= (L1 \/ L2) \/ L3 \/ L4 by A161,XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; A162: LSeg(p1,p10) /\ LSeg(p1,p00) = {p1} by A3,TOPREAL1:14; A163: LSeg(p10,p2) /\ LSeg(p11,p2) = {p2} by A150,TOPREAL1:14; LSeg(p10,p2) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A152,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A164: LSeg(p10,p2) /\ L1 = {} by XBOOLE_1:3; A165: P1 /\ P2 = (LSeg(p1,p10) /\ (LSeg(p1,p00) \/ (L1 \/ L2 \/ LSeg(p11,p2)))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p00) \/ (L1 \/ L2 \/ LSeg(p11,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p10) /\ LSeg(p1,p00)) \/ (LSeg(p1,p10) /\ (L1 \/ L2 \/ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p00) \/ (L1 \/ L2 \/ LSeg(p11,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ (L1 \/ L2)) \/ (LSeg(p1,p10) /\ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p00) \/ (L1 \/ L2 \/ LSeg(p11,p2)))) by A162,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L1) \/ (LSeg(p10,p1) /\ L2) \/ (LSeg(p1,p10) /\ LSeg(p11,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p00) \/ (L1 \/ L2 \/ LSeg(p11,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L1) \/ (LSeg(p1,p10) /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p00)) \/ (LSeg(p10,p2) /\ (L1 \/ L2 \/ LSeg(p11,p2)))) by A9,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L1) \/ (LSeg(p1,p10) /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p00)) \/ ((LSeg(p10,p2) /\ (L1 \/ L2)) \/ {p2})) by A163,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L1) \/ (LSeg(p1,p10) /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p00)) \/ ((LSeg(p10,p2) /\ L1) \/ (LSeg(p10,p2) /\ L2) \/ {p2})) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L1) \/ (LSeg(p1,p10) /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p00)) \/ ((LSeg(p10,p2) /\ L2) \/ {p2})) by A164; A166: now per cases; suppose A167: p1 = p00; then A168: LSeg(p10,p2) /\ LSeg(p1,p00) = LSeg(p10,p2) /\ {p00} by TOPREAL1:7; not p00 in LSeg(p10,p2) by A152,Lm4,TOPREAL1:9; then LSeg(p10,p2) /\ LSeg(p1,p00) = {} by A168,Lm1; hence P1 /\ P2 = {p1} \/ {p1} \/ (LSeg(p1,p10) /\ LSeg(p11,p2)) \/ ((LSeg(p10,p2) /\ L2) \/ {p2}) by A165,A167,TOPREAL1:23,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p10) /\ LSeg(p11,p2)) \/ ((LSeg(p10,p2) /\ L2) \/ {p2}); suppose A169: p1 = p10; then LSeg(p1,p10) /\ L1 = {p10} /\ L1 by TOPREAL1:7; then A170: LSeg(p1,p10) /\ L1 = {} by Lm1,Lm9; A171: LSeg(p10,p2) /\ LSeg(p1,p00) c= L4 /\ L3 by A7,A152,XBOOLE_1:27; p1 in LSeg(p10,p2) & p1 in LSeg(p1,p00) by A169,TOPREAL1:6; then {} <> LSeg(p10,p2) /\ LSeg(p1,p00) by XBOOLE_0:def 3; then LSeg(p10,p2) /\ LSeg(p1,p00) = {p1} by A169,A171,TOPREAL1:22,ZFMISC_1: 39; hence P1 /\ P2 = {p1} \/ ({p1} \/ (LSeg(p1,p10) /\ LSeg(p11,p2))) \/ ((LSeg(p10,p2) /\ L2) \/ {p2}) by A165,A170,XBOOLE_1:4 .= {p1} \/ {p1} \/ (LSeg(p1,p10) /\ LSeg(p11,p2)) \/ ((LSeg(p10,p2) /\ L2) \/ {p2}) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p10) /\ LSeg(p11,p2)) \/ ((LSeg(p10,p2) /\ L2) \/ {p2}); suppose A172: p1 <> p10 & p1 <> p00; A173: LSeg(p1,p10) /\ L1 c= L3 /\ L1 by A8,XBOOLE_1:26; now assume p00 in LSeg(p1,p10) /\ L1; then p00 in LSeg(p1,p10) & p1`1 <= p10`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`1 = 0 by A5,A6,Lm4,TOPREAL1:9; hence contradiction by A5,A6,A172,EUCLID:57; end; then {p00} <> LSeg(p1,p10) /\ L1 by ZFMISC_1:37; then A174: LSeg(p1,p10) /\ L1 = {} by A173,TOPREAL1:23,ZFMISC_1:39; A175: LSeg(p10,p2) /\ LSeg(p1,p00) c= L4 /\ L3 by A7,A152,XBOOLE_1:27; now assume p10 in LSeg(p10,p2) /\ LSeg(p1,p00); then p10 in LSeg(p00,p1) & p00`1 <= p1`1 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p1`1 by TOPREAL1:9; then p1`1 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A172,EUCLID:57; end; then {p10} <> LSeg(p10,p2) /\ LSeg(p1,p00) by ZFMISC_1:37; then LSeg(p10,p2) /\ LSeg(p1,p00) = {} by A175,TOPREAL1:22,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p10) /\ LSeg(p11,p2)) \/ ((LSeg(p10,p2) /\ L2) \/ {p2}) by A165,A174; end; now per cases; suppose A176: p2 = p10; then A177: LSeg(p1,p10) /\ LSeg(p11,p2) c= {p2} by A8,TOPREAL1:22,XBOOLE_1: 27; p10 in LSeg(p1,p10) by TOPREAL1:6; then {} <> LSeg(p1,p10) /\ LSeg(p11,p2) by A176,Lm18,XBOOLE_0:def 3; then A178: LSeg(p1,p10) /\ LSeg(p11,p2) = {p2} by A177,ZFMISC_1:39; LSeg(p10,p2) /\ L2 = {p10} /\ L2 by A176,TOPREAL1:7; then LSeg(p10,p2) /\ L2 = {} by Lm1,Lm10; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A166,A178,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A179: p2 = p11; then A180: LSeg(p1,p10) /\ LSeg(p11,p2) = LSeg(p1,p10) /\ {p11} by TOPREAL1: 7; not p11 in LSeg(p1,p10) by A8,Lm4,TOPREAL1:10; then LSeg(p1,p10) /\ LSeg(p11,p2) = {} by A180,Lm1; hence P1 /\ P2 = {p1,p2} by A166,A179,ENUMSET1:41,TOPREAL1:24; suppose A181: p2 <> p11 & p2 <> p10; A182: LSeg(p1,p10) /\ LSeg(p11,p2) c= {p10} by A8,A153,TOPREAL1:22,XBOOLE_1: 27; now assume p10 in LSeg(p1,p10) /\ LSeg(p11,p2); then p10 in LSeg(p2,p11) & p2`2 <= p11`2 by A151,EUCLID:56,XBOOLE_0:def 3; then p2`2 = 0 by A151,Lm4,TOPREAL1:10; hence contradiction by A151,A181,EUCLID:57; end; then {p10} <> LSeg(p1,p10) /\ LSeg(p11,p2) by ZFMISC_1:37; then A183: LSeg(p1,p10) /\ LSeg(p11,p2) = {} by A182,ZFMISC_1:39; A184: LSeg(p10,p2) /\ L2 c= L4 /\ L2 by A152,XBOOLE_1:26; now assume p11 in LSeg(p10,p2) /\ L2; then p11 in LSeg(p10,p2) & p10`2 <= p2`2 by A151,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p2`2 by TOPREAL1:10; then 1 = p2`2 by A151,Lm4,AXIOMS:21; hence contradiction by A151,A181,EUCLID:57; end; then {p11} <> LSeg(p10,p2) /\ L2 by ZFMISC_1:37; then LSeg(p10,p2) /\ L2 = {} by A184,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A166,A183,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; end; Lm26: p1 <> p2 & p2 in R^2-unit_square & p1 in LSeg(p10, p11) implies ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof assume that A1: p1 <> p2 and A2: p2 in R^2-unit_square and A3: p1 in LSeg(p10, p11); A4: p2 in L1 \/ L2 or p2 in L3 \/ L4 by A2,TOPREAL1:20,XBOOLE_0:def 2; consider p such that A5: p = p1 and A6: p`1 = 1 & p`2 <= 1 & p`2 >= 0 by A3,TOPREAL1:19; A7: LSeg(p1,p11) c= L4 by A3,Lm20,TOPREAL1:12; A8: LSeg(p1,p10) c= L4 by A3,Lm18,TOPREAL1:12; then A9: LSeg(p1,p10) /\ L3 c= L4 /\ L3 by XBOOLE_1:26; p10 in LSeg(p1,p10) by TOPREAL1:6; then A10: {} <> LSeg(p1,p10) /\ L3 by Lm17,XBOOLE_0:def 3; A11: LSeg(p1,p11) /\ L2 c= L4 /\ L2 by A7,XBOOLE_1:26; p11 in LSeg(p1,p11) by TOPREAL1:6; then A12: {} <> LSeg(p1,p11) /\ L2 by Lm19,XBOOLE_0:def 3; LSeg(p10,p1) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A8,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A13: LSeg(p10,p1) /\ L1 = {} by XBOOLE_1:3; LSeg(p1,p11) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A7,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A14: LSeg(p1,p11) /\ L1 = {} by XBOOLE_1:3; per cases by A4,XBOOLE_0:def 2; suppose A15: p2 in L1; then A16: ex q st q = p2 & q`1 = 0 & q`2 <= 1 & q`2 >= 0 by TOPREAL1:19; take P1 = LSeg(p1,p11) \/ L2 \/ LSeg(p01,p2),P2 = LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2); A17: LSeg(p2,p01) c= L1 by A15,Lm15,TOPREAL1:12; A18: LSeg(p2,p00) c= L1 by A15,Lm13,TOPREAL1:12; p01 in LSeg(p01,p2) by TOPREAL1:6; then L2 /\ LSeg(p01,p2) c= L2 /\ L1 & p01 in L2 /\ LSeg(p01,p2) by A17,Lm16,XBOOLE_0:def 3,XBOOLE_1:26; then A19: L2 /\ LSeg(p01,p2) = {p01} by TOPREAL1:21,ZFMISC_1:39; L2 is_an_arc_of p11,p01 by Lm4,TOPREAL1:15; then A20: L2 \/ LSeg(p01,p2) is_an_arc_of p11,p2 by A19,TOPREAL1:16; LSeg(p1,p11) /\ LSeg(p01,p2) c= L4 /\ L1 by A7,A17,XBOOLE_1:27; then A21: LSeg(p1,p11) /\ LSeg(p01,p2) = {} by Lm3,XBOOLE_1:3; LSeg(p1,p11) /\ (L2 \/ LSeg(p01,p2)) = (LSeg(p1,p11) /\ L2) \/ (LSeg(p1,p11) /\ LSeg(p01,p2)) by XBOOLE_1:23 .= {p11} by A11,A12,A21,TOPREAL1:24,ZFMISC_1:39; then LSeg(p1,p11) \/ (L2 \/ LSeg(p01,p2)) is_an_arc_of p1,p2 by A20,TOPREAL1:17; hence P1 is_an_arc_of p1,p2 by XBOOLE_1:4; L3 /\ LSeg(p00,p2) c= L3 /\ L1 & p00 in LSeg(p00,p2) by A18,TOPREAL1:6,XBOOLE_1:26; then L3 /\ LSeg(p00,p2) c= {p00} & L3 /\ LSeg(p00,p2) <> {} by Lm14,TOPREAL1:23,XBOOLE_0:def 3; then A22: L3 /\ LSeg(p00,p2) = {p00} by ZFMISC_1:39; L3 is_an_arc_of p10,p00 by Lm4,TOPREAL1:15; then A23: L3 \/ LSeg(p00,p2) is_an_arc_of p10,p2 by A22,TOPREAL1:16; LSeg(p1,p10) /\ LSeg(p00,p2) c= L4 /\ L1 by A8,A18,XBOOLE_1:27; then A24: LSeg(p1,p10) /\ LSeg(p00,p2) = {} by Lm3,XBOOLE_1:3; LSeg(p1,p10) /\ (L3 \/ LSeg(p00,p2)) = (LSeg(p1,p10) /\ L3) \/ (LSeg(p1,p10) /\ LSeg(p00,p2)) by XBOOLE_1:23 .= {p10} by A9,A10,A24,TOPREAL1:22,ZFMISC_1:39; then LSeg(p1,p10) \/ (L3 \/ LSeg(p00,p2)) is_an_arc_of p1,p2 by A23,TOPREAL1:17; hence P2 is_an_arc_of p1,p2 by XBOOLE_1:4; A25: LSeg(p1,p11) \/ LSeg(p1,p10) = L4 by A3,TOPREAL1:11; thus R^2-unit_square = LSeg(p00,p2) \/ LSeg(p01,p2) \/ L2 \/ (L3 \/ L4) by A15,TOPREAL1:11,20 .= LSeg(p00,p2) \/ (LSeg(p01,p2) \/ L2) \/ (L3 \/ L4) by XBOOLE_1:4 .= L2 \/ LSeg(p01,p2) \/ (L4 \/ L3 \/ LSeg(p00,p2)) by XBOOLE_1:4 .= L2 \/ LSeg(p01,p2) \/ (L4 \/ (L3 \/ LSeg(p00,p2))) by XBOOLE_1:4 .= L2 \/ LSeg(p01,p2) \/ (LSeg(p1,p11) \/ (LSeg(p1,p10) \/ (L3 \/ LSeg(p00,p2)))) by A25,XBOOLE_1:4 .= L2 \/ LSeg(p01,p2) \/ (LSeg(p1,p11) \/ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) by XBOOLE_1:4 .= (LSeg(p1,p11) \/ (L2 \/ LSeg(p01,p2))) \/ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2)) by XBOOLE_1:4 .= P1 \/ P2 by XBOOLE_1:4; A26: LSeg(p01,p2) /\ LSeg(p00,p2) = {p2} by A15,TOPREAL1:14; LSeg(p01,p2) /\ LSeg(p1,p10) c= L1 /\ L4 & L1 /\ L4 = {} by A8,A17,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:27; then A27: LSeg(p01,p2) /\ LSeg(p1,p10) = {} by XBOOLE_1:3; LSeg(p1,p11) /\ LSeg(p00,p2) c= L4 /\ L1 & L1 /\ L4 = {} by A7,A18,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:27; then A28: LSeg(p1,p11) /\ LSeg(p00,p2) = {} by XBOOLE_1:3; A29: LSeg(p1,p11) /\ LSeg(p1,p10) = {p1} by A3,TOPREAL1:14; A30: P1 /\ P2 = ((LSeg(p1,p11) \/ L2) /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) \/ (LSeg(p01,p2) /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) by XBOOLE_1:23 .= ((LSeg(p1,p11) \/ L2) /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ (LSeg(p1,p10) \/ L3)) \/ {p2}) by A26,XBOOLE_1:23 .= ((LSeg(p1,p11) \/ L2) /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ LSeg(p1,p10)) \/ (LSeg(p01,p2) /\ L3) \/ {p2}) by XBOOLE_1:23 .= ((LSeg(p1,p11) /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) \/ (L2 /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2)))) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A27,XBOOLE_1:23 .= (LSeg(p1,p11) /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) \/ ((L2 /\ (LSeg(p1,p10) \/ L3)) \/ (L2 /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by XBOOLE_1:23 .= (LSeg(p1,p11) /\ (LSeg(p1,p10) \/ L3 \/ LSeg(p00,p2))) \/ ((L2 /\ LSeg(p1,p10)) \/ (L3 /\ L2) \/ (L2 /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by XBOOLE_1:23 .= ((LSeg(p1,p11) /\ (LSeg(p1,p10) \/ L3)) \/ (LSeg(p1,p11) /\ LSeg(p00,p2))) \/ ((L2 /\ LSeg(p1,p10)) \/ (L2 /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by Lm2,XBOOLE_1:23 .= {p1} \/ (LSeg(p1,p11) /\ L3) \/ ((L2 /\ LSeg(p1,p10)) \/ (L2 /\ LSeg(p00,p2))) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A28,A29,XBOOLE_1:23; A31: now per cases; suppose A32: p1 = p10; then L2 /\ LSeg(p1,p10) = L2 /\ {p10} by TOPREAL1:7; then L2 /\ LSeg(p1,p10) = {} by Lm1,Lm10; hence P1 /\ P2 = {p1} \/ (L2 /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A30,A32,TOPREAL1:22; suppose A33: p1 = p11; then LSeg(p1,p11) /\ L3 = {p11} /\ L3 by TOPREAL1:7; then LSeg(p1,p11) /\ L3 = {} by Lm1,Lm12; hence P1 /\ P2 = {p1} \/ {p1} \/ (L2 /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A30,A33,TOPREAL1:24,XBOOLE_1:4 .= {p1} \/ (L2 /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}); suppose A34: p1 <> p11 & p1 <> p10; A35: LSeg(p1,p11) /\ L3 c= L4 /\ L3 by A7,XBOOLE_1:26; now assume p10 in LSeg(p1,p11) /\ L3; then p10 in LSeg(p1,p11) & p1`2 <= p11`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`2 = 0 by A5,A6,Lm4,TOPREAL1:10; hence contradiction by A5,A6,A34,EUCLID:57; end; then {p10} <> LSeg(p1,p11) /\ L3 by ZFMISC_1:37; then A36: LSeg(p1,p11) /\ L3 = {} by A35,TOPREAL1:22,ZFMISC_1:39; A37: L2 /\ LSeg(p1,p10) c= {p11} by A8,TOPREAL1:24,XBOOLE_1:26; now assume p11 in L2 /\ LSeg(p1,p10); then p11 in LSeg(p10,p1) & p10`2 <= p1`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p1`2 by TOPREAL1:10; then 1 = p1`2 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A34,EUCLID:57; end; then {p11} <> L2 /\ LSeg(p1,p10) by ZFMISC_1:37; then L2 /\ LSeg(p1,p10) = {} by A37,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (L2 /\ LSeg(p00,p2)) \/ ((LSeg(p01,p2) /\ L3) \/ {p2}) by A30,A36; end; now per cases; suppose A38: p2 = p00; then L2 /\ LSeg(p00,p2) = L2 /\ {p00} by TOPREAL1:7; then L2 /\ LSeg(p00,p2) = {} by Lm1,Lm6; hence P1 /\ P2 = {p1,p2} by A31,A38,ENUMSET1:41,TOPREAL1:23; suppose A39: p2 = p01; then LSeg(p01,p2) /\ L3 = {p01} /\ L3 by TOPREAL1:7; then LSeg(p01,p2) /\ L3 = {} by Lm1,Lm7; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A31,A39,TOPREAL1:21,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A40: p2 <> p01 & p2 <> p00; A41: L2 /\ LSeg(p00,p2) c= L2 /\ L1 by A18,XBOOLE_1:26; now assume p01 in L2 /\ LSeg(p00,p2); then p01 in LSeg(p00,p2) & p00`2 <= p2`2 by A16,EUCLID:56,XBOOLE_0:def 3 ; then p01`2 <= p2`2 by TOPREAL1:10; then p2`2 = 1 by A16,Lm4,AXIOMS:21; hence contradiction by A16,A40,EUCLID:57; end; then {p01} <> L2 /\ LSeg(p00,p2) by ZFMISC_1:37; then A42: L2 /\ LSeg(p00,p2) = {} by A41,TOPREAL1:21,ZFMISC_1:39; A43: LSeg(p01,p2) /\ L3 c= {p00} by A17,TOPREAL1:23,XBOOLE_1:26; now assume p00 in LSeg(p01,p2) /\ L3; then p00 in LSeg(p2,p01) & p2`2 <= p01`2 by A16,EUCLID:56,XBOOLE_0:def 3 ; then 0 = p2`2 by A16,Lm4,TOPREAL1:10; hence contradiction by A16,A40,EUCLID:57; end; then {p00} <> LSeg(p01,p2) /\ L3 by ZFMISC_1:37; then LSeg(p01,p2) /\ L3 = {} by A43,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A31,A42,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A44: p2 in L2; then A45: ex q st q = p2 & q`1 <= 1 & q`1 >= 0 & q`2 = 1 by TOPREAL1:19; take P1 = LSeg(p1,p11) \/ LSeg(p11,p2),P2 = LSeg(p1,p10) \/ (L3 \/ L1 \/ LSeg(p01,p2)); A46: LSeg(p11,p2) c= L2 by A44,Lm19,TOPREAL1:12; A47: LSeg(p2,p01) c= L2 by A44,Lm16,TOPREAL1:12; p11 in LSeg(p1,p11) & p11 in LSeg(p11,p2) by TOPREAL1:6; then LSeg(p1,p11) /\ LSeg(p11,p2) c= L4 /\ L2 & p11 in LSeg(p1,p11) /\ LSeg(p11,p2) & L2 /\ L4 = {p11} by A7,A46,TOPREAL1:24,XBOOLE_0:def 3,XBOOLE_1:27; then LSeg(p1,p11) /\ LSeg(p11,p2) = {p11} & (p1 <> p11 or p11 <> p2) by A1,ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by TOPREAL1:18; L3 is_an_arc_of p10,p00 & L1 is_an_arc_of p00,p01 by Lm4,TOPREAL1:15; then A48: L3 \/ L1 is_an_arc_of p10,p01 by TOPREAL1:5,23; L3 /\ LSeg(p01,p2) c= L3 /\ L2 by A47,XBOOLE_1:26; then A49: L3 /\ LSeg(p01,p2) = {} by Lm2,XBOOLE_1:3; p01 in LSeg(p01,p2) by TOPREAL1:6; then A50: L1 /\ LSeg(p01,p2) c= {p01} & L1 /\ LSeg(p01,p2) <> {} by A47,Lm15,TOPREAL1:21,XBOOLE_0:def 3,XBOOLE_1:27; (L3 \/ L1) /\ LSeg(p01,p2) = (L3 /\ LSeg(p01,p2)) \/ (L1 /\ LSeg(p01,p2)) by XBOOLE_1:23 .= {p01} by A49,A50,ZFMISC_1:39; then A51: L3 \/ L1 \/ LSeg(p01,p2) is_an_arc_of p10,p2 by A48,TOPREAL1:16; A52: LSeg(p1,p10) /\ LSeg(p01,p2) c= L4 /\ L2 by A8,A47,XBOOLE_1:27; now assume p11 in LSeg(p1,p10) /\ LSeg(p01,p2); then p11 in LSeg(p10,p1) & p11 in LSeg(p01,p2) & p01`1 <= p2`1 & p10`2 <= p1`2 by A5,A6,A45,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p1`2 & p11`1 <= p2`1 by TOPREAL1:9,10; then A53: 1 = p1`2 & 1 = p2`2 & 1 = p1`1 & 1 = p2`1 by A5,A6,A45,Lm4, AXIOMS:21; then p1 = p11 by EUCLID:57 .= p2 by A53,EUCLID:57; hence contradiction by A1; end; then {p11} <> LSeg(p1,p10) /\ LSeg(p01,p2) by ZFMISC_1:37; then A54: LSeg(p1,p10) /\ LSeg(p01,p2) = {} by A52,TOPREAL1:24,ZFMISC_1:39; LSeg(p1,p10) /\ (L3 \/ L1 \/ LSeg(p01,p2)) = (LSeg(p1,p10) /\ (L3 \/ L1)) \/ (LSeg(p1,p10) /\ LSeg(p01,p2)) by XBOOLE_1:23 .= (LSeg(p1,p10) /\ L3) \/ (LSeg(p10,p1) /\ L1) by A54,XBOOLE_1:23 .= {p10} by A9,A10,A13,TOPREAL1:22,ZFMISC_1:39; hence P2 is_an_arc_of p1,p2 by A51,TOPREAL1:17; A55: LSeg(p1,p11) \/ LSeg(p1,p10) = L4 by A3,TOPREAL1:11; A56: LSeg(p01,p2) \/ LSeg(p11,p2) = L2 by A44,TOPREAL1:11; thus P1 \/ P2 = LSeg(p11,p2) \/ (LSeg(p1,p11) \/ (LSeg(p1,p10) \/ (L3 \/ L1 \/ LSeg(p01,p2)))) by XBOOLE_1:4 .= LSeg(p11,p2) \/ (L4 \/ (L3 \/ L1 \/ LSeg(p01,p2))) by A55,XBOOLE_1:4 .= LSeg(p11,p2) \/ (L4 \/ (L3 \/ L1) \/ LSeg(p01,p2)) by XBOOLE_1:4 .= LSeg(p11,p2) \/ (L3 \/ L4 \/ L1 \/ LSeg(p01,p2)) by XBOOLE_1:4 .= LSeg(p11,p2) \/ (L3 \/ L4 \/ (L1 \/ LSeg(p01,p2))) by XBOOLE_1:4 .= (L1 \/ LSeg(p01,p2) \/ LSeg(p11,p2)) \/ (L3 \/ L4) by XBOOLE_1:4 .= R^2-unit_square by A56,TOPREAL1:20,XBOOLE_1:4; A57: {p1} = LSeg(p1,p11) /\ LSeg(p1,p10) by A3,TOPREAL1:14; LSeg(p1,p11) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A7,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A58: LSeg(p1,p11) /\ L1 = {} by XBOOLE_1:3; A59: {p2} = LSeg(p11,p2) /\ LSeg(p01,p2) by A44,TOPREAL1:14; LSeg(p11,p2) /\ L3 c= L2 /\ L3 & L3 /\ L2 = {} by A46,TOPREAL1:25, XBOOLE_0:def 7,XBOOLE_1:26; then A60: LSeg(p11,p2) /\ L3 = {} by XBOOLE_1:3; A61: P1 /\ P2 = (LSeg(p1,p11) /\ (LSeg(p1,p10) \/ (L3 \/ L1 \/ LSeg(p01,p2)))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p10) \/ (L3 \/ L1 \/ LSeg(p01,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p11) /\ LSeg(p1,p10)) \/ (LSeg(p1,p11) /\ (L3 \/ L1 \/ LSeg(p01,p2))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p10) \/ (L3 \/ L1 \/ LSeg(p01,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ (L3 \/ L1)) \/ (LSeg(p1,p11) /\ LSeg(p01,p2))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p10) \/ (L3 \/ L1 \/ LSeg(p01,p2)))) by A57,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ L1) \/ (LSeg(p1,p11) /\ LSeg(p01,p2))) \/ (LSeg(p11,p2) /\ (LSeg(p1,p10) \/ (L3 \/ L1 \/ LSeg(p01,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p01,p2))) \/ ((LSeg(p11,p2) /\ LSeg(p1,p10)) \/ (LSeg(p11,p2) /\ (L3 \/ L1 \/ LSeg(p01,p2)))) by A58,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p01,p2))) \/ ((LSeg(p11,p2) /\ (LSeg(p1,p10)) \/ ((LSeg(p11,p2) /\ (L3 \/ L1)) \/ {p2}))) by A59,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p01,p2))) \/ ((LSeg(p11,p2) /\ (LSeg(p1,p10)) \/ (((LSeg(p11,p2) /\ L3) \/ (LSeg(p11,p2) /\ L1)) \/ {p2}))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p11) /\ L3) \/ (LSeg(p1,p11) /\ LSeg(p01,p2))) \/ ((LSeg(p11,p2) /\ LSeg(p1,p10)) \/ ((LSeg(p11,p2) /\ L1) \/ {p2})) by A60; A62: now per cases; suppose A63: p1 = p10; then A64: LSeg(p11,p2) /\ LSeg(p1,p10) = LSeg(p11,p2) /\ {p10} by TOPREAL1:7; p10 in LSeg(p11,p2) implies contradiction by A46,Lm4,TOPREAL1:10; then A65: LSeg(p11,p2) /\ LSeg(p1,p10) = {} by A64,Lm1; thus P1 /\ P2 = {p1} \/ {p1} \/ (LSeg(p1,p11) /\ LSeg(p01,p2)) \/ ((LSeg(p11,p2) /\ LSeg(p1,p10)) \/ ((LSeg(p11,p2) /\ L1) \/ {p2})) by A61,A63,TOPREAL1:22,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p11) /\ LSeg(p01,p2)) \/ ((LSeg(p11,p2) /\ L1) \/ {p2}) by A65; suppose A66: p1 = p11; then LSeg(p1,p11) /\ L3 = {p11} /\ L3 by TOPREAL1:7; then A67: LSeg(p1,p11) /\ L3 = {} by Lm1,Lm12; p11 in LSeg(p11,p2) by TOPREAL1:6; then A68: LSeg(p11,p2) /\ LSeg(p1,p10) <> {} by A66,Lm20,XBOOLE_0:def 3; LSeg(p11,p2) /\ LSeg(p1,p10) c= {p1} by A46,A66,TOPREAL1:24,XBOOLE_1:27; then LSeg(p11,p2) /\ LSeg(p1,p10) = {p1} by A68,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ({p1} \/ (LSeg(p1,p11) /\ LSeg(p01,p2))) \/ ((LSeg(p11,p2) /\ L1) \/ {p2}) by A61,A67,XBOOLE_1:4 .= {p1} \/ {p1} \/ (LSeg(p1,p11) /\ LSeg(p01,p2)) \/ ((LSeg(p11,p2) /\ L1) \/ {p2}) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p11) /\ LSeg(p01,p2)) \/ ((LSeg(p11,p2) /\ L1) \/ {p2}); suppose A69: p1 <> p11 & p1 <> p10; A70: LSeg(p1,p11) /\ L3 c= L4 /\ L3 by A7,XBOOLE_1:26; now assume p10 in LSeg(p1,p11) /\ L3; then p10 in LSeg(p1,p11) & p1`2 <= p11`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`2 = 0 by A5,A6,Lm4,TOPREAL1:10; hence contradiction by A5,A6,A69,EUCLID:57; end; then {p10} <> LSeg(p1,p11) /\ L3 by ZFMISC_1:37; then A71: LSeg(p1,p11) /\ L3 = {} by A70,TOPREAL1:22,ZFMISC_1:39; A72: LSeg(p11,p2) /\ LSeg(p1,p10) c= {p11} by A8,A46,TOPREAL1:24,XBOOLE_1:27; now assume p11 in LSeg(p11,p2) /\ LSeg(p1,p10); then p11 in LSeg(p10,p1) & p10`2 <= p1`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p1`2 by TOPREAL1:10; then 1 = p1`2 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A69,EUCLID:57; end; then {p11} <> LSeg(p11,p2) /\ LSeg(p1,p10) by ZFMISC_1:37; then LSeg(p11,p2) /\ LSeg(p1,p10) = {} by A72,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p11) /\ LSeg(p01,p2)) \/ ((LSeg(p11,p2) /\ L1) \/ {p2}) by A61,A71; end; now per cases; suppose A73: p2 = p01; then A74: LSeg(p1,p11) /\ LSeg(p01,p2) = LSeg(p1,p11) /\ {p01} by TOPREAL1:7; not p01 in LSeg(p1,p11) by A7,Lm4,TOPREAL1:9; then LSeg(p1,p11) /\ LSeg(p01,p2) = {} by A74,Lm1; hence P1 /\ P2 = {p1,p2} by A62,A73,ENUMSET1:41,TOPREAL1:21; suppose A75: p2 = p11; A76: LSeg(p1,p11) /\ LSeg(p01,p2) c= L4 /\ L2 by A7,A47,XBOOLE_1:27; p11 in LSeg(p1,p11) by TOPREAL1:6; then LSeg(p1,p11) /\ LSeg(p01,p2) <> {} by A75,Lm19,XBOOLE_0:def 3; then A77: LSeg(p1,p11) /\ LSeg(p01,p2) = {p2} by A75,A76,TOPREAL1:24,ZFMISC_1: 39; LSeg(p11,p2) /\ L1 = {p11} /\ L1 by A75,TOPREAL1:7; then LSeg(p11,p2) /\ L1 = {} by Lm1,Lm11; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A62,A77,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A78: p2 <> p11 & p2 <> p01; A79: LSeg(p1,p11) /\ LSeg(p01,p2) c= L4 /\ L2 by A7,A47,XBOOLE_1:27; now assume p11 in LSeg(p1,p11) /\ LSeg(p01,p2); then p11 in LSeg(p01,p2) & p01`1 <= p2`1 by A45,EUCLID:56,XBOOLE_0:def 3 ; then p11`1 <= p2`1 by TOPREAL1:9; then 1 = p2`1 by A45,Lm4,AXIOMS:21; hence contradiction by A45,A78,EUCLID:57; end; then {p11} <> LSeg(p1,p11) /\ LSeg(p01,p2) by ZFMISC_1:37; then A80: LSeg(p1,p11) /\ LSeg(p01,p2) = {} by A79,TOPREAL1:24,ZFMISC_1:39; A81: LSeg(p11,p2) /\ L1 c= L2 /\ L1 by A46,XBOOLE_1:26; now assume p01 in LSeg(p11,p2) /\ L1; then p01 in LSeg(p2,p11) & p2`1 <= p11`1 by A45,EUCLID:56,XBOOLE_0:def 3 ; then p2`1 = 0 by A45,Lm4,TOPREAL1:9; hence contradiction by A45,A78,EUCLID:57; end; then {p01} <> LSeg(p11,p2) /\ L1 by ZFMISC_1:37; then LSeg(p11,p2) /\ L1 = {} by A81,TOPREAL1:21,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A62,A80,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A82: p2 in L3; then A83: ex q st q = p2 & q`1 <= 1 & q`1 >= 0 & q`2 = 0 by TOPREAL1:19; take P1 = LSeg(p1,p10) \/ LSeg(p10,p2),P2 = LSeg(p1,p11) \/ (L2 \/ L1 \/ LSeg(p00,p2)); A84: LSeg(p2,p10) c= L3 by A82,Lm17,TOPREAL1:12; A85: LSeg(p2,p00) c= L3 by A82,Lm14,TOPREAL1:12; p10 in LSeg(p1,p10) & p10 in LSeg(p10,p2) by TOPREAL1:6; then LSeg(p1,p10) /\ LSeg(p10,p2) c= L4 /\ L3 & L3 /\ L4 = {p10} & LSeg(p1,p10) /\ LSeg(p10,p2) <> {} by A8,A84,TOPREAL1:22,XBOOLE_0:def 3,XBOOLE_1:27; then LSeg(p1,p10) /\ LSeg(p10,p2) = {p10} & (p1 <> p10 or p2 <> p10) by A1,ZFMISC_1:39; hence P1 is_an_arc_of p1,p2 by TOPREAL1:18; L2 is_an_arc_of p11,p01 & L1 is_an_arc_of p01,p00 by Lm4,TOPREAL1:15; then A86: L2 \/ L1 is_an_arc_of p11,p00 by TOPREAL1:5,21; L2 /\ LSeg(p00,p2) c= L2 /\ L3 by A85,XBOOLE_1:26; then A87: L2 /\ LSeg(p00,p2) = {} by Lm2,XBOOLE_1:3; p00 in LSeg(p00,p2) by TOPREAL1:6; then A88: L1 /\ LSeg(p00,p2) c= {p00} & L1 /\ LSeg(p00,p2) <> {} by A85,Lm13,TOPREAL1:23,XBOOLE_0:def 3,XBOOLE_1:27; (L2 \/ L1) /\ LSeg(p00,p2) = (L2 /\ LSeg(p00,p2)) \/ (L1 /\ LSeg(p00,p2)) by XBOOLE_1:23 .= {p00} by A87,A88,ZFMISC_1:39; then A89: L2 \/ L1 \/ LSeg(p00,p2) is_an_arc_of p11,p2 by A86,TOPREAL1:16; A90: LSeg(p1,p11) /\ LSeg(p00,p2) c= L4 /\ L3 by A7,A85,XBOOLE_1:27; now assume p10 in LSeg(p1,p11) /\ LSeg(p00,p2); then p10 in LSeg(p1,p11) & p10 in LSeg(p00,p2) & p1`2 <= p11`2 & p00`1 <= p2`1 by A5,A6,A83,EUCLID:56,XBOOLE_0:def 3; then p10`1 <= p2`1 & p1`2 <= p10`2 by TOPREAL1:9,10; then 0 = p1`2 & 0 = p2`2 & 1 = p1`1 & 1 = p2`1 by A5,A6,A83,Lm4,AXIOMS:21; then p1 = p10 & p2 = p10 by EUCLID:57; hence contradiction by A1; end; then {p10} <> LSeg(p1,p11) /\ LSeg(p00,p2) by ZFMISC_1:37; then A91: LSeg(p1,p11) /\ LSeg(p00,p2) = {} by A90,TOPREAL1:22,ZFMISC_1:39; LSeg(p1,p11) /\ (L2 \/ L1 \/ LSeg(p00,p2)) = (LSeg(p1,p11) /\ (L2 \/ L1)) \/ (LSeg(p1,p11) /\ LSeg(p00,p2)) by XBOOLE_1:23 .= (LSeg(p1,p11) /\ L2) \/ (LSeg(p1,p11) /\ L1) by A91,XBOOLE_1:23 .= {p11} by A11,A12,A14,TOPREAL1:24,ZFMISC_1:39; hence P2 is_an_arc_of p1,p2 by A89,TOPREAL1:17; A92: LSeg(p1,p10) \/ LSeg(p1,p11) = L4 by A3,TOPREAL1:11; A93: LSeg(p00,p2) \/ LSeg(p10,p2) = L3 by A82,TOPREAL1:11; thus P1 \/ P2 = LSeg(p10,p2) \/ (LSeg(p1,p10) \/ (LSeg(p1,p11) \/ (L1 \/ L2 \/ LSeg(p00,p2)))) by XBOOLE_1:4 .= LSeg(p10,p2) \/ (L4 \/ (L1 \/ L2 \/ LSeg(p00,p2))) by A92,XBOOLE_1:4 .= (L1 \/ L2) \/ L4 \/ LSeg(p00,p2) \/ LSeg(p10,p2) by XBOOLE_1:4 .= (L1 \/ L2) \/ L4 \/ L3 by A93,XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; A94: LSeg(p1,p10) /\ LSeg(p1,p11) = {p1} by A3,TOPREAL1:14; A95: LSeg(p10,p2) /\ LSeg(p00,p2) = {p2} by A82,TOPREAL1:14; LSeg(p10,p2) /\ L2 c= L3 /\ L2 & L3 /\ L2 = {} by A84,TOPREAL1:25, XBOOLE_0:def 7,XBOOLE_1:26 ; then A96: LSeg(p10,p2) /\ L2 = {} by XBOOLE_1:3; A97: P1 /\ P2 = (LSeg(p1,p10) /\ (LSeg(p1,p11) \/ (L2 \/ L1 \/ LSeg(p00,p2)))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p11) \/ (L2 \/ L1 \/ LSeg(p00,p2)))) by XBOOLE_1:23 .= (LSeg(p1,p10) /\ LSeg(p1,p11)) \/ (LSeg(p1,p10) /\ (L2 \/ L1 \/ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p11) \/ (L2 \/ L1 \/ LSeg(p00,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ (L2 \/ L1)) \/ (LSeg(p1,p10) /\ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p11) \/ (L2 \/ L1 \/ LSeg(p00,p2)))) by A94,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L2) \/ (LSeg(p10,p1) /\ L1) \/ (LSeg(p1,p10) /\ LSeg(p00,p2))) \/ (LSeg(p10,p2) /\ (LSeg(p1,p11) \/ (L2 \/ L1 \/ LSeg(p00,p2)))) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L2) \/ (LSeg(p1,p10) /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p11)) \/ (LSeg(p10,p2) /\ (L2 \/ L1 \/ LSeg(p00,p2)))) by A13,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L2) \/ (LSeg(p1,p10) /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p11)) \/ ((LSeg(p10,p2) /\ (L2 \/ L1)) \/ {p2})) by A95,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L2) \/ (LSeg(p1,p10) /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p11)) \/ ((LSeg(p10,p2) /\ L2) \/ (LSeg(p10,p2) /\ L1) \/ {p2})) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p10) /\ L2) \/ (LSeg(p1,p10) /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ LSeg(p1,p11)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2})) by A96; A98: now per cases; suppose A99: p1 = p10; then LSeg(p1,p10) /\ L2 = {p10} /\ L2 by TOPREAL1:7; then A100: LSeg(p1,p10) /\ L2 = {} by Lm1,Lm10; A101: LSeg(p10,p2) /\ LSeg(p1,p11) c= {p1} by A84,A99,TOPREAL1:22,XBOOLE_1:27 ; p10 in LSeg(p10,p2) by TOPREAL1:6; then LSeg(p10,p2) /\ LSeg(p1,p11) <> {} by A99,Lm18,XBOOLE_0:def 3; then LSeg(p10,p2) /\ LSeg(p1,p11) = {p1} by A101,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ({p1} \/ (LSeg(p1,p10) /\ LSeg(p00,p2))) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by A97,A100,XBOOLE_1:4 .= {p1} \/ {p1} \/ (LSeg(p1,p10) /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p10) /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}); suppose A102: p1 = p11; then A103: LSeg(p10,p2) /\ LSeg(p1,p11) = LSeg(p10,p2) /\ {p11} by TOPREAL1:7; not p11 in LSeg(p10,p2) by A84,Lm4,TOPREAL1:10; then LSeg(p10,p2) /\ LSeg(p1,p11) = {} by A103,Lm1; hence P1 /\ P2 = {p1} \/ {p1} \/ (LSeg(p1,p10) /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by A97,A102,TOPREAL1:24,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p10) /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}); suppose A104: p1 <> p11 & p1 <> p10; A105: LSeg(p1,p10) /\ L2 c= L4 /\ L2 by A8,XBOOLE_1:26; now assume p11 in LSeg(p1,p10) /\ L2; then p11 in LSeg(p10,p1) & p10`2 <= p1`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p1`2 by TOPREAL1:10; then p1`2 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A104,EUCLID:57; end; then LSeg(p1,p10) /\ L2 <> {p11} by ZFMISC_1:37; then A106: LSeg(p1,p10) /\ L2 = {} by A105,TOPREAL1:24,ZFMISC_1:39; A107: LSeg(p10,p2) /\ LSeg(p1,p11) c= {p10} by A7,A84,TOPREAL1:22,XBOOLE_1:27 ; now assume p10 in LSeg(p10,p2) /\ LSeg(p1,p11); then p10 in LSeg(p1,p11) & p1`2 <= p11`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p1`2 = 0 by A5,A6,Lm4,TOPREAL1:10; hence contradiction by A5,A6,A104,EUCLID:57; end; then {p10} <> LSeg(p10,p2) /\ LSeg(p1,p11) by ZFMISC_1:37; then LSeg(p10,p2) /\ LSeg(p1,p11) = {} by A107,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ (LSeg(p1,p10) /\ LSeg(p00,p2)) \/ ((LSeg(p10,p2) /\ L1) \/ {p2}) by A97,A106; end; now per cases; suppose A108: p2 = p00; then A109: LSeg(p1,p10) /\ LSeg(p00,p2) = LSeg(p1,p10) /\ {p00} by TOPREAL1:7 ; not p00 in LSeg(p1,p10) by A8,Lm4,TOPREAL1:9; then LSeg(p1,p10) /\ LSeg(p00,p2) = {} by A109,Lm1; hence P1 /\ P2 = {p1,p2} by A98,A108,ENUMSET1:41,TOPREAL1:23; suppose A110: p2 = p10; A111: LSeg(p1,p10) /\ LSeg(p00,p2) c= L4 /\ L3 by A8,A85,XBOOLE_1:27; p10 in LSeg(p1,p10) by TOPREAL1:6; then LSeg(p1,p10) /\ LSeg(p00,p2) <> {} by A110,Lm17,XBOOLE_0:def 3; then A112: LSeg(p1,p10) /\ LSeg(p00,p2) = {p2} by A110,A111,TOPREAL1:22,ZFMISC_1:39; LSeg(p10,p2) /\ L1 = {p10} /\ L1 by A110,TOPREAL1:7; then LSeg(p10,p2) /\ L1 = {} by Lm1,Lm9; hence P1 /\ P2 = {p1} \/ ({p2} \/ {p2}) by A98,A112,XBOOLE_1:4 .= {p1,p2} by ENUMSET1:41; suppose A113: p2 <> p10 & p2 <> p00; A114: LSeg(p1,p10) /\ LSeg(p00,p2) c= L4 /\ L3 by A8,A85,XBOOLE_1:27; now assume p10 in LSeg(p1,p10) /\ LSeg(p00,p2); then p10 in LSeg(p00,p2) & p00`1 <= p2`1 by A83,EUCLID:56,XBOOLE_0:def 3 ; then p10`1 <= p2`1 by TOPREAL1:9; then p2`1 = 1 by A83,Lm4,AXIOMS:21; hence contradiction by A83,A113,EUCLID:57; end; then {p10} <> LSeg(p1,p10) /\ LSeg(p00,p2) by ZFMISC_1:37; then A115: LSeg(p1,p10) /\ LSeg(p00,p2) = {} by A114,TOPREAL1:22,ZFMISC_1:39; A116: LSeg(p10,p2) /\ L1 c= L3 /\ L1 by A84,XBOOLE_1:26; now assume p00 in LSeg(p10,p2) /\ L1; then p00 in LSeg(p2,p10) & p2`1 <= p10`1 by A83,EUCLID:56,XBOOLE_0:def 3 ; then p2`1 = 0 by A83,Lm4,TOPREAL1:9; hence contradiction by A83,A113,EUCLID:57; end; then {p00} <> LSeg(p10,p2) /\ L1 by ZFMISC_1:37; then LSeg(p10,p2) /\ L1 = {} by A116,TOPREAL1:23,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A98,A115,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A117: p2 in L4; then consider q such that A118: q = p2 and A119: q`1 = 1 & q`2 <= 1 & q`2 >= 0 by TOPREAL1:19; A120: p = |[p`1,p`2]| & q = |[q`1,q`2]| by EUCLID:57; A121: LSeg(p11,p2) c= L4 by A117,Lm20,TOPREAL1:12; A122: LSeg(p10,p2) c= L4 by A117,Lm18,TOPREAL1:12; A123: LSeg(p1,p2) c= L4 by A3,A117,TOPREAL1:12; now per cases by A1,A5,A6,A118,A119,A120,REAL_1:def 5; suppose A124: p`2 < q`2; take P1 = LSeg(p1,p2),P2 = LSeg(p1,p10) \/ (L3 \/ L1 \/ L2 \/ LSeg(p11,p2)); thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A125: now assume A126: LSeg(p1,p10) /\ LSeg(p11,p2) <> {}; consider a being Element of LSeg(p1,p10) /\ LSeg(p11,p2); reconsider p = a as Point of TOP-REAL 2 by A126,TARSKI:def 3; p in LSeg(p10,p1) & p in LSeg(p2,p11) & p10`2 <= p1`2 & p2`2 <= p11 `2 by A5,A6,A118,A119,A126,EUCLID:56,XBOOLE_0:def 3; then p`2 <= p1`2 & p2`2 <= p`2 by TOPREAL1:10; hence contradiction by A5,A118,A124,AXIOMS:22; end; A127: LSeg(p1,p10) /\ L2 c= L4 /\ L2 by A8,XBOOLE_1:26; now assume p11 in LSeg(p1,p10) /\ L2; then p11 in LSeg(p10,p1) & p10`2 <= p1`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; then p11`2 <= p1`2 by TOPREAL1:10; hence contradiction by A5,A6,A119,A124,Lm4,AXIOMS:21; end; then {p11} <> LSeg(p1,p10) /\ L2 by ZFMISC_1:37; then A128: LSeg(p1,p10) /\ L2 = {} by A127,TOPREAL1:24,ZFMISC_1:39; A129: LSeg(p1,p10) /\ L3 c= L4 /\ L3 by A8,XBOOLE_1:26; p10 in LSeg(p1,p10) by TOPREAL1:6; then A130: LSeg(p1,p10) /\ L3 <> {} by Lm17,XBOOLE_0:def 3; LSeg(p1,p10) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A8,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A131: LSeg(p1,p10) /\ L1 = {} by XBOOLE_1:3; A132: LSeg(p1,p10) /\ (L3 \/ L1 \/ L2 \/ LSeg(p11,p2)) = LSeg(p1,p10) /\ (L3 \/ L1 \/ L2) \/ (LSeg(p1,p10) /\ LSeg(p11,p2)) by XBOOLE_1:23 .= LSeg(p1,p10) /\ (L3 \/ L1) \/ (LSeg(p1,p10) /\ L2) by A125,XBOOLE_1: 23 .= LSeg(p1,p10) /\ L3 \/ (LSeg(p1,p10) /\ L1) by A128,XBOOLE_1:23 .= {p10} by A129,A130,A131,TOPREAL1:22,ZFMISC_1:39; L3 is_an_arc_of p10,p00 by Lm4,TOPREAL1:15; then A133: L3 \/ L1 is_an_arc_of p10,p01 by TOPREAL1:16,23; (L3 \/ L1) /\ L2 = L3 /\ L2 \/ L1 /\ L2 by XBOOLE_1:23 .= {p01} by Lm2,TOPREAL1:21; then A134: L3 \/ L1 \/ L2 is_an_arc_of p10,p11 by A133,TOPREAL1:16; A135: L2 /\ LSeg(p11,p2) c= {p11} by A121,TOPREAL1:24,XBOOLE_1:26; p11 in LSeg(p11,p2) by TOPREAL1:6; then L2 /\ LSeg(p11,p2) <> {} by Lm19,XBOOLE_0:def 3; then A136: L2 /\ LSeg(p11,p2) = {p11} by A135,ZFMISC_1:39; A137: L3 /\ LSeg(p11,p2) c= {p10} by A121,TOPREAL1:22,XBOOLE_1:26; now assume p10 in L3 /\ LSeg(p11,p2); then p10 in LSeg(p2,p11) & p2`2 <= p11`2 by A118,A119,EUCLID:56, XBOOLE_0:def 3; hence contradiction by A6,A118,A124,Lm4,TOPREAL1:10; end; then {p10} <> L3 /\ LSeg(p11,p2) by ZFMISC_1:37; then A138: L3 /\ LSeg(p11,p2) = {} by A137,ZFMISC_1:39; L1 /\ LSeg(p11,p2) c= L1 /\ L4 & L1 /\ L4 = {} by A121,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A139: L1 /\ LSeg(p11,p2) = {} by XBOOLE_1:3; (L3 \/ L1 \/ L2) /\ LSeg(p11,p2) = (L3 \/ L1) /\ LSeg(p11,p2) \/ L2 /\ LSeg(p11,p2) by XBOOLE_1:23 .= (L3 /\ LSeg(p11,p2)) \/ (L1 /\ LSeg(p11,p2)) \/ {p11} by A136,XBOOLE_1:23 .= {p11} by A138,A139; then L3 \/ L1 \/ L2 \/ LSeg(p11,p2) is_an_arc_of p10,p2 by A134,TOPREAL1:16; hence P2 is_an_arc_of p1,p2 by A132,TOPREAL1:17; thus P1 \/ P2 = (L3 \/ L1 \/ L2) \/ LSeg(p11,p2) \/ (LSeg(p1,p10) \/ LSeg(p1,p2)) by XBOOLE_1:4 .= (L3 \/ L1 \/ L2) \/ (LSeg(p10,p1) \/ LSeg(p1,p2) \/ LSeg(p2,p11)) by XBOOLE_1:4 .= (L3 \/ L1 \/ L2) \/ L4 by A3,A117,TOPREAL1:13 .= (L3 \/ (L1 \/ L2)) \/ L4 by XBOOLE_1:4 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; p1 in LSeg(p1,p2) & p1 in LSeg(p1,p10) by TOPREAL1:6; then p1 in LSeg(p1,p2) /\ LSeg(p1,p10) by XBOOLE_0:def 3; then A140: {p1} c= LSeg(p1,p2) /\ LSeg(p1,p10) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p1,p10) c= {p1} proof let a; assume A141: a in LSeg(p1,p2) /\ LSeg(p1,p10); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p10,p1) & p1`1 <= p2`1 & p1`2 <= p2`2 & p10`2 <= p1`2 by A5,A6,A118,A119,A124,A141,EUCLID:56,XBOOLE_0:def 3 ; then p`1 <= p2`1 & p1`1 <= p`1 & p`2 <= p1`2 & p1`2 <= p`2 by TOPREAL1:9,10; then p1`2 = p`2 & p`1 = 1 by A5,A6,A118,A119,AXIOMS:21; then p = |[ 1, p1`2]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then A142: LSeg(p1,p2) /\ LSeg(p1,p10) = {p1} by A140,XBOOLE_0:def 10; p2 in LSeg(p1,p2) & p2 in LSeg(p11,p2) by TOPREAL1:6; then p2 in LSeg(p1,p2) /\ LSeg(p11,p2) by XBOOLE_0:def 3; then A143: {p2} c= LSeg(p1,p2) /\ LSeg(p11,p2) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p11,p2) c= {p2} proof let a; assume A144: a in LSeg(p1,p2) /\ LSeg(p11,p2); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p1,p2) & p in LSeg(p2,p11) & p1`1 <= p2`1 & p1`2 <= p2`2 & p2`2 <= p11`2 by A5,A6,A118,A119,A124,A144,EUCLID:56,XBOOLE_0:def 3 ; then p`1 <= p2`1 & p1`1 <= p`1 & p`2 <= p2`2 & p2`2 <= p`2 by TOPREAL1:9,10; then p2`2 = p`2 & p`1 = 1 by A5,A6,A118,A119,AXIOMS:21; then p = |[ 1, p2`2]| by EUCLID:57 .= p2 by A118,A119,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A145: LSeg(p1,p2) /\ LSeg(p11,p2) = {p2} by A143,XBOOLE_0:def 10; LSeg(p1,p2) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A123,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A146: LSeg(p1,p2) /\ L1 = {} by XBOOLE_1:3; A147: P1 /\ P2 = {p1} \/ LSeg(p1,p2) /\ (L3 \/ L1 \/ L2 \/ LSeg(p11,p2)) by A142,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L3 \/ L1 \/ L2)) \/ {p2}) by A145,XBOOLE_1 :23 .= {p1} \/ ((LSeg(p1,p2) /\ (L3 \/ L1)) \/ (LSeg(p1,p2) /\ L2) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L3) \/ (LSeg(p1,p2) /\ L1) \/ (LSeg(p1,p2) /\ L2) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L3) \/ ((LSeg(p1,p2) /\ L2) \/ {p2})) by A146,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p2) /\ L3) \/ ((LSeg(p1,p2) /\ L2) \/ {p2}) by XBOOLE_1:4; A148: LSeg(p1,p2) /\ L3 c= L4 /\ L3 by A123,XBOOLE_1:26; A149: now per cases; suppose A150: p1 = p10; then p10 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L3 <> {} by Lm17,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L3 = {p1} by A148,A150,TOPREAL1:22,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L2) \/ {p2}) by A147; suppose A151: p1 <> p10; now assume p10 in LSeg(p1,p2) /\ L3; then p10 in LSeg(p1,p2) & p1`2 <= p2`2 by A5,A118,A124,XBOOLE_0:def 3; then p1`2 = 0 by A5,A6,Lm4,TOPREAL1:10; hence contradiction by A5,A6,A151,EUCLID:57; end; then {p10} <> LSeg(p1,p2) /\ L3 by ZFMISC_1:37; then LSeg(p1,p2) /\ L3 = {} by A148,TOPREAL1:22,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L2) \/ {p2}) by A147; end; A152: LSeg(p1,p2) /\ L2 c= L4 /\ L2 by A123,XBOOLE_1:26; now per cases; suppose A153: p2 = p11; then p11 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L2 <> {} by Lm19,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L2 = {p2} by A152,A153,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A149,ENUMSET1:41; suppose A154: p2 <> p11; now assume p11 in LSeg(p1,p2) /\ L2; then p11 in LSeg(p1,p2) & p1`2 <= p2`2 by A5,A118,A124,XBOOLE_0:def 3; then p11`2 <= p2`2 by TOPREAL1:10; then p2`2 = 1 by A118,A119,Lm4,AXIOMS:21; hence contradiction by A118,A119,A154,EUCLID:57; end; then {p11} <> LSeg(p1,p2) /\ L2 by ZFMISC_1:37; then LSeg(p1,p2) /\ L2 = {} by A152,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A149,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; suppose A155: q`2 < p`2; take P1 = LSeg(p1,p2),P2 = LSeg(p1,p11) \/ (L2 \/ L1 \/ L3 \/ LSeg(p10,p2)); thus P1 is_an_arc_of p1,p2 by A1,TOPREAL1:15; A156: now assume A157: LSeg(p1,p11) /\ LSeg(p10,p2) <> {}; consider a being Element of LSeg(p1,p11) /\ LSeg(p10,p2); reconsider p = a as Point of TOP-REAL 2 by A157,TARSKI:def 3; p in LSeg(p1,p11) & p in LSeg(p10,p2) & p1`2 <= p11`2 & p10`2 <= p2 `2 by A5,A6,A118,A119,A157,EUCLID:56,XBOOLE_0:def 3; then p`2 <= p2`2 & p1`2 <= p`2 by TOPREAL1:10; hence contradiction by A5,A118,A155,AXIOMS:22; end; A158: LSeg(p1,p11) /\ L3 c= L4 /\ L3 by A7,XBOOLE_1:26; now assume p10 in LSeg(p1,p11) /\ L3; then p10 in LSeg(p1,p11) & p1`2 <= p11`2 by A5,A6,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A5,A119,A155,Lm4,TOPREAL1:10; end; then {p10} <> LSeg(p1,p11) /\ L3 by ZFMISC_1:37; then A159: LSeg(p1,p11) /\ L3 = {} by A158,TOPREAL1:22,ZFMISC_1:39; A160: LSeg(p1,p11) /\ L2 c= L4 /\ L2 by A7,XBOOLE_1:26; p11 in LSeg(p1,p11) by TOPREAL1:6; then A161: LSeg(p1,p11) /\ L2 <> {} by Lm19,XBOOLE_0:def 3; LSeg(p1,p11) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A7,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A162: LSeg(p1,p11) /\ L1 = {} by XBOOLE_1:3; A163: LSeg(p1,p11) /\ (L2 \/ L1 \/ L3 \/ LSeg(p10,p2)) = LSeg(p1,p11) /\ (L2 \/ L1 \/ L3) \/ (LSeg(p1,p11) /\ LSeg(p10,p2)) by XBOOLE_1:23 .= LSeg(p1,p11) /\ (L2 \/ L1) \/ (LSeg(p1,p11) /\ L3) by A156,XBOOLE_1: 23 .= LSeg(p1,p11) /\ L2 \/ (LSeg(p1,p11) /\ L1) by A159,XBOOLE_1:23 .= {p11} by A160,A161,A162,TOPREAL1:24,ZFMISC_1:39; L2 is_an_arc_of p11,p01 by Lm4,TOPREAL1:15; then A164: L2 \/ L1 is_an_arc_of p11,p00 by TOPREAL1:16,21; (L2 \/ L1) /\ L3 = L3 /\ L2 \/ L1 /\ L3 by XBOOLE_1:23 .= {p00} by Lm2,TOPREAL1:23; then A165: L2 \/ L1 \/ L3 is_an_arc_of p11,p10 by A164,TOPREAL1:16; A166: L3 /\ LSeg(p10,p2) c= {p10} by A122,TOPREAL1:22,XBOOLE_1:26; p10 in LSeg(p10,p2) by TOPREAL1:6; then L3 /\ LSeg(p10,p2) <> {} by Lm17,XBOOLE_0:def 3; then A167: L3 /\ LSeg(p10,p2) = {p10} by A166,ZFMISC_1:39; A168: L2 /\ LSeg(p10,p2) c= {p11} by A122,TOPREAL1:24,XBOOLE_1:26; now assume p11 in L2 /\ LSeg(p10,p2); then p11 in LSeg(p10,p2) & p10`2 <= p2`2 by A118,A119,EUCLID:56, XBOOLE_0:def 3; then p11`2 <= p2`2 by TOPREAL1:10; hence contradiction by A6,A118,A119,A155,Lm4,AXIOMS:21; end; then {p11} <> L2 /\ LSeg(p10,p2) by ZFMISC_1:37; then A169: L2 /\ LSeg(p10,p2) = {} by A168,ZFMISC_1:39; L1 /\ LSeg(p10,p2) c= L1 /\ L4 & L1 /\ L4 = {} by A122,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A170: L1 /\ LSeg(p10,p2) = {} by XBOOLE_1:3; (L2 \/ L1 \/ L3) /\ LSeg(p10,p2) = (L2 \/ L1) /\ LSeg(p10,p2) \/ L3 /\ LSeg(p10,p2) by XBOOLE_1:23 .= (L2 /\ LSeg(p10,p2)) \/ (L1 /\ LSeg(p10,p2)) \/ {p10} by A167,XBOOLE_1:23 .= {p10} by A169,A170; then L2 \/ L1 \/ L3 \/ LSeg(p10,p2) is_an_arc_of p11,p2 by A165,TOPREAL1:16 ; hence P2 is_an_arc_of p1,p2 by A163,TOPREAL1:17; thus P1 \/ P2 = (L2 \/ L1 \/ L3) \/ LSeg(p10,p2) \/ (LSeg(p1,p11) \/ LSeg(p1,p2)) by XBOOLE_1:4 .= (L2 \/ L1 \/ L3) \/ (LSeg(p10,p2) \/ (LSeg(p1,p2) \/ LSeg(p1,p11))) by XBOOLE_1:4 .= (L1 \/ L2 \/ L3) \/ L4 by A3,A117,TOPREAL1:13 .= R^2-unit_square by TOPREAL1:20,XBOOLE_1:4; p1 in LSeg(p1,p2) & p1 in LSeg(p1,p11) by TOPREAL1:6; then p1 in LSeg(p1,p2) /\ LSeg(p1,p11) by XBOOLE_0:def 3; then A171: {p1} c= LSeg(p1,p2) /\ LSeg(p1,p11) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p1,p11) c= {p1} proof let a; assume A172: a in LSeg(p1,p2) /\ LSeg(p1,p11); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p1,p11) & p2`1 <= p1`1 & p2`2 <= p1`2 & p1`2 <= p11`2 by A5,A6,A118,A119,A155,A172,EUCLID:56,XBOOLE_0:def 3 ; then p`1 <= p1`1 & p2`1 <= p`1 & p`2 <= p1`2 & p1`2 <= p`2 by TOPREAL1:9,10; then p1`2 = p`2 & p`1 = 1 by A5,A6,A118,A119,AXIOMS:21; then p = |[ 1, p1`2]| by EUCLID:57 .= p1 by A5,A6,EUCLID:57; hence a in {p1} by TARSKI:def 1; end; then A173: LSeg(p1,p2) /\ LSeg(p1,p11) = {p1} by A171,XBOOLE_0:def 10; p2 in LSeg(p1,p2) & p2 in LSeg(p10,p2) by TOPREAL1:6; then p2 in LSeg(p1,p2) /\ LSeg(p10,p2) by XBOOLE_0:def 3; then A174: {p2} c= LSeg(p1,p2) /\ LSeg(p10,p2) by ZFMISC_1:37; LSeg(p1,p2) /\ LSeg(p10,p2) c= {p2} proof let a; assume A175: a in LSeg(p1,p2) /\ LSeg(p10,p2); then reconsider p = a as Point of TOP-REAL 2; p in LSeg(p2,p1) & p in LSeg(p10,p2) & p2`1 <= p1`1 & p2`2 <= p1`2 & p10`2 <= p2`2 by A5,A6,A118,A119,A155,A175,EUCLID:56,XBOOLE_0:def 3 ; then p`1 <= p1`1 & p2`1 <= p`1 & p`2 <= p2`2 & p2`2 <= p`2 by TOPREAL1:9,10; then p2`2 = p`2 & p`1 = 1 by A5,A6,A118,A119,AXIOMS:21; then p = |[ 1, p2`2]| by EUCLID:57 .= p2 by A118,A119,EUCLID:57; hence a in {p2} by TARSKI:def 1; end; then A176: LSeg(p1,p2) /\ LSeg(p10,p2) = {p2} by A174,XBOOLE_0:def 10; LSeg(p1,p2) /\ L1 c= L4 /\ L1 & L1 /\ L4 = {} by A123,TOPREAL1:26,XBOOLE_0:def 7,XBOOLE_1:26; then A177: LSeg(p1,p2) /\ L1 = {} by XBOOLE_1:3; A178: P1 /\ P2 = {p1} \/ LSeg(p1,p2) /\ (L2 \/ L1 \/ L3 \/ LSeg(p10,p2)) by A173,XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ (L2 \/ L1 \/ L3)) \/ {p2}) by A176,XBOOLE_1 :23 .= {p1} \/ ((LSeg(p1,p2) /\ (L2 \/ L1)) \/ (LSeg(p1,p2) /\ L3) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L2) \/ (LSeg(p1,p2) /\ L1) \/ (LSeg(p1,p2) /\ L3) \/ {p2}) by XBOOLE_1:23 .= {p1} \/ ((LSeg(p1,p2) /\ L2) \/ ((LSeg(p1,p2) /\ L3) \/ {p2})) by A177,XBOOLE_1:4 .= {p1} \/ (LSeg(p1,p2) /\ L2) \/ ((LSeg(p1,p2) /\ L3) \/ {p2}) by XBOOLE_1:4; A179: LSeg(p1,p2) /\ L2 c= L4 /\ L2 by A123,XBOOLE_1:26; A180: now per cases; suppose A181: p1 = p11; then p11 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L2 <> {} by Lm19,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L2 = {p1} by A179,A181,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L3) \/ {p2}) by A178; suppose A182: p1 <> p11; now assume p11 in LSeg(p1,p2) /\ L2; then p11 in LSeg(p2,p1) & p2`2 <= p1`2 by A5,A118,A155,XBOOLE_0:def 3; then p11`2 <= p1`2 by TOPREAL1:10; then p1`2 = 1 by A5,A6,Lm4,AXIOMS:21; hence contradiction by A5,A6,A182,EUCLID:57; end; then {p11} <> LSeg(p1,p2) /\ L2 by ZFMISC_1:37; then LSeg(p1,p2) /\ L2 = {} by A179,TOPREAL1:24,ZFMISC_1:39; hence P1 /\ P2 = {p1} \/ ((LSeg(p1,p2) /\ L3) \/ {p2}) by A178; end; A183: LSeg(p1,p2) /\ L3 c= L4 /\ L3 by A123,XBOOLE_1:26; now per cases; suppose A184: p2 = p10; then p10 in LSeg(p1,p2) by TOPREAL1:6; then LSeg(p1,p2) /\ L3 <> {} by Lm17,XBOOLE_0:def 3; then LSeg(p1,p2) /\ L3 = {p2} by A183,A184,TOPREAL1:22,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A180,ENUMSET1:41; suppose A185: p2 <> p10; now assume p10 in LSeg(p1,p2) /\ L3; then p10 in LSeg(p2,p1) & p2`2 <= p1`2 by A5,A118,A155,XBOOLE_0:def 3; then p2`2 = 0 by A118,A119,Lm4,TOPREAL1:10; hence contradiction by A118,A119,A185,EUCLID:57; end; then {p10} <> LSeg(p1,p2) /\ L3 by ZFMISC_1:37; then LSeg(p1,p2) /\ L3 = {} by A183,TOPREAL1:22,ZFMISC_1:39; hence P1 /\ P2 = {p1,p2} by A180,ENUMSET1:41; end; hence P1 /\ P2 = {p1,p2}; end; hence ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2}; end; theorem Th1: p1 <> p2 & p1 in R^2-unit_square & p2 in R^2-unit_square implies ex P1, P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & R^2-unit_square = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof assume that A1: p1 <> p2 and A2: p1 in R^2-unit_square & p2 in R^2-unit_square; A3: p1 in L1 \/ L2 or p1 in L3 \/ L4 by A2,TOPREAL1:20,XBOOLE_0:def 2; per cases by A3,XBOOLE_0:def 2; suppose p1 in L1; hence thesis by A1,A2,Lm23; suppose p1 in L2; hence thesis by A1,A2,Lm24; suppose p1 in L3; hence thesis by A1,A2,Lm25; suppose p1 in L4; hence thesis by A1,A2,Lm26; end; theorem Th2: R^2-unit_square is compact proof consider P1,P2 being non empty Subset of TOP-REAL 2 such that A1: P1 is_S-P_arc & P2 is_S-P_arc & R^2-unit_square = P1 \/ P2 by TOPREAL1:34; consider f being map of I[01], (TOP-REAL 2)|P1 such that A2: f is_homeomorphism by A1,TOPREAL1:36; A3: f is continuous by A2,TOPS_2:def 5; consider f0 being map of I[01], (TOP-REAL 2)|P2 such that A4: f0 is_homeomorphism by A1,TOPREAL1:36; A5: f0 is continuous by A4,TOPS_2:def 5; A6: I[01] is compact by HEINE:11,TOPMETR:27; A7: rng f = [#]((TOP-REAL 2)|P1) by A2,TOPS_2:def 5; reconsider P1 as non empty Subset of TOP-REAL 2; (TOP-REAL 2)|P1 is compact by A3,A6,A7,COMPTS_1:23; then A8: P1 is compact by COMPTS_1:12; A9: rng f0 = [#]((TOP-REAL 2)|P2) by A4,TOPS_2:def 5; reconsider P2 as non empty Subset of TOP-REAL 2; (TOP-REAL 2)|P2 is compact by A5,A6,A9,COMPTS_1:23; then P2 is compact by COMPTS_1:12; hence thesis by A1,A8,COMPTS_1:19; end; theorem Th3: for Q, P being non empty Subset of TOP-REAL 2 for f being map of (TOP-REAL 2)|Q, (TOP-REAL 2)|P st f is_homeomorphism & Q is_an_arc_of q1,q2 holds for p1, p2 st p1 = f.q1 & p2 = f.q2 holds P is_an_arc_of p1,p2 proof let Q, P be non empty Subset of TOP-REAL 2; let f be map of (TOP-REAL 2)|Q, (TOP-REAL 2)|P; assume that A1: f is_homeomorphism and A2: Q is_an_arc_of q1,q2; let p1, p2 such that A3: p1 = f.q1 & p2 = f.q2; reconsider f as map of (TOP-REAL 2)|Q, (TOP-REAL 2)|P; consider f1 being map of I[01], (TOP-REAL 2)|Q such that A4: f1 is_homeomorphism & f1.0 = q1 & f1.1 = q2 by A2,TOPREAL1:def 2; set g1 = f*f1; A5: g1 is_homeomorphism by A1,A4,TOPS_2:71; A6: dom f1 = the carrier of I[01] & the carrier of I[01] = [.0,1.] by BORSUK_1:83,FUNCT_2:def 1; then 0 in dom f1 by RCOMP_1:15; then A7: g1.0 = p1 by A3,A4,FUNCT_1:23; 1 in dom f1 by A6,RCOMP_1:15; then g1.1 = p2 by A3,A4,FUNCT_1:23; hence thesis by A5,A7,TOPREAL1:def 2; end; definition let P be Subset of TOP-REAL 2; attr P is being_simple_closed_curve means :Def1: ex f being map of (TOP-REAL 2)|R^2-unit_square, (TOP-REAL 2)|P st f is_homeomorphism; synonym P is_simple_closed_curve; end; definition cluster R^2-unit_square -> being_simple_closed_curve; coherence proof set T = (TOP-REAL 2)|R^2-unit_square; take f = id T; thus dom f = [#]T by TOPS_2:51; A1: f = id the carrier of T by GRCAT_1:def 11; hence A2: rng f = the carrier of T by RELAT_1:71 .= [#]T by PRE_TOPC:12; thus A3: f is one-to-one by A1,FUNCT_1:52; thus A4: f is continuous proof let V be Subset of T such that A5: V is closed; thus f"V is closed by A1,A5,BORSUK_1:4; end; f" = f proof thus f" = (f qua Function)" by A2,A3,TOPS_2:def 4 .= (id the carrier of T)" by GRCAT_1:def 11 .= id the carrier of T by FUNCT_1:67 .= f by GRCAT_1:def 11; end; hence thesis by A4; end; end; definition cluster being_simple_closed_curve Subset of TOP-REAL 2; existence proof take R^2-unit_square; thus thesis; end; end; definition mode Simple_closed_curve is being_simple_closed_curve Subset of TOP-REAL 2; end; theorem Th4: for P being non empty Subset of TOP-REAL 2 st P is_simple_closed_curve ex p1,p2 st p1 <> p2 & p1 in P & p2 in P proof let P be non empty Subset of TOP-REAL 2; assume P is_simple_closed_curve; then consider f being map of (TOP-REAL 2)|R^2-unit_square, (TOP-REAL 2)|P such that A1: f is_homeomorphism by Def1; A2: rng f = [#]((TOP-REAL 2)|P) by A1,TOPS_2:def 5 .= P by PRE_TOPC:def 10; A3: p00`1 = 0 & p00`2 = 0 & p11`1 = 1 & p11`2 = 1 by EUCLID:56; reconsider RS = R^2-unit_square as non empty Subset of TOP-REAL 2; reconsider f as map of (TOP-REAL 2)|RS, (TOP-REAL 2)|P; dom f = [#]((TOP-REAL 2)|RS) by TOPS_2:51 .= R^2-unit_square by PRE_TOPC:def 10; then A4: p00 in dom f & p11 in dom f by A3,TOPREAL1:def 3; set p1 = f.p00, p2 = f.(p11); rng f = [#]((TOP-REAL 2)|P) & [#]((TOP-REAL 2)|P) c= [#] (TOP-REAL 2) & p1 in rng f & p2 in rng f by A1,A4,FUNCT_1:def 5,PRE_TOPC:def 9,TOPS_2:def 5; then reconsider p1, p2 as Point of TOP-REAL 2 by PRE_TOPC:12; take p1, p2; p00 <> p11 & f is one-to-one by A1,A3,TOPS_2:def 5; hence p1 <> p2 by A4,FUNCT_1:def 8; thus thesis by A2,A4,FUNCT_1:def 5; end; Lm27: for P, P1, P2 being non empty Subset of TOP-REAL 2 st p1 <> p2 & p1 in P & p2 in P & P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2} holds P is_simple_closed_curve proof let P, P1, P2 be non empty Subset of TOP-REAL 2 such that p1 <> p2 & p1 in P & p2 in P and A1: P1 is_an_arc_of p1,p2 and A2: P2 is_an_arc_of p1,p2 and A3: P = P1 \/ P2 and A4: P1 /\ P2 = {p1,p2}; consider f1 being map of I[01], (TOP-REAL 2)|P1 such that A5: f1 is_homeomorphism and A6: f1.0 = p1 & f1.1 = p2 by A1,TOPREAL1:def 2; consider f2 being map of I[01], (TOP-REAL 2)|P2 such that A7: f2 is_homeomorphism and A8: f2.0 = p1 & f2.1 = p2 by A2,TOPREAL1:def 2; consider h1,h2 such that A9: h1 is_S-Seq & h2 is_S-Seq and A10: R^2-unit_square = L~h1 \/ L~h2 & L~h1 /\ L~h2 = {p00, p11} and A11: h1/.1 = p00 & h1/.len h1=p11 and A12: h2/.1 = p00 & h2/.len h2 = p11 by TOPREAL1:30; reconsider L1 = L~h1, L2 = L~h2 as non empty Subset of TOP-REAL 2 by A10; L1 is_an_arc_of p00,p11 by A9,A11,TOPREAL1:31; then consider g1 being map of I[01], (TOP-REAL 2)|L1 such that A13: g1 is_homeomorphism & g1.0 = p00 & g1.1 = p11 by TOPREAL1:def 2; L2 is_an_arc_of p00,p11 by A9,A12,TOPREAL1:31; then consider g2 being map of I[01], (TOP-REAL 2)|L2 such that A14: g2 is_homeomorphism & g2.0 = p00 & g2.1 = p11 by TOPREAL1:def 2; A15: [#]((TOP-REAL 2)|P1) = P1 & [#]((TOP-REAL 2)|P) = P & P1 c= P by A3,PRE_TOPC:def 10,XBOOLE_1:7; then the carrier of ((TOP-REAL 2)|P1) c= [#]((TOP-REAL 2)|P) by PRE_TOPC:12; then A16: the carrier of ((TOP-REAL 2)|P1) c= the carrier of ((TOP-REAL 2)|P) by PRE_TOPC:12; reconsider P' = P, P1' = P1, P2' = P2 as non empty Subset of TOP-REAL 2; rng f1 c= the carrier of (TOP-REAL 2)|P1 by RELSET_1:12; then dom f1 = the carrier of I[01] & rng f1 c= the carrier of (TOP-REAL 2)|P by A16,FUNCT_2:def 1,XBOOLE_1:1; then f1 is Function of the carrier of I[01], the carrier of (TOP-REAL 2)|P' by FUNCT_2:def 1,RELSET_1:11; then reconsider ff1=f1 as map of I[01], (TOP-REAL 2)|P'; f1 is continuous & (TOP-REAL 2)|P1' is SubSpace of (TOP-REAL 2)|P' by A5,A16,TOPMETR:4,TOPS_2:def 5; then A17: ff1 is continuous by TOPMETR:7; [#]((TOP-REAL 2)|P2) = P2 & [#]((TOP-REAL 2)|P) = P & P2 c= P by A3,PRE_TOPC:def 10,XBOOLE_1:7; then the carrier of ((TOP-REAL 2)|P2) c= [#]((TOP-REAL 2)|P) by PRE_TOPC:12; then A18: the carrier of ((TOP-REAL 2)|P2) c= the carrier of ((TOP-REAL 2)|P) by PRE_TOPC:12; rng f2 c= the carrier of (TOP-REAL 2)|P2 by RELSET_1:12; then dom f2 = the carrier of I[01] & rng f2 c= the carrier of (TOP-REAL 2)|P by A18,FUNCT_2:def 1,XBOOLE_1:1; then f2 is Function of the carrier of I[01], the carrier of (TOP-REAL 2)|P' by FUNCT_2:def 1,RELSET_1:11; then reconsider ff2=f2 as map of I[01], (TOP-REAL 2)|P'; f2 is continuous & (TOP-REAL 2)|P2' is SubSpace of (TOP-REAL 2)|P' by A7,A18,TOPMETR:4,TOPS_2:def 5; then A19: ff2 is continuous by TOPMETR:7; set k1 = ff1*(g1"), k2 = ff2*(g2"); reconsider RS = R^2-unit_square as non empty Subset of TOP-REAL 2; len h1 >= 2 & len h2 >= 2 by A9,TOPREAL1:def 10; then reconsider Lh1 = L~h1, Lh2 = L~h2 as non empty Subset of TOP-REAL 2 by TOPREAL1:29; reconsider g1 as map of I[01], (TOP-REAL 2)|Lh1; reconsider g2 as map of I[01], (TOP-REAL 2)|Lh2; set T1 = (TOP-REAL 2)|Lh1, T2 = (TOP-REAL 2)|Lh2, T = (TOP-REAL 2)|RS; R^2-unit_square = [#] (T) by PRE_TOPC:def 10 .= the carrier of T by PRE_TOPC:12; then reconsider p00,p11 as Point of T by Lm21,Lm22,TOPREAL1:def 3; A20: [#] T1 = L~h1 & [#] T2 = L~h2 & [#] T = R^2-unit_square by PRE_TOPC:def 10; A21: I[01] is compact by HEINE:11,TOPMETR:27; A22: g1 is continuous & g2 is continuous & rng g1 = [#](T1) & rng g2 = [#](T2) & dom g1 = [#]I[01] & dom g2 = [#]I[01] by A13,A14,TOPS_2:def 5; then A23: T1 is compact & T2 is compact by A21,COMPTS_1:23; TopSpaceMetr(Euclid 2) is_T2 by PCOMPS_1:38; then A24: TOP-REAL 2 is_T2 by EUCLID:def 8; then A25: T is_T2 by TOPMETR:3; g1" is continuous & g2" is continuous by A13,A14,TOPS_2:def 5; then A26: k1 is continuous & k2 is continuous by A17,A19,TOPS_2:58; A27: g1 is one-to-one & g2 is one-to-one by A13,A14,TOPS_2:def 5; then A28: g2" = (g2 qua Function)" by A22,TOPS_2:def 4; A29: g1" = (g1 qua Function)" by A22,A27,TOPS_2:def 4; A30: dom g1 = the carrier of I[01] & the carrier of I[01] = [.0,1.] & dom g2 = the carrier of I[01] & dom ff1 = the carrier of I[01] & dom ff2 = the carrier of I[01] by BORSUK_1:83,FUNCT_2:def 1; then A31: 0 in dom g1 & 0 in dom g2 by RCOMP_1:15; A32: 0 in dom ff2 & 0 in dom ff1 by A30,RCOMP_1:15; A33: p00 in rng g2 by A14,A31,FUNCT_1:def 5; A34: dom(g2") = rng g2 by A27,A28,FUNCT_1:54; A35: p00 in dom (g2") by A27,A28,A33,FUNCT_1:54; A36: 0 = (g2").p00 by A14,A27,A28,A31,FUNCT_1:54; (g2").p00 in dom ff2 by A14,A27,A28,A30,A31,FUNCT_1:54; then A37: p00 in dom(ff2*(g2")) by A35,FUNCT_1:21; A38: dom(g1") = rng g1 by A27,A29,FUNCT_1:54; then A39: p00 in dom (g1") by A13,A31,FUNCT_1:def 5; A40: 0 = (g1").p00 by A13,A27,A29,A31,FUNCT_1:54; (g1").p00 in dom ff1 by A13,A27,A29,A30,A31,FUNCT_1:54; then p00 in dom(ff1*(g1")) by A39,FUNCT_1:21; then A41: k1.p00 = ff1.((g1").p00) by FUNCT_1:22 .= p1 by A6,A13,A27,A29,A31,FUNCT_1:54; then A42: k1.p00 = ff2.((g2").p00) by A8,A14,A27,A28,A31,FUNCT_1:54 .= k2.p00 by A37,FUNCT_1:22; A43: 1 in dom g1 & 1 in dom g2 by A30,RCOMP_1:15; A44: 1 in dom ff2 & 1 in dom ff1 by A30,RCOMP_1:15; A45: p11 in dom (g2") & p11 in dom (g1") by A13,A14,A34,A38,A43,FUNCT_1:def 5; A46: 1 = (g2").p11 by A14,A27,A28,A43,FUNCT_1:54; (g2").p11 in dom ff2 by A14,A27,A28,A30,A43,FUNCT_1:54; then A47: p11 in dom(ff2*(g2")) by A45,FUNCT_1:21; A48: 1 = (g1").p11 by A13,A27,A29,A43,FUNCT_1:54; (g1").p11 in dom ff1 by A13,A27,A29,A30,A43,FUNCT_1:54; then p11 in dom(ff1*(g1")) by A45,FUNCT_1:21; then A49: k1.p11 = ff1.((g1").p11) by FUNCT_1:22 .= p2 by A6,A13,A27,A29,A43,FUNCT_1:54; then A50: k1.p11 = ff2.((g2").p11) by A8,A14,A27,A28,A43,FUNCT_1:54 .= k2.p11 by A47,FUNCT_1:22; [#] T1 c= [#] T & [#] T2 c= [#] T by A10,A20,XBOOLE_1:7; then the carrier of T1 c= [#] T & the carrier of T2 c= [#] T by PRE_TOPC:12; then the carrier of T1 c= the carrier of T & the carrier of T2 c= the carrier of T by PRE_TOPC:12; then T1 is SubSpace of T & T2 is SubSpace of T by TOPMETR:4; then consider h being map of T,(TOP-REAL 2)|P such that A51: h = k1+*k2 & h is continuous by A10,A20,A23,A25,A26,A42,A50,TOPMETR2:5; A52: T is compact by Th2,COMPTS_1:12; A53: (TOP-REAL 2)|P' is_T2 by A24,TOPMETR:3; A54: f1 is one-to-one by A5,TOPS_2:def 5; A55: g1" is one-to-one by A27,A29,FUNCT_1:62; then A56: k1 is one-to-one by A54,FUNCT_1:46; A57: f2 is one-to-one by A7,TOPS_2:def 5; A58: g2" is one-to-one by A27,A28,FUNCT_1:62; then A59: k2 is one-to-one by A57,FUNCT_1:46; A60: rng(g1") = dom g1 by A27,A29,FUNCT_1:55; A61: rng(g2") = dom g2 by A27,A28,FUNCT_1:55; then A62: dom k2 = dom(g2") by A30,RELAT_1:46; A63: k1.:(dom k1 /\ dom k2) c= rng k2 proof let a be set; assume a in k1.:(dom k1 /\ dom k2); then A64: ex x being set st x in dom k1 & x in dom k1 /\ dom k2 & a = k1.x by FUNCT_1:def 12; dom k1 = the carrier of T1 & dom k2 = the carrier of T2 & the carrier of T1 = [#] T1 & the carrier of T2 = [#] T2 by FUNCT_2:def 1,PRE_TOPC:12; then a = p1 or a = p2 by A10,A20,A41,A49,A64,TARSKI:def 2; hence a in rng k2 by A35,A41,A42,A45,A49,A50,A62,FUNCT_1:def 5; end; dom f1 = the carrier of I[01] & dom g1 = the carrier of I[01] by FUNCT_2:def 1; then A65: rng k1 = rng f1 by A60,RELAT_1:47 .= P1 by A5,A15,TOPS_2:def 5; A66: rng k2 = rng f2 by A30,A61,RELAT_1:47 .= [#] ((TOP-REAL 2)|P2) by A7,TOPS_2:def 5 .= P2 by PRE_TOPC:def 10; then A67: rng h = [#]((TOP-REAL 2)|P') by A3,A15,A51,A63,A65,TOPMETR2:3; dom h = the carrier of T by FUNCT_2:def 1; then A68: dom h = [#]T by PRE_TOPC:12; now let x1,x2 be set; assume that A69: x1 in dom k2 and A70: x2 in dom k1 \ dom k2; assume A71: k2.x1 = k1.x2; A72: x2 in dom k1 by A70,XBOOLE_0:def 4; then k2.x1 in P2 & k2.x1 in P1 by A65,A66,A69,A71,FUNCT_1:def 5; then A73: k2.x1 in P1 /\ P2 by XBOOLE_0:def 3; A74: x1 in dom(g2") by A69,FUNCT_1:21; A75: x2 in dom(g1") by A72,FUNCT_1:21; per cases by A4,A73,TARSKI:def 2; suppose A76: k2.x1 = p1; then p1 = ff2.((g2").x1) & (g2").x1 in dom ff2 & ff2.0=p1 by A8,A69,FUNCT_1:21,22; then (g2").x1 = 0 & p00 in dom (g2") by A27,A28,A32,A33,A57,FUNCT_1:54,def 8; then A77: x1 = p00 by A36,A58,A74,FUNCT_1:def 8; p1 = ff1.((g1").x2) & (g1").x2 in dom ff1 & ff1.0 = p1 by A6,A71,A72,A76,FUNCT_1:21,22; then (g1").x2 = 0 & p00 in dom(g1") by A13,A30,A32,A38,A54,FUNCT_1:def 5,def 8; then x2 in dom k2 by A40,A55,A69,A75,A77,FUNCT_1:def 8; hence contradiction by A70,XBOOLE_0:def 4; suppose A78: k2.x1 = p2; then p2 = ff2.((g2").x1) & (g2").x1 in dom ff2 & ff2.1 = p2 by A8,A69,FUNCT_1:21,22; then (g2").x1 = 1 & p11 in dom (g2") by A14,A30,A34,A44,A57,FUNCT_1:def 5,def 8; then A79: x1 = p11 by A46,A58,A74,FUNCT_1:def 8; p2 = ff1.((g1").x2) & (g1").x2 in dom ff1 & ff1.1 = p2 by A6,A71,A72,A78,FUNCT_1:21,22; then (g1").x2 = 1 & p11 in dom(g1") by A13,A30,A38,A44,A54,FUNCT_1:def 5,def 8; then x2 in dom k2 by A48,A55,A69,A75,A79,FUNCT_1:def 8; hence contradiction by A70,XBOOLE_0:def 4; end; then A80: h is one-to-one by A51,A56,A59,TOPMETR2:2; reconsider h as map of ((TOP-REAL 2)|R^2-unit_square),(TOP-REAL 2)|P; take h; thus h is_homeomorphism by A51,A52,A53,A67,A68,A80,COMPTS_1:26; end; theorem Th5: for P being non empty Subset of TOP-REAL 2 holds P is_simple_closed_curve iff (ex p1,p2 st p1 <> p2 & p1 in P & p2 in P) & for p1,p2 st p1 <> p2 & p1 in P & p2 in P ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof let P be non empty Subset of TOP-REAL 2; thus P is_simple_closed_curve implies (ex p1,p2 st p1 <> p2 & p1 in P & p2 in P) & for p1,p2 st p1 <> p2 & p1 in P & p2 in P ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof assume A1: P is_simple_closed_curve; then consider f being map of (TOP-REAL 2)|R^2-unit_square, (TOP-REAL 2)|P such that A2: f is_homeomorphism by Def1; thus ex p1,p2 st p1 <> p2 & p1 in P & p2 in P by A1,Th4; let p1,p2; assume that A3: p1 <> p2 and A4: p1 in P and A5: p2 in P; A6: f is one-to-one by A2,TOPS_2:def 5; A7: f is continuous by A2,TOPS_2:def 5; A8: rng f = [#]((TOP-REAL 2)|P) & dom f = [#]((TOP-REAL 2)|R^2-unit_square) by A2,TOPS_2:def 5; then A9: f" = (f qua Function)" by A6,TOPS_2:def 4; then A10: dom(f") = rng f by A6,FUNCT_1:54; A11: f" is one-to-one by A6,A9,FUNCT_1:62; A12: rng(f") = dom f by A6,A9,FUNCT_1:55; A13: [#]((TOP-REAL 2)|P) = P by PRE_TOPC:def 10; A14: p1 in dom(f") & p2 in dom(f") by A4,A5,A8,A10,PRE_TOPC:def 10; set q1 = (f").p1, q2 = (f").p2; set RS = R^2-unit_square; reconsider f as map of (TOP-REAL 2)|RS, (TOP-REAL 2)|P; A15: [#]((TOP-REAL 2)|RS) c= [#](TOP-REAL 2) & rng(f") = [#]((TOP-REAL 2)|RS) & q1 in rng(f") & q2 in rng(f") by A12,A14,FUNCT_1:def 5,PRE_TOPC:def 9,TOPS_2:51; then reconsider q1, q2 as Point of TOP-REAL 2 by PRE_TOPC:12; A16: q1 <> q2 by A3,A11,A14,FUNCT_1:def 8; A17: dom f = the carrier of (TOP-REAL 2)|R^2-unit_square by FUNCT_2:def 1; A18:the carrier of (TOP-REAL 2)|R^2-unit_square = [#]((TOP-REAL 2)| R^2-unit_square) by PRE_TOPC:12; A19: [#]((TOP-REAL 2)|R^2-unit_square) = R^2-unit_square by PRE_TOPC:def 10; then q1 in R^2-unit_square & q2 in R^2-unit_square by A12,A14,A17,A18,FUNCT_1:def 5; then consider Q1,Q2 being non empty Subset of TOP-REAL 2 such that A20: Q1 is_an_arc_of q1,q2 & Q2 is_an_arc_of q1,q2 and A21: R^2-unit_square = Q1 \/ Q2 & Q1 /\ Q2 = {q1,q2} by A16,Th1; set P1 = f.:Q1, P2 = f.:Q2; A22: Q1 c= dom f & Q2 c= dom f by A17,A18,A19,A21,XBOOLE_1:7; P1 c= rng f & P2 c= rng f & [#]((TOP-REAL 2)|P) c= [#](TOP-REAL 2) by PRE_TOPC:def 9,RELAT_1:144; then P1 c= [#](TOP-REAL 2) & P2 c= [#](TOP-REAL 2) & [#](TOP-REAL 2) = the carrier of TOP-REAL 2 by A8,PRE_TOPC:12,XBOOLE_1:1; then reconsider P1, P2 as non empty Subset of TOP-REAL 2 by A22,RELAT_1:152; take P1,P2; A23: rng(f|Q1) = P1 by RELAT_1:148 .= [#]((TOP-REAL 2)|P1) by PRE_TOPC:def 10 .= the carrier of (TOP-REAL 2)|P1 by PRE_TOPC:12; A24: dom(f|Q1) = R^2-unit_square /\ Q1 by A17,A18,A19,RELAT_1:90 .= Q1 by A21,XBOOLE_1:21 .= [#]((TOP-REAL 2)|Q1) by PRE_TOPC:def 10; then dom(f|Q1) = the carrier of (TOP-REAL 2)|Q1 & rng(f|Q1) c= the carrier of (TOP-REAL 2)|P1 by A23,PRE_TOPC:12; then f|Q1 is Function of the carrier of (TOP-REAL 2)|Q1, the carrier of (TOP-REAL 2)|P1 by FUNCT_2:def 1,RELSET_1:11; then reconsider F1 = f|Q1 as map of (TOP-REAL 2)|Q1, (TOP-REAL 2)|P1; [#]((TOP-REAL 2)|Q1) = Q1 by PRE_TOPC:def 10; then [#]((TOP-REAL 2)|Q1) c= the carrier of (TOP-REAL 2)|R^2-unit_square by A18,A19,A21,XBOOLE_1:7; then the carrier of (TOP-REAL 2)|Q1 c= the carrier of (TOP-REAL 2)|R^2-unit_square by PRE_TOPC:12; then A25: (TOP-REAL 2)|Q1 is SubSpace of (TOP-REAL 2)|R^2-unit_square by TOPMETR:4; A26: rng F1 = [#]((TOP-REAL 2)|P1) by A23,PRE_TOPC:12; A27: F1 is one-to-one by A6,FUNCT_1:84; Q1 c= f"P1 & Q2 c= f"P2 & f"P1 c= Q1 & f"P2 c= Q2 by A6,A22,FUNCT_1:146,152; then A28: f"P1 = Q1 & f"P2 = Q2 by XBOOLE_0:def 10; for R being Subset of (TOP-REAL 2)|P1 st R is closed holds F1"R is closed proof let R be Subset of (TOP-REAL 2)|P1; assume R is closed; then consider S1 being Subset of TOP-REAL 2 such that A29: S1 is closed and A30: R = S1 /\ [#]((TOP-REAL 2)|P1) by PRE_TOPC:43; P /\ the carrier of TOP-REAL 2 = P & S1 c= the carrier of TOP-REAL 2 by XBOOLE_1:28; then rng f /\ S1 c= P by A8,A13,XBOOLE_1:26; then rng f /\ S1 is Subset of (TOP-REAL 2)|P by A13,PRE_TOPC:12; then reconsider S2 = rng f /\ S1 as Subset of (TOP-REAL 2)|P; A31: F1"R = Q1 /\ (f"R) by FUNCT_1:139 .= Q1 /\ ((f"S1) /\ f"([#]((TOP-REAL 2)|P1))) by A30,FUNCT_1:137 .= (f"S1) /\ Q1 /\ Q1 by A28,PRE_TOPC:def 10 .= (f"S1) /\ (Q1 /\ Q1) by XBOOLE_1:16 .= (f"S1) /\ [#]((TOP-REAL 2)|Q1) by PRE_TOPC:def 10 .= (f"(rng f /\ S1)) /\ [#]((TOP-REAL 2)|Q1) by RELAT_1:168; S2 is closed by A8,A29,PRE_TOPC:43; then f"S2 is closed by A7,PRE_TOPC:def 12; hence F1"R is closed by A25,A31,PRE_TOPC:43; end; then A32: F1 is continuous by PRE_TOPC:def 12; consider ff being map of I[01], (TOP-REAL 2)|Q1 such that A33: ff is_homeomorphism and ff.0 = q1 & ff.1 = q2 by A20,TOPREAL1:def 2; A34: I[01] is compact by HEINE:11,TOPMETR:27; reconsider Q1'=Q1, Q2'=Q2 as non empty Subset of TOP-REAL 2; ff is continuous & rng ff = [#]((TOP-REAL 2)|Q1) by A33,TOPS_2:def 5; then A35: (TOP-REAL 2)|Q1' is compact by A34,COMPTS_1:23; TopSpaceMetr(Euclid 2) is_T2 by PCOMPS_1:38; then TOP-REAL 2 is_T2 by EUCLID:def 8; then (TOP-REAL 2)|P1 is_T2 by TOPMETR:3; then A36: F1 is_homeomorphism by A24,A26,A27,A32,A35,COMPTS_1:26; q1 in {q1,q2} & {q1,q2} c= Q1 by A21,TARSKI:def 2,XBOOLE_1:17; then A37: q1 in dom f /\ Q1 by A12,A15,XBOOLE_0:def 3; A38: p1 = f.q1 by A6,A9,A10,A14,FUNCT_1:57 .= F1.q1 by A37,FUNCT_1:71; q2 in {q1,q2} & {q1,q2} c= Q1 by A21,TARSKI:def 2,XBOOLE_1:17; then A39: q2 in dom f /\ Q1 by A12,A15,XBOOLE_0:def 3; p2 = f.q2 by A6,A9,A10,A14,FUNCT_1:57 .= F1.q2 by A39,FUNCT_1:71; hence P1 is_an_arc_of p1,p2 by A20,A36,A38,Th3; A40: rng(f|Q2) = P2 by RELAT_1:148 .= [#]((TOP-REAL 2)|P2) by PRE_TOPC:def 10 .= the carrier of (TOP-REAL 2)|P2 by PRE_TOPC:12; A41: dom(f|Q2) = R^2-unit_square /\ Q2 by A17,A18,A19,RELAT_1:90 .= Q2 by A21,XBOOLE_1:21 .= [#]((TOP-REAL 2)|Q2) by PRE_TOPC:def 10; then dom(f|Q2) = the carrier of (TOP-REAL 2)|Q2 & rng(f|Q2) c= the carrier of (TOP-REAL 2)|P2 by A40,PRE_TOPC:12; then f|Q2 is Function of the carrier of (TOP-REAL 2)|Q2, the carrier of (TOP-REAL 2)|P2 by FUNCT_2:def 1,RELSET_1:11; then reconsider F2 = f|Q2 as map of (TOP-REAL 2)|Q2, (TOP-REAL 2)|P2; [#]((TOP-REAL 2)|Q2) = Q2 by PRE_TOPC:def 10; then [#]((TOP-REAL 2)|Q2) c= the carrier of (TOP-REAL 2)|R^2-unit_square by A18,A19,A21,XBOOLE_1:7; then the carrier of (TOP-REAL 2)|Q2 c= the carrier of (TOP-REAL 2)|R^2-unit_square by PRE_TOPC:12; then A42: (TOP-REAL 2)|Q2 is SubSpace of (TOP-REAL 2)|R^2-unit_square by TOPMETR:4; A43: rng F2 = [#]((TOP-REAL 2)|P2) by A40,PRE_TOPC:12; A44: F2 is one-to-one by A6,FUNCT_1:84; for R being Subset of (TOP-REAL 2)|P2 st R is closed holds F2"R is closed proof let R be Subset of (TOP-REAL 2)|P2; assume R is closed; then consider S1 being Subset of TOP-REAL 2 such that A45: S1 is closed and A46: R = S1 /\ [#]((TOP-REAL 2)|P2) by PRE_TOPC:43; P /\ the carrier of TOP-REAL 2 = P & S1 c= the carrier of TOP-REAL 2 by XBOOLE_1:28; then rng f /\ S1 c= P by A8,A13,XBOOLE_1:26; then rng f /\ S1 is Subset of (TOP-REAL 2)|P by A13,PRE_TOPC:12; then reconsider S2 = rng f /\ S1 as Subset of (TOP-REAL 2)|P; A47: F2"R = Q2 /\ (f"R) by FUNCT_1:139 .= Q2 /\ ((f"S1) /\ f"([#]((TOP-REAL 2)|P2))) by A46,FUNCT_1:137 .= (f"S1) /\ Q2 /\ Q2 by A28,PRE_TOPC:def 10 .= (f"S1) /\ (Q2 /\ Q2) by XBOOLE_1:16 .= (f"S1) /\ [#]((TOP-REAL 2)|Q2) by PRE_TOPC:def 10 .= (f"(rng f /\ S1)) /\ [#]((TOP-REAL 2)|Q2) by RELAT_1:168; S2 is closed by A8,A45,PRE_TOPC:43; then f"S2 is closed by A7,PRE_TOPC:def 12; hence F2"R is closed by A42,A47,PRE_TOPC:43; end; then A48: F2 is continuous by PRE_TOPC:def 12; consider ff being map of I[01], (TOP-REAL 2)|Q2 such that A49: ff is_homeomorphism and ff.0 = q1 & ff.1 = q2 by A20,TOPREAL1:def 2; ff is continuous & rng ff = [#]((TOP-REAL 2)|Q2) by A49,TOPS_2:def 5; then A50: (TOP-REAL 2)|Q2' is compact by A34,COMPTS_1:23; TopSpaceMetr(Euclid 2) is_T2 by PCOMPS_1:38; then TOP-REAL 2 is_T2 by EUCLID:def 8; then (TOP-REAL 2)|P2 is_T2 by TOPMETR:3; then A51: F2 is_homeomorphism by A41,A43,A44,A48,A50,COMPTS_1:26; q1 in {q1,q2} & {q1,q2} c= Q2 by A21,TARSKI:def 2,XBOOLE_1:17; then A52: q1 in dom f /\ Q2 by A12,A15,XBOOLE_0:def 3; A53: p1 = f.q1 by A6,A9,A10,A14,FUNCT_1:57; then A54: p1 = F2.q1 by A52,FUNCT_1:71; q2 in {q1,q2} & {q1,q2} c= Q2 by A21,TARSKI:def 2,XBOOLE_1:17; then A55: q2 in dom f /\ Q2 by A12,A15,XBOOLE_0:def 3; A56: p2 = f.q2 by A6,A9,A10,A14,FUNCT_1:57; then p2 = F2.q2 by A55,FUNCT_1:71; hence P2 is_an_arc_of p1,p2 by A20,A51,A54,Th3; thus P = f.:(Q1 \/ Q2) by A8,A13,A19,A21,RELAT_1:146 .= P1 \/ P2 by RELAT_1:153; thus P1 /\ P2 = f.:(Q1 /\ Q2) by A6,FUNCT_1:121 .= f.:({q1} \/ {q2}) by A21,ENUMSET1:41 .= f.:({q1}) \/ f.:({q2}) by RELAT_1:153 .= {p1} \/ f.:({q2}) by A12,A15,A53,FUNCT_1:117 .= {p1} \/ {p2} by A12,A15,A56,FUNCT_1:117 .= {p1,p2} by ENUMSET1:41; end; given p1,p2 such that A57: p1 <> p2 & p1 in P & p2 in P; assume for p1,p2 st p1 <> p2 & p1 in P & p2 in P ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2}; then ex P1,P2 being non empty Subset of TOP-REAL 2 st P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2} by A57; hence thesis by A57,Lm27; end; theorem for P being non empty Subset of TOP-REAL 2 holds P is_simple_closed_curve iff ex p1,p2 being Point of TOP-REAL 2, P1,P2 being non empty Subset of TOP-REAL 2 st p1 <> p2 & p1 in P & p2 in P & P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2} proof let P be non empty Subset of TOP-REAL 2; hereby assume A1: P is_simple_closed_curve; then consider p1,p2 such that A2: p1 <> p2 & p1 in P & p2 in P by Th5; consider P1,P2 being non empty Subset of TOP-REAL 2 such that A3: P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2} by A1,A2,Th5; take p1,p2,P1,P2; thus p1 <> p2 & p1 in P & p2 in P & P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 & P = P1 \/ P2 & P1 /\ P2 = {p1,p2} by A2,A3; end; thus thesis by Lm27; end;