Copyright (c) 1992 Association of Mizar Users
environ vocabulary EUCLID, PRE_TOPC, FINSEQ_1, RELAT_1, FUNCT_1, TOPREAL1, BOOLE, RELAT_2, TOPREAL2, MCART_1, METRIC_1, ARYTM_3, ARYTM_1, TARSKI, PCOMPS_1, SUBSET_1, TOPREAL4, FINSEQ_4, ARYTM; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, XREAL_0, REAL_1, NAT_1, RELAT_1, FUNCT_1, FINSEQ_1, FINSEQ_4, STRUCT_0, PRE_TOPC, CONNSP_1, METRIC_1, PCOMPS_1, EUCLID, TOPREAL1, TOPREAL2; constructors REAL_1, NAT_1, CONNSP_1, PCOMPS_1, TOPREAL1, TOPREAL2, FINSEQ_4, INT_1, MEMBERED, XBOOLE_0; clusters SUBSET_1, FUNCT_1, PRE_TOPC, RELSET_1, STRUCT_0, EUCLID, XREAL_0, TOPREAL1, INT_1, XBOOLE_0, MEMBERED, ZFMISC_1; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; definitions TARSKI, TOPREAL1, XBOOLE_0; theorems TARSKI, AXIOMS, REAL_1, NAT_1, ZFMISC_1, FUNCT_1, FINSEQ_1, PRE_TOPC, CONNSP_1, SQUARE_1, EUCLID, TOPMETR, TOPREAL1, TOPREAL2, TOPREAL3, FINSEQ_4, FINSEQ_3, TBSP_1, GROUP_5, PARTFUN2, RELAT_1, INT_1, XBOOLE_0, XBOOLE_1, XREAL_0, XCMPLX_0, XCMPLX_1; schemes NAT_1; begin reserve P,P1,P2,R for Subset of TOP-REAL 2, W for non empty Subset of TOP-REAL 2, p,p1,p2,p3,p11,p22,q,q1,q2,q3,q4 for Point of TOP-REAL 2, f,h for FinSequence of TOP-REAL 2, r for Real, u for Point of Euclid 2, n,m,i,j,k for Nat, x,y for set; theorem Th1: for D being non empty set, f being FinSequence of D, p being Element of D holds (f^<*p*>)/.(len f + 1) = p proof let D be non empty set, f be FinSequence of D, p be Element of D; len(f^<*p*>) = len f + len<*p*> by FINSEQ_1:35; then 1 <= len f + 1 & len f + 1 <= len(f^<*p*>) by FINSEQ_1:56,NAT_1:29; then len f + 1 in dom(f^<*p*>) by FINSEQ_3:27; hence (f^<*p*>)/.(len f + 1) = (f^<*p*>).(len f + 1) by FINSEQ_4:def 4 .= p by FINSEQ_1:59; end; definition let P,p,q; pred P is_S-P_arc_joining p,q means :Def1: ex f st f is_S-Seq & P = L~f & p=f/.1 & q=f/.len f; end; definition let P; attr P is being_special_polygon means ex p1,p2,P1,P2 st p1 <> p2 & p1 in P & p2 in P & P1 is_S-P_arc_joining p1,p2 & P2 is_S-P_arc_joining p1,p2 & P1 /\ P2 = {p1,p2} & P = P1 \/ P2; synonym P is_special_polygon; end; definition let P be Subset of TOP-REAL 2; attr P is being_Region means :Def3: P is open & P is connected; synonym P is_Region; end; theorem Th2: P is_S-P_arc_joining p,q implies P is_S-P_arc proof assume P is_S-P_arc_joining p,q; then ex f st f is_S-Seq & P = L~f & p=f/.1 & q=f/.len f by Def1; hence P is_S-P_arc by TOPREAL1:def 11; end; theorem Th3: W is_S-P_arc_joining p,q implies W is_an_arc_of p,q proof assume W is_S-P_arc_joining p,q; then ex h st h is_S-Seq & W = L~h & p=h/.1 & q=h/.len h by Def1; hence W is_an_arc_of p,q by TOPREAL1:31; end; theorem Th4: W is_S-P_arc_joining p,q implies p in W & q in W proof assume W is_S-P_arc_joining p,q; then W is_an_arc_of p,q by Th3; hence thesis by TOPREAL1:4; end; theorem P is_S-P_arc_joining p,q implies p<>q proof assume A1: P is_S-P_arc_joining p,q & p=q; then consider f such that A2: f is_S-Seq & P = L~f & p=f/.1 & q=f/.len f by Def1; A3: Seg len f = dom f by FINSEQ_1:def 3; A4: f is one-to-one & len f >= 2 by A2,TOPREAL1:def 10; then len f >= 1 by AXIOMS:22; then A5: len f in dom f & 1 in dom f by A3,FINSEQ_1:3; 1 <> len f by A2,TOPREAL1:def 10; hence contradiction by A1,A2,A4,A5,PARTFUN2:17; end; theorem W is_special_polygon implies W is_simple_closed_curve proof given p1,p2,P1,P2 such that A1: p1 <> p2 & p1 in W & p2 in W and A2: P1 is_S-P_arc_joining p1,p2 & P2 is_S-P_arc_joining p1,p2 and A3: P1 /\ P2 = {p1,p2} & W = P1 \/ P2; reconsider P1, P2 as non empty Subset of TOP-REAL 2 by A3; P1 is_an_arc_of p1,p2 & P2 is_an_arc_of p1,p2 by A2,Th3; hence W is_simple_closed_curve by A1,A3,TOPREAL2:6; end; theorem Th7: p`1 = q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & f =<* p,|[p`1,(p`2+q`2)/2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r) proof assume A1: p`1 = q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & f =<* p,|[p`1,(p`2+q`2)/2]|,q *>; hence f is_S-Seq & f/.1 =p & f/.len f = q by TOPREAL3:43; hence L~f is_S-P_arc_joining p,q by Def1; p=|[p`1,p`2]| & q=|[q`1,q`2]| by EUCLID:57; then A2: L~f=LSeg(p,|[p`1,(p`2+q`2)/2]|) \/ LSeg(|[p`1,(p`2+q`2)/2]|,q) & |[p`1,(p`2+q`2)/2]| in Ball(u,r) by A1,TOPREAL3:23,30; then LSeg(p,|[p`1,(p`2+q`2)/2]|) c= Ball(u,r) & LSeg(|[p`1,(p`2+q`2)/2]|,q) c= Ball(u,r) by A1,TOPREAL3:28; hence thesis by A2,XBOOLE_1:8; end; theorem Th8: p`1 <> q`1 & p`2 = q`2 & p in Ball(u,r) & q in Ball(u,r) & f = <* p,|[(p`1+q`1)/2,p`2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r) proof assume A1: p`1 <> q`1 & p`2 = q`2 & p in Ball(u,r) & q in Ball(u,r) & f = <* p,|[(p`1+q`1)/2,p`2]|,q *>; hence f is_S-Seq & f/.1 =p & f/.len f = q by TOPREAL3:44; hence L~f is_S-P_arc_joining p,q by Def1; p=|[p`1,p`2]| & q=|[q`1,q`2]| by EUCLID:57; then A2: L~f=LSeg(p,|[(p`1+q`1)/2,p`2]|) \/ LSeg(|[(p`1+q`1)/2,p`2]|,q) & |[(p`1+q`1)/2,p`2]| in Ball(u,r) by A1,TOPREAL3:23,31; then LSeg(p,|[(p`1+q`1)/2,p`2]|) c= Ball(u,r) & LSeg(|[(p`1+q`1)/2,p`2]|,q) c= Ball(u,r) by A1,TOPREAL3:28; hence thesis by A2,XBOOLE_1:8; end; theorem Th9: p`1 <> q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & |[p`1,q`2]| in Ball(u,r) & f =<* p,|[p`1,q`2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r) proof assume A1: p`1 <> q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & |[p`1,q`2]| in Ball(u,r) & f =<* p,|[p`1,q`2]|,q *>; hence f is_S-Seq & f/.1 =p & f/.len f = q by TOPREAL3:41; hence L~f is_S-P_arc_joining p,q by Def1; A2: L~f=LSeg(p,|[p`1,q`2]|) \/ LSeg(|[p`1,q`2]|,q) by A1,TOPREAL3:23; LSeg(p,|[p`1,q`2]|) c= Ball(u,r) & LSeg(|[p`1,q`2]|,q) c= Ball(u,r) by A1,TOPREAL3:28; hence thesis by A2,XBOOLE_1:8; end; theorem Th10: p`1 <> q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & |[q`1,p`2]| in Ball(u,r) & f =<* p,|[q`1,p`2]|,q *> implies f is_S-Seq & f/.1 =p & f/.len f = q & L~f is_S-P_arc_joining p,q & L~f c= Ball(u,r) proof assume A1: p`1 <> q`1 & p`2 <> q`2 & p in Ball(u,r) & q in Ball(u,r) & |[q`1,p`2]| in Ball(u,r) & f =<* p,|[q`1,p`2]|,q *>; hence f is_S-Seq & f/.1 =p & f/.len f = q by TOPREAL3:42; hence L~f is_S-P_arc_joining p,q by Def1; A2: L~f=LSeg(p,|[q`1,p`2]|) \/ LSeg(|[q`1,p`2]|,q) by A1,TOPREAL3:23; LSeg(p,|[q`1,p`2]|) c= Ball(u,r) & LSeg(|[q`1,p`2]|,q) c= Ball(u,r) by A1,TOPREAL3:28; hence thesis by A2,XBOOLE_1:8; end; theorem Th11: p <> q & p in Ball(u,r) & q in Ball(u,r) implies ex P st P is_S-P_arc_joining p,q & P c= Ball(u,r) proof assume A1: p<>q & p in Ball(u,r) & q in Ball(u,r); now per cases by A1,TOPREAL3:11; suppose A2: p`1 <> q`1; now per cases; suppose A3: p`2 = q`2; reconsider P = L~<* p,|[(p`1+q`1)/2,p`2]|,q *> as Subset of TOP-REAL 2; take P; thus P is_S-P_arc_joining p,q & P c= Ball(u,r) by A1,A2,A3,Th8; suppose A4: p`2 <> q`2; A5: p = |[p`1,p`2]| & q=|[q`1,q`2]| by EUCLID:57; now per cases by A1,A5,TOPREAL3:32; suppose A6: |[p`1,q`2]| in Ball(u,r); reconsider P = L~<* p,|[p`1,q`2]|,q *> as Subset of TOP-REAL 2; take P; thus P is_S-P_arc_joining p,q & P c= Ball(u,r) by A1,A2,A4,A6,Th9; suppose A7: |[q`1,p`2]| in Ball(u,r); reconsider P = L~<* p,|[q`1,p`2]|,q *> as Subset of TOP-REAL 2; take P; thus P is_S-P_arc_joining p,q & P c= Ball(u,r) by A1,A2,A4,A7,Th10; end; hence thesis; end; hence thesis; suppose A8: p`2 <> q`2; now per cases; suppose A9: p`1 = q`1; reconsider P = L~<* p,|[p`1,(p`2+q`2)/2]|,q *> as Subset of TOP-REAL 2; take P; thus P is_S-P_arc_joining p,q & P c= Ball(u,r) by A1,A8,A9,Th7; suppose A10: p`1 <> q`1; A11: p = |[p`1,p`2]| & q=|[q`1,q`2]| by EUCLID:57; now per cases by A1,A11,TOPREAL3:32; suppose A12: |[p`1,q`2]| in Ball(u,r); reconsider P = L~<* p,|[p`1,q`2]|,q *> as Subset of TOP-REAL 2; take P; thus P is_S-P_arc_joining p,q & P c= Ball(u,r) by A1,A8,A10,A12,Th9; suppose A13: |[q`1,p`2]| in Ball(u,r); reconsider P = L~<* p,|[q`1,p`2]|,q *> as Subset of TOP-REAL 2; take P; thus P is_S-P_arc_joining p,q & P c= Ball(u,r) by A1,A8,A10,A13,Th10; end; hence thesis; end; hence thesis; end; hence thesis; end; theorem Th12: p<>f/.1 & (f/.1)`2 = p`2 & f is_S-Seq & p in LSeg(f,1) & h = <* f/.1,|[((f/.1)`1+p`1)/2,(f/.1)`2]|,p *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,p) proof assume A1: p<>f/.1 & (f/.1)`2 = p`2 & f is_S-Seq & p in LSeg(f,1) & h = <* f/.1,|[((f/.1)`1+p`1)/2, (f/.1)`2]|,p *>; then A2: len f >= 2 by TOPREAL1:def 10; set p1 = f/.1, q = f/.(1+1); A3: len f >= 1 by A2,AXIOMS:22; A4: LSeg(f,1) = LSeg(p1,q) & p1 in LSeg(p1,q) by A2,TOPREAL1:6,def 5; then A5: LSeg(p1,p) c= LSeg(p1,q) & p1`1 <> p`1 by A1,TOPREAL1:12,TOPREAL3:11 ; hence h is_S-Seq & h/.1 = p1 & h/.len h = p by A1,TOPREAL3:44; hence L~h is_S-P_arc_joining p1,p by Def1; A6: L~h=LSeg(p1,|[(p1`1 + p`1)/2,p1`2]|) \/ LSeg(|[(p1`1 + p`1)/2,p1`2]|,p) & |[(p1`1 + p`1)/2,p1`2]| in LSeg(p1,p) by A1,A5,TOPREAL3:19,23; then LSeg(p1,|[(p1`1 + p`1)/2,p1`2]|) \/ LSeg(|[(p1`1 + p`1)/2,p1`2]|,p) = LSeg(p1,p) & LSeg(f,1) c= L~f by TOPREAL1:11,TOPREAL3:26; hence L~h c= L~f by A4,A5,A6,XBOOLE_1:1; A7: Seg 1 c= Seg len f & Seg len f = dom f & f|1 = f|Seg 1 by A3,FINSEQ_1:7,def 3,TOPREAL1:def 1; then dom f /\ Seg 1 = Seg 1 by XBOOLE_1:28; then dom(f|1) = Seg 1 by A7,FUNCT_1:68; then len (f|1) = 1 by FINSEQ_1:def 3; then L~(f|1)={} by TOPREAL1:28; hence thesis by A6,TOPREAL1:11; end; theorem Th13: p<>f/.1 & (f/.1)`1 = p`1 & f is_S-Seq & p in LSeg(f,1) & h = <* f/.1,|[(f/.1)`1,((f/.1)`2+p`2)/2]|,p *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,p) proof set p1 = f/.1; assume A1: p<>p1 & p1`1 = p`1 & f is_S-Seq & p in LSeg(f,1) & h = <* p1,|[p1`1,(p1`2+p`2)/2]|,p *>; then A2: len f >= 2 by TOPREAL1:def 10; set q = f/.(1+1); A3: len f >= 1 by A2,AXIOMS:22; A4: LSeg(f,1) = LSeg(p1,q) & p1 in LSeg(p1,q) by A2,TOPREAL1:6,def 5; then A5: LSeg(p1,p) c= LSeg(p1,q) & p1`2 <> p`2 by A1,TOPREAL1:12,TOPREAL3:11 ; hence h is_S-Seq & h/.1 = p1 & h/.len h = p by A1,TOPREAL3:43; hence L~h is_S-P_arc_joining p1,p by Def1; A6: L~h = LSeg(p1,|[p1`1,(p1`2+p`2)/2]|) \/ LSeg(|[p1`1,(p1`2+p`2)/2]|,p) & |[p1`1,(p1`2+p`2)/2]| in LSeg(p1,p) by A1,A5,TOPREAL3:20,23; then LSeg(p1,|[p1`1,(p1`2+p`2)/2]|) \/ LSeg(|[p1`1,(p1`2+p`2)/2]|,p) = LSeg(p1,p) & LSeg(f,1) c= L~f by TOPREAL1:11,TOPREAL3:26; hence L~h c= L~f by A4,A5,A6,XBOOLE_1:1; A7: Seg 1 c= Seg len f & Seg len f = dom f & f|1 = f|Seg 1 by A3,FINSEQ_1:7,def 3,TOPREAL1:def 1; then dom f /\ Seg 1 = Seg 1 by XBOOLE_1:28; then dom(f|1) = Seg 1 by A7,FUNCT_1:68; then len (f|1) = 1 by FINSEQ_1:def 3; then L~(f|1)={} by TOPREAL1:28; hence thesis by A6,TOPREAL1:11; end; theorem Th14: p<>f/.1 & f is_S-Seq & i in dom f & i+1 in dom f & i>1 & p in LSeg(f,i) & p<>f/.i & p<>f/.(i+1) & h = (f|i)^<*p*> implies h is_S-Seq & h/.1=f/.1 & h/.len h=p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|i) \/ LSeg(f/.i,p) proof set p1 = f/.1, q = f/.i; assume A1: p<>p1 & f is_S-Seq & i in dom f & i+1 in dom f & i>1 & p in LSeg(f,i) & p<>f/.i & p<>f/.(i+1) & h = (f|i)^<*p*>; then A2: f is s.n.c. by TOPREAL1:def 10; A3: f is unfolded by A1,TOPREAL1:def 10; A4: f is special by A1,TOPREAL1:def 10; set v = f|i; A5: v = f|Seg i & Seg len f = dom f & Seg len h = dom h & Seg len v = dom v by FINSEQ_1:def 3,TOPREAL1:def 1; then A6: 1<=i & i<=len f by A1,FINSEQ_1:3; then Seg i c= dom f & dom v=dom f /\ Seg i by A5,FINSEQ_1:7,RELAT_1:90; then A7: dom v = Seg i by XBOOLE_1:28; then A8: len v = i by FINSEQ_1:def 3; then A9: len h = i + len <*p*> by A1,FINSEQ_1:35 .= i+1 by FINSEQ_1:56; A10: 1 in dom v by A1,A7,FINSEQ_1:3; then A11: h/.1 = v/.1 by A1,GROUP_5:95 .= p1 by A10,TOPREAL1:1; A12: h/.len h = p by A1,A8,A9,Th1; set q1 = f/.i, q2 = f/.(i+1); A13: i+1<=len f by A1,A5,FINSEQ_1:3; then A14: LSeg(f,i) = LSeg(q1,q2) & q1 in LSeg(q1,q2) & p in LSeg(q1,q2) by A1,TOPREAL1:6,def 5; A15: LSeg(f,i) = LSeg(q2,q1) & q1 = |[q1`1,q1`2]| & q2 = |[q2`1,q2`2]| by A1,A13,EUCLID:57,TOPREAL1:def 5; A16: f is one-to-one & i<>i+1 by A1,NAT_1:38,TOPREAL1:def 10; then A17: q1 <> q2 & i in dom v by A1,A7,FINSEQ_1:3,PARTFUN2:17; then A18: h/.i=v/.i by A1,GROUP_5:95 .= q1 by A17,TOPREAL1:1; A19: i<=i+1 by NAT_1:29; A20: LSeg(h,i) = LSeg(q1,p) by A1,A9,A12,A18,TOPREAL1:def 5; then A21: LSeg(h,i) c= LSeg(f,i) by A14,TOPREAL1:12; A22: 1+1<=i by A1,NAT_1:38; thus A23: h is_S-Seq proof now set Z = {m: 1<=m & m<=len h}; given x,y such that A24: x in dom h & y in dom h & h.x = h.y & x<>y; x in Z by A5,A24,FINSEQ_1:def 1; then consider k1 be Nat such that A25: k1=x & 1<=k1 & k1<=len h; y in Z by A5,A24,FINSEQ_1:def 1; then consider k2 be Nat such that A26: k2=y & 1<=k2 & k2<=len h; A27: h/.k1 = h.y by A24,A25,FINSEQ_4:def 4 .= h/.k2 by A24,A26,FINSEQ_4:def 4; k1<=len f & k2<=len f by A9,A13,A25,A26,AXIOMS:22; then A28: k1 in dom f & k2 in dom f & k2+(1+1) = k2+1+1 & k1+(1+1) = k1+1+1 by A5,A25,A26,FINSEQ_1:3,XCMPLX_1 :1; now per cases by A9,A25,A26,REAL_1:def 5; suppose k1=i+1 & k2=i+1; hence contradiction by A24,A25,A26; suppose A29: k1=i+1 & k2<i+1; then A30: k2+1<=k1 by NAT_1:38; now per cases by A30,REAL_1:def 5; suppose k2 + 1 = k1; then k2 + 1 - 1= i by A29,XCMPLX_1:26; hence contradiction by A1,A9,A12,A18,A27,A29,XCMPLX_1:26; suppose k2 + 1 < k1; then k2<i+1-1 by A29,REAL_1:86; then k2<i by XCMPLX_1:26; then A31: k2+1<=i by NAT_1:38; now per cases by A31,REAL_1:def 5; suppose A32: k2+1=i; then A33: LSeg(f,k2) /\ LSeg(f,i) = {f/.i} by A3,A13,A26,A28,TOPREAL1:def 8; k2+1 <= len f by A1,A5,A32,FINSEQ_1:3; then A34: f/.k2 in LSeg(f,k2) & k2<=i by A26,A32,NAT_1:29,TOPREAL1:27; then A35: k2 in dom v by A7,A26,FINSEQ_1:3; then h/.k2 = v/.k2 by A1,GROUP_5:95 .= f/.k2 by A35,TOPREAL1:1; then f/.k2 in {f/.i} by A1,A9,A12,A27,A29,A33,A34,XBOOLE_0:def 3; then f/.k2 = f/.i & k2<i by A32,NAT_1:38,TARSKI:def 1; hence contradiction by A1,A16,A28,PARTFUN2:17; suppose A36: k2+1<i; then A37: LSeg(f,k2) misses LSeg(f,i) & k2<=k2+1 by A2,NAT_1:29,TOPREAL1:def 9; then k2<=i by A36,AXIOMS:22; then A38: k2 in dom v by A7,A26,FINSEQ_1:3; then A39: h/.k2 = v/.k2 by A1,GROUP_5:95 .= f/.k2 by A38,TOPREAL1:1; k2+1<=len f by A6,A36,AXIOMS:22; then p in LSeg(f,k2) by A9,A12,A26,A27,A29,A39,TOPREAL1:27; hence contradiction by A1,A37,XBOOLE_0:3; end; hence contradiction; end; hence contradiction; suppose A40: k1<i+1 & k2=i+1; then A41: k1+1<=k2 by NAT_1:38; now per cases by A41,REAL_1:def 5; suppose k1 + 1 = k2; then k1 + 1 - 1= i by A40,XCMPLX_1:26; hence contradiction by A1,A9,A12,A18,A27,A40,XCMPLX_1:26; suppose k1 + 1 < k2; then k1<i+1-1 by A40,REAL_1:86; then k1<i by XCMPLX_1:26; then A42: k1+1<=i by NAT_1:38; now per cases by A42,REAL_1:def 5; suppose A43: k1+1=i; then A44: LSeg(f,k1) /\ LSeg(f,i) = {f/.i} by A3,A13,A25,A28,TOPREAL1:def 8; k1+1 <= len f by A1,A5,A43,FINSEQ_1:3; then A45: f/.k1 in LSeg(f,k1) & k1<=i by A25,A43,NAT_1:29,TOPREAL1:27; then A46: k1 in dom v by A7,A25,FINSEQ_1:3; then h/.k1 = v/.k1 by A1,GROUP_5:95 .= f/.k1 by A46,TOPREAL1:1; then f/.k1 in {f/.i} by A1,A9,A12,A27,A40,A44,A45,XBOOLE_0:def 3; then f/.k1 = f/.i & k1<i by A43,NAT_1:38,TARSKI:def 1; hence contradiction by A1,A16,A28,PARTFUN2:17; suppose A47: k1+1<i; then A48: LSeg(f,k1) misses LSeg(f,i) & k1<=k1+1 by A2,NAT_1:29,TOPREAL1:def 9; then k1<=i by A47,AXIOMS:22; then A49: k1 in dom v by A7,A25,FINSEQ_1:3; then A50: h/.k1 = v/.k1 by A1,GROUP_5:95 .= f/.k1 by A49,TOPREAL1:1; k1+1<=len f by A6,A47,AXIOMS:22; then p in LSeg(f,k1) by A9,A12,A25,A27,A40,A50,TOPREAL1:27; hence contradiction by A1,A48,XBOOLE_0:3; end; hence contradiction; end; hence contradiction; suppose k1<i+1 & k2<i+1; then k1<=i & k2<=i by NAT_1:38; then A51: k1 in dom v & k2 in dom v by A7,A25,A26,FINSEQ_1:3; then f.k1 = v.k1 by A5,FUNCT_1:70 .= h.k1 by A1,A51,FINSEQ_1:def 7 .= v.k2 by A1,A24,A25,A26,A51,FINSEQ_1:def 7 .= f.k2 by A5,A51,FUNCT_1:70; hence contradiction by A16,A24,A25,A26,A28,FUNCT_1:def 8; end; hence contradiction; end; hence h is one-to-one by FUNCT_1:def 8; thus len h >= 2 by A1,A9,A22,AXIOMS:24; thus h is unfolded proof let j such that A52: 1 <= j & j + 2 <= len h; i+1 in Seg len f by A1,FINSEQ_1:def 3; then len h <= len f by A9,FINSEQ_1:3; then A53: j+2 <= len f by A52,AXIOMS:22; then A54: LSeg(f,j) /\ LSeg(f,j+1) = {f/.(j+1)} by A3,A52,TOPREAL1:def 8; i+1+1 = i+(1+1) by XCMPLX_1:1; then len h <= i+2 by A9,NAT_1:29; then j+2 <= i+2 by A52,AXIOMS:22; then A55: j<=i by REAL_1:53; A56: j+1+1 = j+(1+1) by XCMPLX_1:1; then A57: 1<=j+1 & j+1<=i by A9,A52,NAT_1:29,REAL_1:53; then A58: j in dom v & j+1 in dom v by A7,A52,A55,FINSEQ_1:3; then A59: LSeg(h,j) = LSeg(v,j) by A1,TOPREAL3:25 .= LSeg(f,j) by A1,A58,TOPREAL3:24; A60: h/.(j+1) = v/.(j+1) by A1,A58,GROUP_5:95 .= f/.(j+1) by A58,TOPREAL1:1; j<=j+2 by NAT_1:29; then A61: 1<=j+(1+1) by A52,AXIOMS:22; A62: j+(1+1) = j+1+1 by XCMPLX_1:1; now per cases by A52,REAL_1:def 5; suppose j+2 = len h; then j+1 = i by A9,A56,XCMPLX_1:2; then A63: LSeg(h,j) /\ LSeg(h,j+1) c= {h/.(j+1)} by A21,A54,A59,A60,XBOOLE_1:26; j +1 <= j+1+1 by NAT_1:29; then j+1 <= len h by A52,A56,AXIOMS:22; then A64: h/.(j+1) in LSeg(h,j) by A52,TOPREAL1:27; h/.(j+1) in LSeg(h,j+1) by A52,A57,A62,TOPREAL1:27; then h/.(j+1) in LSeg(h,j) /\ LSeg(h,j+1) by A64,XBOOLE_0:def 3; then {h/.(j+1)} c= LSeg(h,j) /\ LSeg(h,j+1) by ZFMISC_1:37; hence LSeg(h,j) /\ LSeg(h,j+1) = {h/.(j+1)} by A63,XBOOLE_0:def 10; suppose j+2 < len h; then j+(1+1)<=i by A9,NAT_1:38; then A65: j+1+1 in dom v by A7,A61,A62,FINSEQ_1:3; then LSeg(h,j+1) = LSeg(v,j+1) by A1,A58,TOPREAL3:25 .= LSeg(f,j+1) by A1,A58,A65,TOPREAL3:24; hence LSeg(h,j) /\ LSeg(h,j+1) = {h/.(j+1)} by A3,A52,A53,A59,A60,TOPREAL1:def 8; end; hence LSeg(h,j) /\ LSeg(h,j+1) = {h/.(j+1)}; end; thus h is s.n.c. proof let n,m; assume A66: m>n+1; then n+1<m & n<=n+1 by NAT_1:29; then A67: n<=m & n+1<=m & 1<=n+1 & LSeg(f,n) misses LSeg(f,m) by A2,AXIOMS:22,NAT_1:29,TOPREAL1:def 9; now per cases by REAL_1:def 5; suppose m+1<len h; then A68: m<=i & m+1<=i & m<=m+1 & 1<m by A9,A66,A67,AXIOMS:22,24,NAT_1 :38; then A69: m in dom v & 1<=m+1 by A7,AXIOMS:22,FINSEQ_1:3; then A70: m+1 in dom v by A7,A68,FINSEQ_1:3; then A71: LSeg(h,m)=LSeg(v,m) by A1,A69,TOPREAL3:25 .= LSeg(f,m) by A1,A69,A70,TOPREAL3:24; now per cases by NAT_1:18; suppose 0<n; then A72: 0+1<=n by NAT_1:38; n<=i & n+1<=i by A67,A68,AXIOMS:22; then A73:n in dom v & n+1 in dom v by A7,A67,A72,FINSEQ_1:3; then LSeg(h,n)=LSeg(v,n) by A1,TOPREAL3:25 .= LSeg(f,n) by A1,A73,TOPREAL3:24; then LSeg(h,n) misses LSeg(h,m) by A2,A66,A71,TOPREAL1:def 9; hence LSeg(h,n) /\ LSeg(h,m) = {} by XBOOLE_0:def 7; suppose 0=n; then LSeg(h,n)={} by TOPREAL1:def 5; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; hence LSeg(h,n) /\ LSeg(h,m) = {}; suppose m+1=len h; then m = i+1 - 1 by A9,XCMPLX_1:26; then A74: m=i by XCMPLX_1:26; then A75: LSeg(h,m) c= LSeg(f,m) by A14,A20,TOPREAL1:12; A76: LSeg(f,n) /\ LSeg(f,m) = {} by A67,XBOOLE_0:def 7; now per cases by NAT_1:18; suppose 0<n; then 0+1<=n by NAT_1:38; then A77: n in dom v & n+1 in dom v by A7,A67,A74,FINSEQ_1:3; then LSeg(h,n)=LSeg(v,n) by A1,TOPREAL3:25 .= LSeg(f,n) by A1,A77,TOPREAL3:24; hence {} = LSeg(h,m) /\ (LSeg(f,m) /\ LSeg(h,n)) by A76 .= LSeg(h,m) /\ LSeg(f,m) /\ LSeg(h,n) by XBOOLE_1:16 .= LSeg(h,n) /\ LSeg(h,m) by A75,XBOOLE_1:28; suppose 0=n; then LSeg(h,n)={} by TOPREAL1:def 5; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; hence LSeg(h,n) /\ LSeg(h,m) = {}; suppose m+1>len h; then LSeg(h,m) = {} by TOPREAL1:def 5; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; let n such that A78: 1 <= n & n + 1 <= len h; set p3 = h/.n, p4 = h/.(n+1); now per cases by A78,REAL_1:def 5; suppose A79: n+1 = len h; then A80: n = i by A9,XCMPLX_1:2; A81: p4 = p & i in dom v by A1,A5,A8,A9,A79,Th1,FINSEQ_1:3; then A82: p3 = v/.i by A1,A80,GROUP_5:95 .= q1 by A81,TOPREAL1:1; now per cases by A1,A4,A13,TOPREAL1:def 7; suppose A83: q1`1 = q2`1; then A84: q1`2<> q2`2 by A17,TOPREAL3:11; now per cases by A84,REAL_1:def 5; suppose q1`2<q2`2; then p in {p11: p11`1 = q1`1 & q1`2 <= p11`2 & p11`2<=q2`2} by A1,A15,A83,TOPREAL3:15; then ex p11 st p=p11 & p11`1 = q1`1 & q1`2 <= p11`2 & p11`2<=q2`2; hence p3`1 = p4`1 or p3`2 = p4`2 by A1,A8,A9,A79,A82,Th1; suppose q2`2<q1`2; then p in {p22: p22`1 = q1`1 & q2`2 <= p22`2 & p22`2<=q1`2} by A1,A15,A83,TOPREAL3:15; then ex p11 st p=p11 & p11`1 = q1`1 & q2`2 <= p11`2 & p11`2<=q1`2; hence p3`1 = p4`1 or p3`2 = p4`2 by A1,A8,A9,A79,A82,Th1; end; hence p3`1 = p4`1 or p3`2 = p4`2; suppose A85: q1`2 = q2`2; then A86: q1`1<> q2`1 by A17,TOPREAL3:11; now per cases by A86,REAL_1:def 5; suppose q1`1<q2`1; then p in {p11: p11`2 = q1`2 & q1`1 <= p11`1 & p11`1<=q2`1} by A1,A15,A85,TOPREAL3:16; then ex p11 st p=p11 & p11`2 = q1`2 & q1`1 <= p11`1 & p11`1<=q2`1; hence p3`1 = p4`1 or p3`2 = p4`2 by A1,A8,A9,A79,A82,Th1; suppose q2`1<q1`1; then p in {p22: p22`2 = q1`2 & q2`1 <= p22`1 & p22`1<=q1`1} by A1,A15,A85,TOPREAL3:16; then ex p11 st p=p11 & p11`2 = q1`2 & q2`1 <= p11`1 & p11`1<=q1`1; hence p3`1 = p4`1 or p3`2 = p4`2 by A1,A8,A9,A79,A82,Th1; end; hence p3`1 = p4`1 or p3`2 = p4`2; end; hence p3`1 = p4`1 or p3`2 = p4`2; suppose n+1 < len h; then n<=i & n+1<=i & n<=n+1 by A9,AXIOMS:24,NAT_1:38; then n in dom v & n+1<=i & 1<=n+1 by A7,A78,AXIOMS:22,FINSEQ_1:3; then A87: n in dom v & n+1 in dom v by A7,FINSEQ_1:3; A88: n+1 <= len f by A9,A13,A78,AXIOMS:22; h/.n=v/.n & h/.(n+1)=v/.(n+1) by A1,A87,GROUP_5:95; then p3=f/.n & p4=f/.(n+1) by A87,TOPREAL1:1; hence p3`1 = p4`1 or p3`2 = p4`2 by A4,A78,A88,TOPREAL1:def 7; end; hence p3`1 = p4`1 or p3`2 = p4`2; end; thus h/.1=p1 & h/.len h=p by A1,A8,A9,A11,Th1; hence L~h is_S-P_arc_joining p1,p by A23,Def1; set Mf = {LSeg(f,j): 1<=j & j+1<=len f}, Mv = {LSeg(v,n): 1<=n & n+1<=len v}, Mh = {LSeg(h,m): 1<=m & m+1<=len h}; A89: now let x; assume x in L~h; then x in union Mh by TOPREAL1:def 6; then consider X be set such that A90: x in X & X in Mh by TARSKI:def 4; consider k such that A91: X=LSeg(h,k) & 1<=k & k+1<=len h by A90; A92: k+1<= len f by A9,A13,A91,AXIOMS:22; now per cases by A91,REAL_1:def 5; suppose k+1 = len h; then A93: k=i & LSeg(h,i) c= LSeg(f,i) by A9,A14,A20,TOPREAL1:12,XCMPLX_1:2; then x in LSeg(f,k) & LSeg(f,k) in Mf by A13,A90,A91; then x in union Mf by TARSKI:def 4; hence x in L~f by TOPREAL1:def 6; thus x in L~v \/ LSeg(q1,p) by A20,A90,A91,A93,XBOOLE_0:def 2; suppose A94: k+1 < len h; then A95: k+1<i+1 & k<=k+1 by A9,NAT_1:29; k+1<=i & 1<=k+1 by A9,A91,A94,NAT_1:38; then A96: k+1 in dom v & k<=i by A7,A95,AXIOMS:22,FINSEQ_1:3; then A97: k in dom v by A7,A91,FINSEQ_1:3; then A98: X=LSeg(v,k) by A1,A91,A96,TOPREAL3:25 .= LSeg(f,k) by A1,A96,A97,TOPREAL3:24; then X in Mf by A91,A92; then x in union Mf by A90,TARSKI:def 4; hence x in L~f by TOPREAL1:def 6; X=LSeg(v,k) & k+1<=len v by A1,A8,A9,A94,A96,A97,A98,NAT_1:38,TOPREAL3:24; then X in Mv by A91; then x in union Mv by A90,TARSKI:def 4; then x in L~v by TOPREAL1:def 6; hence x in L~v \/ LSeg(q1,p) by XBOOLE_0:def 2; end; hence x in L~f & x in L~v \/ LSeg(q1,p); end; thus L~h c= L~f proof let x; assume x in L~h; hence x in L~f by A89; end; thus L~h c= L~(f|i) \/ LSeg(q,p) proof let x; assume x in L~h; hence thesis by A89; end; let x such that A99: x in L~v \/ LSeg(q,p); now per cases by A99,XBOOLE_0:def 2; suppose x in L~v; then x in union Mv by TOPREAL1:def 6; then consider X be set such that A100: x in X & X in Mv by TARSKI:def 4; consider k such that A101: X=LSeg(v,k) & 1<=k & k+1<=len v by A100; k<=k+1 by NAT_1:29; then 1<=k & k<=len v & 1<=k+1 & k+1<=len v by A101,AXIOMS:22; then A102: k in Seg len v & k+1 in Seg len v by FINSEQ_1:3; A103: k+1<=len h by A8,A9,A19,A101,AXIOMS:22; X=LSeg(h,k) by A1,A5,A101,A102,TOPREAL3:25; then X in Mh by A101,A103; then x in union Mh by A100,TARSKI:def 4; hence thesis by TOPREAL1:def 6; suppose A104: x in LSeg(q,p); LSeg(h,i) in Mh by A1,A9; then x in union Mh by A20,A104,TARSKI:def 4; hence thesis by TOPREAL1:def 6; end; hence thesis; end; theorem Th15: f/.2<>f/.1 & f is_S-Seq & (f/.2)`2 = (f/.1)`2 & h = <* f/.1,|[((f/.1)`1+(f/.2)`1)/2,(f/.1)`2]|,f/.2 *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=f/.2 & L~h is_S-P_arc_joining f/.1,f/.2 & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,f/.2) & L~h = L~(f|2) \/ LSeg(f/.2,f/.2) proof set p1 = f/.1, p = f/.2; assume A1: p<>p1 & f is_S-Seq & p`2 = p1`2 & h = <* p1,|[(p1`1+p`1)/2,p1`2]|,p *>; then A2: len f >= 2 by TOPREAL1:def 10; then A3: 1+1 in Seg len f & len f >= 1 by AXIOMS:22,FINSEQ_1:3; then A4: LSeg(f,1) = LSeg(p1,p) & p1`1 <> p`1 by A1,A2,TOPREAL1:def 5,TOPREAL3:11; hence h is_S-Seq & h/.1 = p1 & h/.len h = p by A1,TOPREAL3:44; hence A5: L~h is_S-P_arc_joining p1,p by Def1; A6: L~h=LSeg(p1,|[(p1`1 + p`1)/2,p1`2]|) \/ LSeg(|[(p1`1 + p`1)/2,p1`2]|,p) & |[(p1`1 + p`1)/2,p1`2]| in LSeg(p1,p) by A1,A4,TOPREAL3:19,23; then A7: LSeg(p1,|[(p1`1 + p`1)/2,p1`2]|) \/ LSeg(|[(p1`1 + p`1)/2,p1`2]|,p) = LSeg(p1,p) & LSeg(f,1) c= L~f by TOPREAL1:11,TOPREAL3:26; hence L~h c= L~f by A1,A4,TOPREAL3:23; A8: Seg 1 c= Seg len f & Seg len f = dom f & f|1 = f|Seg 1 by A3,FINSEQ_1:7,def 3,TOPREAL1:def 1; then dom f /\ Seg 1 = Seg 1 by XBOOLE_1:28; then dom(f|1) = Seg 1 by A8,FUNCT_1:68; then len (f|1) = 1 by FINSEQ_1:def 3; then L~(f|1)={} by TOPREAL1:28; hence L~h = L~(f|1) \/ LSeg(p1,p) by A6,TOPREAL1:11; A9: Seg 2 c= Seg len f & f|2 = f|Seg 2 by A2,FINSEQ_1:7,TOPREAL1:def 1; then dom f /\ Seg 2 = Seg 2 by A8,XBOOLE_1:28; then A10: dom(f|2) = Seg 2 by A9,FUNCT_1:68; then A11: 1+1<=len(f|2) by FINSEQ_1:def 3; A12: 1 in dom(f|2) & 2 in dom(f|2) by A10,FINSEQ_1:3; then A13: LSeg(f|2,1) = LSeg(p1,p) by A3,A4,A8,TOPREAL3:24; set M = {LSeg(f|2,k): 1<=k & k+1<=len(f|2)}; LSeg(p1,p) in M by A11,A13; then LSeg(p1,p) c= union M by ZFMISC_1:92; then L~h c=L~(f|2) & L~(f|2) c=L~(f|2) \/ LSeg(p,p) by A6,A7,TOPREAL1:def 6,XBOOLE_1:7; then A14: L~h c= L~(f|2) \/ LSeg(p,p) by XBOOLE_1:1; L~(f|2) \/ LSeg(p,p) c= L~h proof let x such that A15: x in L~(f|2) \/ LSeg(p,p); now per cases by A15,XBOOLE_0:def 2; suppose x in L~(f|2); then x in union M by TOPREAL1:def 6; then consider X be set such that A16: x in X & X in M by TARSKI:def 4; consider m such that A17: X=LSeg(f|2,m) & 1<=m & m+1<=len(f|2) by A16; len(f|2) - 1 =1+1 - 1 by A10,FINSEQ_1:def 3 .= 1; then m+1-1 <= 1 by A17,REAL_1:49; then m <= 1 by XCMPLX_1:26; then m=1 by A17,AXIOMS:21; hence thesis by A3,A4,A6,A7,A8,A12,A16,A17,TOPREAL3:24; suppose x in LSeg(p,p); then x in {p} & p in L~h by A5,A6,Th4,TOPREAL1:7; hence x in L~h by TARSKI:def 1; end; hence thesis; end; hence thesis by A14,XBOOLE_0:def 10; end; theorem Th16: f/.2<>f/.1 & f is_S-Seq & (f/.2)`1 = (f/.1)`1 & h = <* f/.1,|[(f/.1)`1,((f/.1)`2+(f/.2)`2)/2]|,f/.2 *> implies h is_S-Seq & h/.1=f/.1 & h/.len h=f/.2 & L~h is_S-P_arc_joining f/.1,f/.2 & L~h c= L~f & L~h = L~(f|1) \/ LSeg(f/.1,f/.2) & L~h = L~(f|2) \/ LSeg(f/.2,f/.2) proof set p1 = f/.1, p = f/.2; assume A1: p<>p1 & f is_S-Seq & p`1 = p1`1 & h = <* p1,|[p1`1,(p1`2+p`2)/2]|,p *>; then A2: len f >= 1+1 by TOPREAL1:def 10; then A3: 1+1 in Seg len f & len f >= 1 by AXIOMS:22,FINSEQ_1:3; A4: LSeg(f,1) = LSeg(p1,p) & p1`2 <> p`2 by A1,A2,TOPREAL1:def 5,TOPREAL3:11; hence h is_S-Seq & h/.1 = p1 & h/.len h = p by A1,TOPREAL3:43; hence A5: L~h is_S-P_arc_joining p1,p by Def1; A6: L~h = LSeg(p1,|[p1`1,(p1`2+p`2)/2]|) \/ LSeg(|[p1`1,(p1`2+p`2)/2]|,p) & |[p1`1,(p1`2+p`2)/2]| in LSeg(p1,p) by A1,A4,TOPREAL3:20,23; then A7: LSeg(p1,|[p1`1,(p1`2+p`2)/2]|) \/ LSeg(|[p1`1,(p1`2+p`2)/2]|,p) = LSeg(p1,p) & LSeg(f,1) c= L~f by TOPREAL1:11,TOPREAL3:26; hence L~h c= L~f by A1,A4,TOPREAL3:23; A8: Seg 1 c= Seg len f & Seg len f = dom f & f|1 = f|Seg 1 by A3,FINSEQ_1:7,def 3,TOPREAL1:def 1; then dom f /\ Seg 1 = Seg 1 by XBOOLE_1:28; then dom(f|1) = Seg 1 by A8,FUNCT_1:68; then len (f|1) = 1 by FINSEQ_1:def 3; then L~(f|1)={} by TOPREAL1:28; hence L~h = L~(f|1) \/ LSeg(p1,p) by A6,TOPREAL1:11; A9: Seg 2 c= Seg len f & f|2 = f|Seg 2 by A2,FINSEQ_1:7,TOPREAL1:def 1; then dom f /\ Seg 2 = Seg 2 by A8,XBOOLE_1:28; then A10: dom(f|2) = Seg 2 by A9,FUNCT_1:68; then A11: 1+1<=len(f|2) by FINSEQ_1:def 3; A12: 1 in dom(f|2) & 2 in dom(f|2) by A10,FINSEQ_1:3; then A13: LSeg(f|2,1) = LSeg(p1,p) by A3,A4,A8,TOPREAL3:24; set M = {LSeg(f|2,k): 1<=k & k+1<=len(f|2)}; LSeg(p1,p) in M by A11,A13; then LSeg(p1,p) c= union M by ZFMISC_1:92; then L~h c=L~(f|2) & L~(f|2) c=L~(f|2) \/ LSeg(p,p) by A6,A7,TOPREAL1:def 6,XBOOLE_1:7; then A14: L~h c= L~(f|2) \/ LSeg(p,p) by XBOOLE_1:1; L~(f|2) \/ LSeg(p,p) c= L~h proof let x such that A15: x in L~(f|2) \/ LSeg(p,p); now per cases by A15,XBOOLE_0:def 2; suppose x in L~(f|2); then x in union M by TOPREAL1:def 6; then consider X be set such that A16: x in X & X in M by TARSKI:def 4; consider m such that A17: X=LSeg(f|2,m) & 1<=m & m+1<=len(f|2) by A16; len(f|2) - 1 =1+1 - 1 by A10,FINSEQ_1:def 3 .= 1; then m+1-1 <= 1 by A17,REAL_1:49; then m <= 1 by XCMPLX_1:26; then m=1 by A17,AXIOMS:21; hence thesis by A3,A4,A6,A7,A8,A12,A16,A17,TOPREAL3:24; suppose x in LSeg(p,p); then x in {p} & p in L~h by A5,A6,Th4,TOPREAL1:7; hence x in L~h by TARSKI:def 1; end; hence thesis; end; hence thesis by A14,XBOOLE_0:def 10; end; theorem Th17: f/.i<>f/.1 & f is_S-Seq & i>2 & i in dom f & h = f|i implies h is_S-Seq & h/.1=f/.1 & h/.len h=f/.i & L~h is_S-P_arc_joining f/.1,f/.i & L~h c= L~f & L~h = L~(f|i) \/ LSeg(f/.i,f/.i) proof assume A1: f/.i<>f/.1 & f is_S-Seq & i>2 & i in dom f & h = f|i; then A2: h is_S-Seq & h = f|Seg i & Seg len f = dom f & Seg len h = dom h by FINSEQ_1:def 3,TOPREAL1:def 1,TOPREAL3:40; then i<=len f by A1,FINSEQ_1:3; then Seg i c= Seg len f & dom h=Seg(len f) /\ Seg i by A2,FINSEQ_1:7,RELAT_1:90; then dom h = Seg i & 1<=i by A1,A2,FINSEQ_1:3,XBOOLE_1:28; then 1 in dom h & i in dom h & len h = i by FINSEQ_1:3,def 3; hence h is_S-Seq & h/.1=f/.1 & h/.len h = f/.i by A1,TOPREAL1:1,TOPREAL3:40; hence A3: L~h is_S-P_arc_joining f/.1,f/.i & L~h c= L~f by A1,Def1,TOPREAL3:27; A4: LSeg(f/.i,f/.i) = {f/.i} by TOPREAL1:7; L~h is_S-P_arc by A3,Th2; then L~(f|i) <> {} by A1,TOPREAL1:32; then f/.i in L~(f|i) by A1,A3,Th4; then {f/.i} c= L~(f|i) by ZFMISC_1:37; hence thesis by A1,A4,XBOOLE_1:12; end; theorem Th18: p<>f/.1 & f is_S-Seq & p in LSeg(f,n) implies ex h st h is_S-Seq & h/.1=f/.1 & h/.len h = p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(f/.n,p) proof set p1 = f/.1, q = f/.n; assume A1: p<>p1 & f is_S-Seq & p in LSeg(f,n); then A2: f is special by TOPREAL1:def 10; A3: n <= n+1 by NAT_1:29; A4: now assume A5: not n in dom f or not n+1 in dom f; now per cases by A5; suppose not n in dom f; then not(1 <= n & n <= len f) by FINSEQ_3:27; then not(1 <= n & n+1 <= len f) by A3,AXIOMS:22; hence contradiction by A1,TOPREAL1:def 5; suppose not n+1 in dom f; then not(1 <= n+1 & n+1<= len f) by FINSEQ_3:27; hence contradiction by A1,NAT_1:29,TOPREAL1:def 5; end; hence contradiction; end; A6:f is one-to-one & Seg len f=dom f by A1,FINSEQ_1:def 3,TOPREAL1:def 10; then A7: 1<=n & n<=len f & n+1<=len f by A4,FINSEQ_1:3; now per cases; case f/.n = p & f/.(n+1) = p; then n+1 = n by A4,A6,PARTFUN2:17; hence contradiction by XCMPLX_1:3; case A8: f/.n = p & f/.(n+1) <> p; then 1<n by A1,A7,REAL_1:def 5; then A9: 1+1<=n by NAT_1:38; now per cases by A9,REAL_1:def 5; suppose A10: n=1+1; now per cases by A2,A7,A8,A10,TOPREAL1:def 7; suppose A11: p1`1=p`1; take h = <* p1,|[p1`1,(p1`2+p`2)/2]|,p *>; thus h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A8,A10,A11,Th16; suppose A12: p1`2=p`2; take h = <* p1,|[(p1`1+p`1)/2,p1`2]|,p *>; thus h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A8,A10,A12,Th15; end; hence thesis; suppose A13: n>2; take h=f|n; thus h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A4,A8,A13,Th17; end; hence thesis; case A14: f/.n <> p & f/.(n+1) = p; now per cases by A7,REAL_1:def 5; suppose A15: n=1; now per cases by A2,A7,A14,A15,TOPREAL1:def 7; suppose A16: p1`1= p`1; take h=<* p1,|[p1`1,(p1`2+p`2)/2]|,p *>; thus h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A14,A15,A16,Th16; suppose A17: p1`2=p`2; take h=<* p1,|[(p1`1+p`1)/2,p1`2]|,p *>; thus h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A14,A15,A17,Th15; end; hence thesis; suppose 1<n; then A18: 1+1<n+1 by REAL_1:53; take h=f|(n+1); thus h is_S-Seq & h/.1=p1 & h/.len h=p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A4,A14,A18,Th17,TOPREAL3:45; end; hence thesis; case A19: f/.n <> p & f/.(n+1) <> p; now per cases by A7,REAL_1:def 5; suppose A20: n=1; A21: len f >= 1+1 by A1,TOPREAL1:def 10; set q1 = f/.(1+1); A22: LSeg(f,n) = LSeg(p1,q1) by A20,A21,TOPREAL1:def 5; now per cases by A2,A21,TOPREAL1:def 7; suppose A23: p1`1=q1`1; then p1`1 <= p`1 & p`1 <= q1`1 by A1,A22,TOPREAL1:9; then A24: p1`1 = p`1 by A23,AXIOMS:21; take h = <* p1,|[p1`1,(p1`2+p`2)/2]|,p *>; thus h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A20,A24,Th13; suppose A25: p1`2=q1`2; then p1`2 <= p`2 & p`2 <= q1`2 by A1,A22,TOPREAL1:10; then A26: p1`2 = p`2 by A25,AXIOMS:21; take h = <* p1,|[(p1`1+p`1)/2,p1`2]|,p *>; thus h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(q,p) by A1,A20,A26,Th12; end; hence thesis; suppose A27: 1<n; take h = (f|n)^<*p*>; thus h is_S-Seq & h/.1 = p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h =L~(f|n) \/ LSeg(q,p) by A1,A4,A19,A27,Th14; end; hence thesis; end; hence thesis; end; theorem Th19: p<>f/.1 & f is_S-Seq & p in L~f implies ex h st h is_S-Seq & h/.1=f/.1 & h/.len h = p & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f proof set M = {LSeg(f,i): 1<=i & i+1<=len f}, p1 = f/.1; assume A1: p<>p1 & f is_S-Seq & p in L~f; then p in union M by TOPREAL1:def 6; then consider X be set such that A2: p in X & X in M by TARSKI:def 4; consider n such that A3: X=LSeg(f,n) & 1<=n & n+1<=len f by A2; consider h such that A4: h is_S-Seq & h/.1=p1 & h/.len h = p & L~h is_S-P_arc_joining p1,p & L~h c= L~f & L~h = L~(f|n) \/ LSeg(f/.n,p) by A1,A2,A3,Th18; take h; thus thesis by A4; end; theorem Th20: ( p`1=(f/.len f)`1 & p`2<>(f/.len f)`2 or p`1<>(f/.len f)`1 & p`2=(f/.len f)`2 ) & not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & f is_S-Seq & LSeg(f/.len f,p) /\ L~f = {f/.len f} & h=f^<*p*> implies h is_S-Seq & L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r) proof set p1 = f/.1, p2 = f/.len f; assume A1: p`1=p2`1 & p`2<>p2`2 or p`1<>p2`1 & p`2=p2`2; assume A2: not p1 in Ball(u,r) & p2 in Ball(u,r) & p in Ball(u,r) & f is_S-Seq & LSeg(p2,p) /\ L~f = {p2} & h=f^<*p*>; then A3: len h = len f + len <*p*> by FINSEQ_1:35 .= len f + 1 by FINSEQ_1:56; A4: f is s.n.c. by A2,TOPREAL1:def 10; A5: f is unfolded by A2,TOPREAL1:def 10; A6: f is special by A2,TOPREAL1:def 10; A7: Seg len f = dom f & Seg len h = dom h by FINSEQ_1:def 3; A8: 2<=len f by A2,TOPREAL1:def 10; then A9: 1<=len f & 2<=len f by AXIOMS:22; then 1 in dom f by A7,FINSEQ_1:3; then A10: h/.1 = p1 & h/.len h = p & f is one-to-one & p<>p2 by A1,A2,A3,Th1,GROUP_5:95,TOPREAL1:def 10; A11: not p in L~f & len f in dom f by A1,A2,A7,A9,FINSEQ_1:3,TOPREAL3:47; then A12: h/.len f = p2 by A2,GROUP_5:95; then A13: LSeg(h,len f) = LSeg(p2,p) by A3,A9,A10,TOPREAL1:def 5; set Mf = {LSeg(f,i): 1<=i & i+1<=len f}, Mh = {LSeg(h,m): 1<=m & m+1<=len h}; A14: L~f = union Mf & f is one-to-one by A2,TOPREAL1:def 6,def 10; thus h is_S-Seq proof now set Z = {m: 1<=m & m<=len h}; given x,y such that A15: x in dom h & y in dom h & h.x = h.y & x<>y; x in Z by A7,A15,FINSEQ_1:def 1; then consider k1 be Nat such that A16: k1=x & 1<=k1 & k1<=len h; y in Z by A7,A15,FINSEQ_1:def 1; then consider k2 be Nat such that A17: k2=y & 1<=k2 & k2<=len h; A18: h/.k1 = h.y by A15,A16,FINSEQ_4:def 4 .= h/.k2 by A15,A17,FINSEQ_4:def 4; now per cases by A3,A16,A17,REAL_1:def 5; suppose k1=len f+1 & k2=len f+1; hence contradiction by A15,A16,A17; suppose A19: k1=len f+1 & k2<len f+1; then A20: k2+1<=k1 by NAT_1:38; now per cases by A20,REAL_1:def 5; suppose k2 + 1 = k1; then k2 + 1 - 1= len f by A19,XCMPLX_1:26; hence contradiction by A3,A10,A12,A18,A19,XCMPLX_1:26; suppose k2 + 1 < k1; then k2<len f+1-1 by A19,REAL_1:86; then A21: k2<=len f by XCMPLX_1:26; then k2 in dom f by A7,A17,FINSEQ_1:3; then f/.k2 <> p & h/.k2 = f/.k2 & h/.k1 = p by A2,A8,A11,A17,A19,A21,Th1,GROUP_5:95,TOPREAL3:46; hence contradiction by A18; end; hence contradiction; suppose A22: k1<len f+1 & k2=len f+1; then A23: k1+1<=k2 by NAT_1:38; now per cases by A23,REAL_1:def 5; suppose k1 + 1 = k2; then k1 + 1 - 1= len f by A22,XCMPLX_1:26; hence contradiction by A3,A10,A12,A18,A22,XCMPLX_1:26; suppose k1 + 1 < k2; then k1<len f+1-1 by A22,REAL_1:86; then A24: k1<=len f by XCMPLX_1:26; then k1 in dom f by A7,A16,FINSEQ_1:3; then f/.k1 <> p & h/.k1 = f/.k1 & h/.k2 = p by A2,A8,A11,A16,A22,A24,Th1,GROUP_5:95,TOPREAL3:46; hence contradiction by A18; end; hence contradiction; suppose k1<len f+1 & k2<len f+1; then k1<=len f & k2<=len f by NAT_1:38; then A25: k1 in dom f & k2 in dom f by A7,A16,A17,FINSEQ_1:3; then f.k1 = h.k1 by A2,FINSEQ_1:def 7 .= f.k2 by A2,A15,A16,A17,A25,FINSEQ_1:def 7; hence contradiction by A10,A15,A16,A17,A25,FUNCT_1:def 8; end; hence contradiction; end; hence h is one-to-one by FUNCT_1:def 8; 2+1<=len f +1 by A8,AXIOMS:24; hence len h >= 2 by A3,AXIOMS:22; thus h is unfolded proof let j such that A26: 1 <= j & j + 2 <= len h; A27: j+(1+1) = j+1+1 by XCMPLX_1:1; j+1 <= j+2 by AXIOMS:24; then A28: j+1 <= len h by A26,AXIOMS:22; now per cases by A26,REAL_1:def 5; suppose j+2 = len h; then j+2 - 1= len f by A3,XCMPLX_1:26; then A29: j+(1+1 - 1)= len f by XCMPLX_1:29; then j<=len f by NAT_1:38; then j in dom f by A7,A26,FINSEQ_1:3; then A30: LSeg(h,j) = LSeg(f,j) & LSeg(h,j+1) = LSeg(p2,p) by A2,A3,A9,A10,A11,A12,A29,TOPREAL1:def 5,TOPREAL3:25; h/.(j+1) in LSeg(h,j) by A26,A28,TOPREAL1:27; then A31: {h/.(j+1)} c= LSeg(h,j) by ZFMISC_1:37; LSeg(h,j) in Mf by A26,A29,A30; then LSeg(h,j) c= L~f by A14,ZFMISC_1:92; then LSeg(h,j) = LSeg(h,j) /\ L~f by XBOOLE_1:28; hence LSeg(h,j) /\ LSeg(h,j+1) = LSeg(h,j) /\ {h/.(j+1)} by A2,A12,A29,A30,XBOOLE_1:16 .= {h/.(j+1)} by A31,XBOOLE_1:28; suppose j+2 < len h; then j+2+1<=len f +1 by A3,NAT_1:38; then j+(2+1)<=len f +1 by XCMPLX_1:1; then A32: j+(2+1)-1<=len f by REAL_1:86; 3-1=2; then A33: j+2<=len f by A32,XCMPLX_1:29; then A34: LSeg(f,j) /\ LSeg(f,j+1) = {f/.(j+1)} by A5,A26,TOPREAL1:def 8; j<=j+1 & j+1<=j+2 by A27,NAT_1:29; then 1<=j+1 & j<=j+1 & j+1<=j+2 & j+1<=len f by A26,A33,AXIOMS:22; then 1<=j+1 & 1<=j+2 & j<=len f & j+1<=len f by AXIOMS:22; then A35: j in dom f & j+1 in dom f & j+1+1 in dom f by A7,A26,A27,A33,FINSEQ_1:3; then h/.(j+1) = f/.(j+1) & LSeg(h,j) = LSeg(f,j) by A2,GROUP_5:95,TOPREAL3:25; hence LSeg(h,j) /\ LSeg(h,j+1) = {h/.(j+1)} by A2,A34,A35,TOPREAL3:25; end; hence LSeg(h,j) /\ LSeg(h,j+1) = {h/.(j+1)}; end; thus h is s.n.c. proof let n,m such that A36: m>n+1; A37: n+1+1=n+(1+1) by XCMPLX_1:1; A38: n+1<m & n<=n+1 by A36,NAT_1:29; LSeg(f,n) misses LSeg(f,m) by A4,A36,TOPREAL1:def 9; then A39: n<=m & n+1<=m & 1<=n+1 & LSeg(f,n) /\ LSeg(f,m) = {} by A38,AXIOMS:22,NAT_1:29,XBOOLE_0:def 7; now per cases by REAL_1:def 5; suppose m+1<len h; then A40: m<=len f & m+1<=len f & m<=m+1 & 1<m by A3,A36,A39,AXIOMS:22,24,NAT_1:38; then A41: m in dom f & 1<=m+1 by A7,AXIOMS:22,FINSEQ_1:3; then m+1 in dom f by A7,A40,FINSEQ_1:3; then A42: LSeg(h,m)=LSeg(f,m) by A2,A41,TOPREAL3:25; now per cases by NAT_1:18; suppose 0<n; then A43: 0+1<=n by NAT_1:38; n<=len f & n+1<=len f by A39,A40,AXIOMS:22; then n in dom f & n+1 in dom f by A7,A39,A43,FINSEQ_1:3; hence LSeg(h,n) /\ LSeg(h,m) = {} by A2,A39,A42,TOPREAL3:25; suppose 0=n; then LSeg(h,n)={} by TOPREAL1:def 5; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; hence LSeg(h,n) /\ LSeg(h,m) = {}; suppose m+1=len h; then m = len f+1 - 1 by A3,XCMPLX_1:26; then A44: m=len f by XCMPLX_1:26; now per cases by NAT_1:18; suppose 0<n; then A45: 0+1<=n by NAT_1:38; then A46: n in dom f & n+1 in dom f by A7,A39,A44,FINSEQ_1:3; then A47: LSeg(h,n)=LSeg(f,n) by A2,TOPREAL3:25; now assume A48: LSeg(h,n) /\ LSeg(h,m) <> {}; consider x being Element of LSeg(h,n) /\ LSeg(h,m); set L = LSeg(f,n); A49: x in LSeg(p2,p) & x in L & n+1<=len f by A13,A36,A44,A47,A48,XBOOLE_0:def 3; L in Mf by A36,A44,A45; then x in L~f by A14,A49,TARSKI:def 4; then x in {p2} by A2,A49,XBOOLE_0:def 3; then A50: x=p2 & n+1+1<=len f by A36,A44,NAT_1:38,TARSKI:def 1; now per cases by A50,REAL_1:def 5; suppose A51: n+1+1 = len f; then A52: LSeg(f,n) /\ LSeg(f,n+1) = {f/.(n+1)} by A5,A37,A45,TOPREAL1:def 8; 1 <= n+1 by NAT_1:29; then p2 in LSeg(f,n+1) by A51,TOPREAL1:27; then p2 in {f/.(n+1)} by A49,A50,A52,XBOOLE_0:def 3; then f/.len f=f/.(n+1) by TARSKI:def 1; then len f + 1 = len f by A11,A14,A46,A51,PARTFUN2:17; hence contradiction by XCMPLX_1:3; suppose n+1+1<len f; then n+2+1<=len f by A37,NAT_1:38; then A53: n+2<=len f - 1 by REAL_1:84; reconsider j=len f - 1 as Nat by A9,INT_1:18; n+1<j by A37,A53,NAT_1:38; then A54: LSeg(f,n) misses LSeg(f,j) & j+1 = len f by A4,TOPREAL1:def 9,XCMPLX_1:27; then A55: LSeg(f,n) /\ LSeg(f,j) = {} & j+1 = len f by XBOOLE_0:def 7; (1+1)-1 = 1; then 1<=j by A8,REAL_1:92; then p2 in LSeg(f,j) by A54,TOPREAL1:27; hence contradiction by A49,A50,A55,XBOOLE_0:def 3; end; hence contradiction; end; hence LSeg(h,n) /\ LSeg(h,m) = {}; suppose 0=n; then LSeg(h,n)={} by TOPREAL1:def 5; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; hence LSeg(h,n) /\ LSeg(h,m) = {}; suppose m+1>len h; then LSeg(h,m) = {} by TOPREAL1:def 5; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; hence LSeg(h,n) /\ LSeg(h,m) = {}; end; hereby let n such that A56: 1 <= n & n + 1 <= len h; set p3 = h/.n, p4 = h/.(n+1); now per cases by A56,REAL_1:def 5; suppose n+1 = len h; hence p3`1=p4`1 or p3`2=p4`2 by A1,A3,A10,A12,XCMPLX_1:2; suppose A57: n+1 < len h; then n<=len f & n+1<=len f & n<=n+1 by A3,AXIOMS:24,NAT_1:38; then n in dom f & n+1<=len f & 1<=n+1 by A7,A56,AXIOMS:22,FINSEQ_1:3; then n in dom f & n+1 in dom f by A7,FINSEQ_1:3; then p3=f/.n & p4=f/.(n+1) & n+1<= len f by A2,A3,A57,GROUP_5:95,NAT_1: 38; hence p3`1 = p4`1 or p3`2 = p4`2 by A6,A56,TOPREAL1:def 7; end; hence p3`1 = p4`1 or p3`2 = p4`2; end; end; hence L~h is_S-P_arc_joining p1,p by A10,Def1; let x; assume x in L~h; then x in union Mh by TOPREAL1:def 6; then consider X be set such that A58: x in X & X in Mh by TARSKI:def 4; consider k such that A59: X=LSeg(h,k) & 1<=k & k+1<=len h by A58; per cases by A59,REAL_1:def 5; suppose k+1 = len h; then k=len f by A3,XCMPLX_1:2; then X c= Ball(u,r) & Ball(u,r) c= L~f \/ Ball(u,r) by A2,A13,A59,TOPREAL3:28,XBOOLE_1:7; hence thesis by A58,TARSKI:def 3; suppose A60: k+1 < len h; then A61: k+1<len f+1 & k<=k+1 by A3,NAT_1:29; A62: k+1<=len f & 1<=k+1 by A3,A59,A60,NAT_1:38; then A63: k+1 in dom f & k<=len f by A7,A61,AXIOMS:22,FINSEQ_1:3; then k in dom f by A7,A59,FINSEQ_1:3; then X=LSeg(f,k) by A2,A59,A63,TOPREAL3:25; then X in Mf by A59,A62; then x in union Mf by A58,TARSKI:def 4; then x in L~f by TOPREAL1:def 6; hence thesis by XBOOLE_0:def 2; end; theorem Th21: not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & |[p`1,(f/.len f)`2]| in Ball(u,r) & f is_S-Seq & p`1<>(f/.len f)`1 & p`2<>(f/.len f)`2 & h=f^<*|[p`1,(f/.len f)`2]|,p*> & (LSeg(f/.len f,|[p`1,(f/.len f)`2]|) \/ LSeg(|[p`1,(f/.len f)`2]|,p)) /\ L~f = {f/.len f} implies L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r) proof set p1 = f/.1, p2 = f/.len f; assume A1: not p1 in Ball(u,r) & p2 in Ball(u,r) & p in Ball(u,r) & |[p`1,p2`2]| in Ball(u,r) & f is_S-Seq & p`1<>p2`1 & p`2<>p2`2 & h=f^<*|[p`1,p2`2]|,p*> & (LSeg(p2,|[p`1,p2`2]|) \/ LSeg(|[p`1,p2`2]|,p)) /\ L~f = {p2}; set p3 = |[p`1,p2`2]|, f1 = f^<* p3 *>, h1 = f1^<* p *>; A2: p3`2 = p2`2 & p3`1 = p`1 & p=|[p`1,p`2]| by EUCLID:56,57; A3: {p2} = (LSeg(p2,p3) /\ L~f) \/ (LSeg(p3,p) /\ L~f) & LSeg(p2,p3) /\ L~f c= (LSeg(p2,p3) /\ L~f) \/ (LSeg(p3,p) /\ L~f) by A1,XBOOLE_1:7,23; reconsider Lf = L~f as non empty Subset of TOP-REAL 2 by A1; L~f is_S-P_arc_joining p1,p2 by A1,Def1; then Lf is_an_arc_of p1,p2 by Th3; then p2 in L~f & p2 in LSeg(p2,p3) by TOPREAL1:4,6; then p2 in LSeg(p2,p3) /\ L~f by XBOOLE_0:def 3; then {p2} c= LSeg(p2,p3) /\ L~f by ZFMISC_1:37; then A4: LSeg(p2,p3) /\ L~f = {p2} by A3,XBOOLE_0:def 10; then A5: L~f1 is_S-P_arc_joining p1,p3 & L~f1 c= L~f \/ Ball(u,r) by A1,A2,Th20; A6: Seg len f = dom f & len f>=2 by A1,FINSEQ_1:def 3,TOPREAL1:def 10; then A7: 1<=len f by AXIOMS:22; then A8: 1 in dom f by A6,FINSEQ_1:3; L~f1 is_S-P_arc by A5,Th2; then reconsider Lf1 = L~f1 as non empty Subset of TOP-REAL 2 by TOPREAL1:32; A9: len f1 = len f + len <*p3*> by FINSEQ_1:35 .= len f + 1 by FINSEQ_1:56; then A10: f1/.len f1 = p3 & Lf1 is_an_arc_of p1,p3 by A5,Th1,Th3; then p3 in L~f1 & p3 in LSeg(p3,p) by TOPREAL1:4,6; then p3 in LSeg(p3,p) /\ L~f1 by XBOOLE_0:def 3; then A11: {p3} c= LSeg(p3,p) /\ L~f1 &len f in dom f by A6,A7,FINSEQ_1:3,ZFMISC_1:37; then A12: f1/.len f = p2 by GROUP_5:95; LSeg(p3,p) /\ L~f1 c= {p3} proof assume not thesis; then consider x such that A13: x in LSeg(p3,p) /\ L~f1 & not x in {p3} by TARSKI:def 3; set M1 = {LSeg(f1,i): 1<=i & i+1<=len f1}, Mf = {LSeg(f,j): 1<=j & j+1<=len f}; A14: x in LSeg(p3,p) & x in L~f1 by A13,XBOOLE_0:def 3; then x in union M1 by TOPREAL1:def 6; then consider X be set such that A15: x in X & X in M1 by TARSKI:def 4; consider k such that A16: X=LSeg(f1,k) & 1<=k & k+1<=len f1 by A15; now per cases by A16,REAL_1:def 5; suppose k+1 = len f1; then k+1=len f1 & k=len f by A9,XCMPLX_1:2; then LSeg(f1,k) = LSeg(p2,p3) by A10,A12,A16,TOPREAL1:def 5; then x in LSeg(p2,p3) /\ LSeg(p3,p) & LSeg(p2,p3) /\ LSeg(p3,p) = {p3} by A14,A15,A16,TOPREAL3:37,XBOOLE_0:def 3; hence contradiction by A13; suppose A17: k+1 < len f1; then A18: k+1<len f+1 & k<=k+1 by A9,NAT_1:29; A19: k+1<=len f & 1<=k+1 by A9,A16,A17,NAT_1:38; then A20: k+1 in dom f & k<=len f by A6,A18,AXIOMS:22,FINSEQ_1:3; then k in dom f by A6,A16,FINSEQ_1:3; then X=LSeg(f,k) by A16,A20,TOPREAL3:25; then X in Mf by A16,A19; then x in union Mf by A15,TARSKI:def 4; then x in LSeg(p2,p3) \/ LSeg(p3,p) & x in L~f by A14,TOPREAL1:def 6,XBOOLE_0:def 2; then x in {p2} by A1,XBOOLE_0:def 3; then x = p2 by TARSKI:def 1; hence contradiction by A1,A2,A14,TOPREAL3:17; end; hence contradiction; end; then A21: ((p`1=p3`1 & p`2<>p3`2) or (p`1<>p3`1 & p`2=p3`2)) & not p1 in Ball(u,r) & p3 in Ball(u,r) & p in Ball(u,r) & f1 is_S-Seq & f1/.1=p1 & f1/.len f1=p3 & LSeg(p3,p) /\ L~f1 = {p3} by A1,A2,A4,A8,A9,A11,Th1,Th20,GROUP_5:95,XBOOLE_0:def 10; then A22: L~h1 c= L~f1 \/ Ball(u,r) by Th20; A23: h1 = f^(<*p3*>^<*p*>) by FINSEQ_1:45 .= h by A1,FINSEQ_1:def 9; hence L~h is_S-P_arc_joining p1,p by A21,Th20; L~f1 \/ Ball(u,r) c= L~f \/ Ball(u,r) \/ Ball(u,r) by A5,XBOOLE_1:9; then L~f1 \/ Ball(u,r) c= L~f \/ (Ball(u,r) \/ Ball(u,r)) by XBOOLE_1:4; hence L~h c= L~f \/ Ball(u,r) by A22,A23,XBOOLE_1:1; end; theorem Th22: not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & |[(f/.len f)`1,p`2]| in Ball(u,r) & f is_S-Seq & p`1<>(f/.len f)`1 & p`2<>(f/.len f)`2 & h=f^<*|[(f/.len f)`1,p`2]|,p*> & (LSeg(f/.len f,|[(f/.len f)`1,p`2]|) \/ LSeg(|[(f/.len f)`1,p`2]|,p)) /\ L~f = {f/.len f} implies L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r) proof set p1 = f/.1, p2 = f/.len f; assume A1: not p1 in Ball(u,r) & p2 in Ball(u,r) & p in Ball(u,r) & |[p2`1,p`2]| in Ball(u,r) & f is_S-Seq & p`1<>p2`1 & p`2<>p2`2 & h=f^<*|[p2`1,p`2]|,p*> & (LSeg(p2,|[p2`1,p`2]|) \/ LSeg(|[p2`1,p`2]|,p)) /\ L~f = {p2}; set p3 = |[p2`1,p`2]|, f1 = f^<* p3 *>, h1 = f1^<* p *>; A2: p3`2 = p`2 & p3`1 = p2`1 & p=|[p`1,p`2]| by EUCLID:56,57; A3: {p2} = (LSeg(p2,p3) /\ L~f) \/ (LSeg(p3,p) /\ L~f) & LSeg(p2,p3) /\ L~f c= (LSeg(p2,p3) /\ L~f) \/ (LSeg(p3,p) /\ L~f) by A1,XBOOLE_1:7,23; reconsider Lf = L~f as non empty Subset of TOP-REAL 2 by A1; L~f is_S-P_arc_joining p1,p2 by A1,Def1; then Lf is_an_arc_of p1,p2 by Th3; then p2 in L~f & p2 in LSeg(p2,p3) by TOPREAL1:4,6; then p2 in LSeg(p2,p3) /\ L~f by XBOOLE_0:def 3; then {p2} c= LSeg(p2,p3) /\ L~f by ZFMISC_1:37; then A4: LSeg(p2,p3) /\ L~f = {p2} by A3,XBOOLE_0:def 10; then A5: L~f1 is_S-P_arc_joining p1,p3 & L~f1 c= L~f \/ Ball(u,r) & Seg len f = dom f & len f>=2 by A1,A2,Th20,FINSEQ_1:def 3,TOPREAL1:def 10; then A6: 1<=len f by AXIOMS:22; then A7: 1 in dom f by A5,FINSEQ_1:3; L~f1 is_S-P_arc by A5,Th2; then reconsider Lf1 = L~f1 as non empty Subset of TOP-REAL 2 by TOPREAL1:32; A8: len f1 = len f + len <*p3*> by FINSEQ_1:35 .= len f + 1 by FINSEQ_1:56; then A9: f1/.len f1 = p3 & Lf1 is_an_arc_of p1,p3 by A5,Th1,Th3; then p3 in L~f1 & p3 in LSeg(p3,p) by TOPREAL1:4,6; then p3 in LSeg(p3,p) /\ L~f1 by XBOOLE_0:def 3; then A10: {p3} c= LSeg(p3,p) /\ L~f1 by ZFMISC_1:37; len f in dom f by A5,A6,FINSEQ_1:3; then A11: f1/.len f = p2 by GROUP_5:95; LSeg(p3,p) /\ L~f1 c= {p3} proof assume not thesis; then consider x such that A12: x in LSeg(p3,p) /\ L~f1 & not x in {p3} by TARSKI:def 3; set M1 = {LSeg(f1,i): 1<=i & i+1<=len f1}, Mf = {LSeg(f,j): 1<=j & j+1<=len f}; A13: x in LSeg(p3,p) & x in L~f1 by A12,XBOOLE_0:def 3; then x in union M1 by TOPREAL1:def 6; then consider X be set such that A14: x in X & X in M1 by TARSKI:def 4; consider k such that A15: X=LSeg(f1,k) & 1<=k & k+1<=len f1 by A14; now per cases by A15,REAL_1:def 5; suppose k+1 = len f1; then k+1=len f1 & k=len f by A8,XCMPLX_1:2; then LSeg(f1,k) = LSeg(p2,p3) by A9,A11,A15,TOPREAL1:def 5; then x in LSeg(p2,p3) /\ LSeg(p3,p) & LSeg(p2,p3) /\ LSeg(p3,p) = {p3} by A13,A14,A15,TOPREAL3:36,XBOOLE_0:def 3; hence contradiction by A12; suppose A16: k+1 < len f1; then A17: k+1<len f+1 & k<=k+1 by A8,NAT_1:29; A18: k+1<=len f & 1<=k+1 by A8,A15,A16,NAT_1:38; then A19: k+1 in dom f & k<=len f by A5,A17,AXIOMS:22,FINSEQ_1:3; then k in dom f by A5,A15,FINSEQ_1:3; then X=LSeg(f,k) by A15,A19,TOPREAL3:25; then X in Mf by A15,A18; then x in union Mf by A14,TARSKI:def 4; then x in LSeg(p2,p3) \/ LSeg(p3,p) & x in L~f by A13,TOPREAL1:def 6,XBOOLE_0:def 2; then x in {p2} by A1,XBOOLE_0:def 3; then x = p2 by TARSKI:def 1; hence contradiction by A1,A2,A13,TOPREAL3:18; end; hence contradiction; end; then A20: ((p`1=p3`1 & p`2<>p3`2) or (p`1<>p3`1 & p`2=p3`2)) & not p1 in Ball(u,r) & p3 in Ball(u,r) & p in Ball(u,r) & f1 is_S-Seq & f1/.1=p1 & f1/.len f1=p3 & LSeg(p3,p) /\ L~f1 = {p3} by A1,A2,A4,A7,A8,A10,Th1,Th20,GROUP_5:95,XBOOLE_0:def 10; then A21: L~h1 c= L~f1 \/ Ball(u,r) by Th20; A22: h1 = f^(<*p3*>^<*p*>) by FINSEQ_1:45 .= h by A1,FINSEQ_1:def 9; hence L~h is_S-P_arc_joining p1,p by A20,Th20; L~f1 \/ Ball(u,r) c= L~f \/ Ball(u,r) \/ Ball(u,r) by A5,XBOOLE_1:9; then L~f1 \/ Ball(u,r) c= L~f \/ (Ball(u,r) \/ Ball(u,r)) by XBOOLE_1:4; hence L~h c= L~f \/ Ball(u,r) by A21,A22,XBOOLE_1:1; end; theorem Th23: not f/.1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & f is_S-Seq & not p in L~f implies ex h st L~h is_S-P_arc_joining f/.1,p & L~h c= L~f \/ Ball(u,r) proof set p1 = f/.1; set Mf= {LSeg(f,k):1<=k & k+1<=len f}; assume A1: not p1 in Ball(u,r) & f/.len f in Ball(u,r) & p in Ball(u,r) & f is_S-Seq & not p in L~f; then len f>= 2 & 2=1+1 by TOPREAL1:def 10; then A2: len f>=1 & 1<=len f - 1 by AXIOMS:22,REAL_1:84; then reconsider n=len f - 1 as Nat by INT_1:18; defpred X[Nat] means 1<=$1 & $1<=len f - 1 & LSeg(f,$1) meets Ball(u,r); A3: f is special by A1,TOPREAL1:def 10; n+1=len f by XCMPLX_1:27; then f/.len f in LSeg(f,n) by A2,TOPREAL1:27; then LSeg(f,n) meets Ball(u,r) by A1,XBOOLE_0:3; then A4: ex n st X[n] by A2; consider m such that A5: X[m] and A6: for i st X[i] holds m<=i from Min(A4); A7: LSeg(f,m) /\ Ball(u,r) <> {} by A5,XBOOLE_0:def 7; A8: now let i; assume 1<=i & i<=len f - 1 & LSeg(f,i) /\ Ball(u,r) <> {}; then 1<=i & i<=len f - 1 & LSeg(f,i) meets Ball(u,r) by XBOOLE_0:def 7; hence m<=i by A6; end; m+1 <= n+1 by A5,AXIOMS:24; then m+1 <= len f by XCMPLX_1:27; then LSeg(f,m) in Mf by A5; then LSeg(f,m) c= union Mf by ZFMISC_1:92; then A9: LSeg(f,m) c= L~f by TOPREAL1:def 6; set A=LSeg(f,m) /\ Ball(u,r); A10: m+1<=len f & m<=m+1 by A5,NAT_1:29,REAL_1:84; then A11: 1<=m & m<=len f & m+1<=len f by A5,AXIOMS:22; then A12: m in Seg len f & Seg len f=dom f by FINSEQ_1:3,def 3; consider q1,q2 such that A13: f/.m = q1 & f/.(m+1) = q2; A14: not q1 in Ball(u,r) by A1,A5,A8,A13,TOPREAL3:33; A15: now set M = {LSeg(f|m,i):1<=i & i+1<=len(f|m)}; assume A16: Ball(u,r) /\ L~(f|m) <> {}; consider x being Element of Ball(u,r) /\ L~(f|m); A17: x in L~(f|m) & x in Ball(u,r) by A16,XBOOLE_0:def 3; then x in union M by TOPREAL1:def 6; then consider X be set such that A18: x in X & X in M by TARSKI:def 4; consider k such that A19: X=LSeg(f|m,k) & 1<=k & k+1<=len(f|m) by A18; k+1-1 <= len(f|m)-1 by A19,REAL_1:49; then A20: k <= len(f|m)-1 by XCMPLX_1:26; k<=k+1 by NAT_1:29; then 1<=k & k<=len(f|m) & 1<=k+1 & k+1<=len(f|m) by A19,AXIOMS:22; then A21: k in Seg len(f|m) & k+1 in Seg len(f|m) & Seg len(f|m) = dom(f |m) by FINSEQ_1:3,def 3; then x in LSeg(f,k) by A12,A18,A19,TOPREAL3:24; then A22: LSeg(f,k) meets Ball(u,r) by A17,XBOOLE_0:3; Seg m c= Seg len f by A11,FINSEQ_1:7; then A23: Seg m = dom f /\ (Seg m) by A12,XBOOLE_1:28 .= dom(f|(Seg m)) by FUNCT_1:68 .= Seg len(f|m) by A21,TOPREAL1:def 1; then m = len(f|m) by FINSEQ_1:8; then len(f|m) -1<=len f - 1 by A11,REAL_1:49; then k<=len f - 1 by A20,AXIOMS:22; then m<=k & k<=m-1 by A6,A19,A20,A22,A23,FINSEQ_1:8; then m<=m-1 by AXIOMS:22; then 0<=m-1-m by SQUARE_1:12; then 0<=m+-1-m by XCMPLX_0:def 8; then 0<=-1 by XCMPLX_1:26; hence contradiction; end; A24: q1=|[q1`1,q1`2]| & q2=|[q2`1,q2`2]| by EUCLID:57; A25: LSeg(f,m) = LSeg(q1,q2) by A5,A10,A13,TOPREAL1:def 5; now per cases; suppose ex q st q in A & (p`1=q`1 or p`2=q`2); then consider q such that A26: q in A and A27: p`1=q`1 or p`2=q`2; A28: q in LSeg(f,m) & q in Ball(u,r) by A26,XBOOLE_0:def 3; then A29: q in L~f by A9; A30: now per cases by A27; suppose p`1=q`1; hence (p`1=q`1 & p`2<>q`2) or (p`1<>q`1 & p`2=q`2) by A1,A29,TOPREAL3:11 ; suppose p`2=q`2; hence (p`1=q`1 & p`2<>q`2) or (p`1<>q`1 & p`2=q`2) by A1,A29,TOPREAL3:11 ; end; consider h such that A31: h is_S-Seq & h/.1=p1 & h/.len h=q & L~h is_S-P_arc_joining p1,q & L~h c= L~f & L~h = L~(f|m) \/ LSeg(q1,q) by A1,A13,A28,Th18; take g = h^<* p *>; q in L~h & q in LSeg(q,p) by A31,Th4,TOPREAL1:6; then q in LSeg(q,p) /\ L~h by XBOOLE_0:def 3; then A32: {q} c= LSeg(q,p) /\ L~h by ZFMISC_1:37; LSeg(q,p) /\ L~h c= {q} proof let x such that A33: x in LSeg(q,p) /\ L~h; LSeg(q,p) c= Ball(u,r) by A1,A28,TOPREAL3:28; then LSeg(q,p) = LSeg(q,p) /\ Ball(u,r) by XBOOLE_1:28; then A34: LSeg(q,p) /\ (L~(f|m) \/ LSeg(q1,q)) = LSeg(q,p) /\ Ball(u,r) /\ L~(f|m) \/ LSeg(q,p) /\ LSeg(q1,q) by XBOOLE_1: 23 .= LSeg(q,p) /\(Ball(u,r) /\ L~(f|m))\/ LSeg(q,p) /\ LSeg(q1,q) by XBOOLE_1:16 .= LSeg(q1,q) /\ LSeg(q,p) by A15; A35: now q1 in LSeg(q1,q2) & q in LSeg(q1,q2) by A5,A10,A13,A28,TOPREAL1:6,def 5; then A36: LSeg(q1,q) c= LSeg(f,m) by A25,TOPREAL1:12; assume p in LSeg(q1,q); hence contradiction by A1,A9,A36,TARSKI:def 3; end; now per cases by A3,A5,A10,A13,TOPREAL1:def 7; suppose q1`1=q2`1; hence q1`1 = q`1 or q1`2=q`2 by A24,A25,A28,TOPREAL3:17; suppose q1`2=q2`2; hence q1`1 = q`1 or q1`2=q`2 by A24,A25,A28,TOPREAL3:18; end; hence x in {q} by A1,A14,A28,A30,A31,A33,A34,A35,TOPREAL3:49; end; then LSeg(q,p) /\ L~h = {q} by A32,XBOOLE_0:def 10; then A37: L~g is_S-P_arc_joining p1,p & L~g c=L~h \/ Ball(u,r) by A1,A28,A30,A31,Th20; L~h \/ Ball(u,r) c= L~f \/ Ball(u,r) by A31,XBOOLE_1:9; hence L~g is_S-P_arc_joining p1,p & L~g c=L~f \/ Ball(u,r) by A37,XBOOLE_1: 1; suppose A38: for q st q in A holds p`1<>q`1 & p`2<>q`2; consider x being Element of A; A39: x in LSeg(f,m) & LSeg(f,m) c= the carrier of TOP-REAL 2 by A7,XBOOLE_0:def 3; then reconsider q=x as Point of TOP-REAL 2; A40: q in Ball(u,r) & q`1<>p`1 & q`2<>p`2 & q=|[q`1,q`2]| & p=|[p`1,p`2]| by A7,A38,EUCLID:57,XBOOLE_0:def 3; q <> p1 by A1,A7,XBOOLE_0:def 3; then consider h such that A41: h is_S-Seq & h/.1=p1 & h/.len h=q & L~h is_S-P_arc_joining p1,q & L~h c= L~f & L~h = L~(f|m) \/ LSeg(q1,q) by A1,A13,A39,Th18; now per cases by A1,A40,TOPREAL3:32; suppose A42: |[q`1,p`2]| in Ball(u,r); take g = h^<* |[q`1,p`2]|,p *>; set v = |[q`1,p`2]|; q in LSeg(q,v) & q in L~h by A41,Th4,TOPREAL1:6; then q in (LSeg(q,v) \/ LSeg(v,p)) & q in L~h by XBOOLE_0:def 2; then q in (LSeg(q,v) \/ LSeg(v,p)) /\ L~h by XBOOLE_0:def 3; then A43: {q} c= (LSeg(q,v) \/ LSeg(v,p)) /\ L~h by ZFMISC_1:37; (LSeg(q,v) \/ LSeg(v,p)) /\ L~h c= {q} proof set L = LSeg(q,v) \/ LSeg(v,p); LSeg(q,v) c=Ball(u,r) & LSeg(v,p) c=Ball(u,r) by A1,A40,A42,TOPREAL3: 28 ; then L c= Ball(u,r) by XBOOLE_1:8; then L = L /\ Ball(u,r) by XBOOLE_1:28; then A44:L /\ (L~(f|m) \/ LSeg(q1,q)) = L /\ Ball(u,r) /\ L~(f|m) \/ L /\ LSeg( q1,q) by XBOOLE_1:23 .= L /\ (Ball(u,r) /\ L~(f|m)) \/ L /\ LSeg(q1,q) by XBOOLE_1:16 .= {} \/ L /\ LSeg(q1,q) by A15; let x; assume A45: x in L /\ L~h; A46: now per cases by A3,A5,A10,A13,TOPREAL1:def 7; suppose q1`1=q2`1; hence q1`1 = q`1 or q1`2=q`2 by A24,A25,A39,TOPREAL3:17; suppose q1`2=q2`2; hence q1`1 = q`1 or q1`2=q`2 by A24,A25,A39,TOPREAL3:18; end; now per cases by A46; suppose A47: q1`1 = q`1; now q1 in LSeg(q1,q2) & q in LSeg(q1,q2) by A5,A10,A13,A39,TOPREAL1:6,def 5; then A48: LSeg(q1,q) c= LSeg(f,m) by A25,TOPREAL1:12; assume v in LSeg(q1,q); then v in LSeg(f,m) /\ Ball(u,r) & v`2=p`2 by A42,A48,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A38; end; hence x in {q} by A1,A14,A40,A41,A42,A44,A45,A47,TOPREAL3:50; suppose q1`2 = q`2; hence x in {q} by A40,A41,A44,A45,TOPREAL3:34; end; hence thesis; end; then (LSeg(q,|[q`1,p`2]|) \/ LSeg(|[q`1,p`2]|,p)) /\ L~h={q} by A43,XBOOLE_0:def 10; then A49: L~g is_S-P_arc_joining p1,p & L~g c= L~h \/ Ball(u,r) by A1,A40,A41,A42,Th22; L~h \/ Ball(u,r) c= L~f \/ Ball(u,r) by A41,XBOOLE_1:9; hence L~g is_S-P_arc_joining p1,p & L~g c=L~f \/ Ball(u,r) by A49,XBOOLE_1:1; suppose A50: |[p`1,q`2]| in Ball(u,r); take g = h^<* |[p`1,q`2]|,p *>; set v = |[p`1,q`2]|; q in LSeg(q,v) & q in L~h by A41,Th4,TOPREAL1:6; then q in (LSeg(q,v) \/ LSeg(v,p)) & q in L~h by XBOOLE_0:def 2; then q in (LSeg(q,v) \/ LSeg(v,p)) /\ L~h by XBOOLE_0:def 3; then A51: {q} c= (LSeg(q,v) \/ LSeg(v,p)) /\ L~h by ZFMISC_1:37; (LSeg(q,v) \/ LSeg(v,p)) /\ L~h c= {q} proof set L = LSeg(q,v) \/ LSeg(v,p); LSeg(q,v) c=Ball(u,r) & LSeg(v,p) c= Ball(u,r) by A1,A40,A50,TOPREAL3 :28; then L c= Ball(u,r) by XBOOLE_1:8; then L = L /\ Ball(u,r) by XBOOLE_1:28; then A52:L /\ (L~(f|m) \/ LSeg(q1,q)) = L /\ Ball(u,r) /\ L~(f|m) \/ L /\ LSeg(q1,q) by XBOOLE_1:23 .= L /\ (Ball(u,r) /\ L~(f|m)) \/ L /\ LSeg(q1,q) by XBOOLE_1:16 .= {} \/ L /\ LSeg(q1,q) by A15; let x; assume A53: x in L /\ L~h; A54: now per cases by A3,A5,A10,A13,TOPREAL1:def 7; suppose q1`1=q2`1; hence q1`1 = q`1 or q1`2=q`2 by A24,A25,A39,TOPREAL3:17; suppose q1`2=q2`2; hence q1`1 = q`1 or q1`2=q`2 by A24,A25,A39,TOPREAL3:18; end; now per cases by A54; suppose q1`1 = q`1; hence x in {q} by A40,A41,A52,A53,TOPREAL3:35; suppose A55: q1`2 = q`2; now q1 in LSeg(q1,q2) & q in LSeg(q1,q2) by A5,A10,A13,A39,TOPREAL1:6,def 5; then A56: LSeg(q1,q) c= LSeg(f,m) by A25,TOPREAL1:12; assume v in LSeg(q1,q); then v in LSeg(f,m) /\ Ball(u,r) & v`1=p`1 by A50,A56,EUCLID:56,XBOOLE_0:def 3; hence contradiction by A38; end; hence x in {q} by A1,A14,A40,A41,A50,A52,A53,A55,TOPREAL3:51; end; hence thesis; end; then (LSeg(q,|[p`1,q`2]|) \/ LSeg(|[p`1,q`2]|,p)) /\ L~h={q} by A51,XBOOLE_0:def 10 ; then A57: L~g is_S-P_arc_joining p1,p & L~g c= L~h \/ Ball(u,r) by A1,A40,A41,A50,Th21; L~h \/ Ball(u,r) c= L~f \/ Ball(u,r) by A41,XBOOLE_1:9; hence L~g is_S-P_arc_joining p1,p & L~g c=L~f \/ Ball(u,r) by A57,XBOOLE_1:1 ; end; hence thesis; end; hence thesis; end; theorem Th24: for R,p,p1,p2,P,r,u st p<>p1 & P is_S-P_arc_joining p1,p2 & P c= R & p in Ball(u,r) & p2 in Ball(u,r) & Ball(u,r) c= R ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p1,p & P1 c= R proof let R,p,p1,p2,P,r,u; assume that A1: p<>p1 and A2: P is_S-P_arc_joining p1,p2 and A3: P c= R and A4: p in Ball(u,r) and A5: p2 in Ball(u,r) and A6: Ball(u,r) c= R; consider f such that A7: f is_S-Seq & P = L~f & p1=f/.1 & p2=f/.len f by A2,Def1; now per cases; suppose p1 in Ball(u,r); then consider P1 such that A8: P1 is_S-P_arc_joining p1,p & P1 c= Ball(u,r) by A1,A4,Th11; reconsider P1 as Subset of TOP-REAL 2; take P1; thus P1 is_S-P_arc_joining p1,p & P1 c= R by A6,A8,XBOOLE_1:1; suppose A9: not p1 in Ball(u,r); now per cases; suppose p in P; then consider h such that A10: h is_S-Seq & h/.1=p1 & h/.len h=p & L~h is_S-P_arc_joining p1,p & L~h c= L~f by A1,A7,Th19; reconsider P1=L~h as Subset of TOP-REAL 2; take P1; thus P1 is_S-P_arc_joining p1,p & P1 c= R by A3,A7,A10,XBOOLE_1:1; suppose not p in P; then consider h such that A11: L~h is_S-P_arc_joining p1,p & L~h c= L~f \/ Ball(u,r) by A4,A5,A7,A9,Th23; reconsider P1=L~h as Subset of TOP-REAL 2; take P1; thus P1 is_S-P_arc_joining p1,p by A11; L~f \/ Ball(u,r) c= R by A3,A6,A7,XBOOLE_1:8; hence P1 c= R by A11,XBOOLE_1:1; end; hence thesis; end; hence thesis; end; Lm1: TopSpaceMetr(Euclid 2)=TOP-REAL 2 by EUCLID:def 8; reserve P, R for Subset of TOP-REAL 2; theorem Th25: for p st R is_Region & P = {q: q<>p & q in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} holds P is open proof let p; assume that A1: R is_Region and A2: P = {q: q<>p & q in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R}; A3: R is open by A1,Def3; now let u; reconsider p2=u as Point of TOP-REAL 2 by TOPREAL3:13; assume A4: u in P; then ex q1 st q1 = u & q1<>p & q1 in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q1 & P1 c=R by A2; then consider r being real number such that A5: r>0 & Ball(u,r) c= R by A3,Lm1,TOPMETR:22; reconsider r' = r as Real by XREAL_0:def 1; A6: p2 in Ball(u,r') by A5,TBSP_1:16; take r; thus r>0 by A5; thus Ball(u,r) c= P proof assume not thesis; then consider x such that A7: x in Ball(u,r) & not x in P by TARSKI:def 3; x in R by A5,A7; then reconsider q=x as Point of TOP-REAL 2; now per cases by A2,A5,A7; suppose A8: q=p; now assume A9: q=p2; ex p3 st p3=p2 & p3<>p & p3 in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,p3 & P1 c=R by A2,A4; hence contradiction by A8,A9; end; then q<>p2 & u in Ball(u,r') by A5,TBSP_1:16; then consider P2 being Subset of TOP-REAL 2 such that A10: P2 is_S-P_arc_joining q,p2 & P2 c= Ball(u,r') by A7,Th11; reconsider P2 as Subset of TOP-REAL 2; A11: P2 is_S-P_arc_joining p,p2 & P2 c= R by A5,A8,A10,XBOOLE_1:1; not p2 in P proof assume p2 in P; then ex q4 st q4=p2 & q4<>p & q4 in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q4 & P1 c=R by A2; hence contradiction by A11; end; hence contradiction by A4; suppose A12: ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R; not p2 in P proof assume p2 in P; then ex q4 st q4=p2 & q4<>p & q4 in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q4 & P1 c=R by A2; hence contradiction by A5,A6,A7,A12,Th24; end; hence contradiction by A4; end; hence contradiction; end; end; hence thesis by Lm1,TOPMETR:22; end; theorem Th26: R is_Region & p in R & P = {q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies P is open proof assume that A1: R is_Region and A2: p in R and A3: P = {q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R}; A4: R is open by A1,Def3; now let u; reconsider p2=u as Point of TOP-REAL 2 by TOPREAL3:13; assume u in P; then consider q1 such that A5: q1=u and A6: q1=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q1 & P1 c=R by A3; now per cases by A6; suppose q1=p; hence p2 in R by A2,A5; suppose ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q1 & P1 c=R; then consider P2 being Subset of TOP-REAL 2 such that A7: P2 is_S-P_arc_joining p,q1 and A8: P2 c=R; P2 is_S-P_arc by A7,Th2; then P2 <> {} by TOPREAL1:32; then p2 in P2 by A5,A7,Th4; hence p2 in R by A8; end; then consider r being real number such that A9: r>0 & Ball(u,r) c= R by A4,Lm1,TOPMETR:22; take r; reconsider r'= r as Real by XREAL_0:def 1; A10: p2 in Ball(u,r') by A9,TBSP_1:16; thus r>0 by A9; thus Ball(u,r) c= P proof let x; assume A11: x in Ball(u,r); then reconsider q=x as Point of TOP-REAL 2 by A9,TARSKI:def 3; now per cases; suppose q=p; hence x in P by A3; suppose A12:q<>p; A13: now assume q1<>p; then ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R by A5,A6,A9,A10,A11,A12,Th24; hence x in P by A3; end; now assume q1=p; then p in Ball(u,r') by A5,A9,TBSP_1:16; then consider P2 being Subset of TOP-REAL 2 such that A14: P2 is_S-P_arc_joining p,q & P2 c= Ball(u,r') by A11,A12,Th11; reconsider P2 as Subset of TOP-REAL 2; P2 is_S-P_arc_joining p,q & P2 c= R by A9,A14,XBOOLE_1:1; hence x in P by A3; end; hence x in P by A13; end; hence thesis; end; end; hence thesis by Lm1,TOPMETR:22; end; theorem Th27: p in R & P={q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies P c= R proof assume that A1: p in R and A2: P = {q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R}; let x; assume x in P; then consider q such that A3: q=x and A4: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R by A2; now per cases by A4; suppose q=p; hence x in R by A1,A3; suppose ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R; then consider P1 being Subset of TOP-REAL 2 such that A5: P1 is_S-P_arc_joining p,q and A6: P1 c=R; P1 is_S-P_arc by A5,Th2; then P1 <> {} by TOPREAL1:32; then q in P1 by A5,Th4; hence x in R by A3,A6; end; hence x in R; end; theorem Th28: R is_Region & p in R & P={q: q=p or ex P1 be Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies R c= P proof assume that A1: R is_Region and A2: p in R and A3: P = {q: q=p or ex P1 be Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R}; reconsider R' = R as non empty Subset of TOP-REAL 2 by A2; A4: P c= R by A2,A3,Th27; set P2 = R \ P; A5: P2 c= R by XBOOLE_1:36; now let x; A6: now assume A7: x in P2; then A8: x in R & not x in P by XBOOLE_0:def 4; reconsider q2=x as Point of TOP-REAL 2 by A7; q2<>p & q2 in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q2 & P1 c=R by A3,A8; hence x in {q: q<>p & q in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c= R}; end; now assume x in {q: q<>p & q in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R}; then A9: ex q3 st q3=x & q3<>p & q3 in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q3 & P1 c=R; then not ex q st q=x & (q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R); then x in R & not x in P by A3,A9; hence x in P2 by XBOOLE_0:def 4; end; hence x in P2 iff x in {q: q<>p & q in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} by A6; end; then A10: P2={q: q<>p & q in R & not ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} by TARSKI:2; reconsider P22=P2 as Subset of TOP-REAL 2; A11: P22 is open by A1,A10,Th25; A12: P is open by A1,A2,A3,Th26; A13: p in P by A3; R is connected by A1,Def3; then A14: (TOP-REAL 2)|R' is connected by CONNSP_1:def 3; A15: [#]((TOP-REAL 2)|R) = R by PRE_TOPC:def 10; then reconsider P11 = P, P12 = P22 as Subset of (TOP-REAL 2)|R by A4,A5,PRE_TOPC:16; A16: P11 misses P12 by XBOOLE_1:79; then A17: P11 /\ P12 = {}((TOP-REAL 2)|R) by XBOOLE_0:def 7; P \/ (R \ P) = P \/ R by XBOOLE_1:39; then A18: [#]((TOP-REAL 2)|R) = P11 \/ P12 by A4,A15,XBOOLE_1:12; A19: P22 in the topology of TOP-REAL 2 & P in the topology of TOP-REAL 2 by A11,A12,PRE_TOPC:def 5; P11 = P /\ [#]((TOP-REAL 2)|R) & P12 = P22 /\ [#]((TOP-REAL 2)|R) by A4,A5,A15,XBOOLE_1:28; then P11 in the topology of (TOP-REAL 2)|R & P12 in the topology of ( TOP-REAL 2)|R by A19,PRE_TOPC:def 9; then P11 is open & P12 is open by PRE_TOPC:def 5; then P2 = {} by A13,A14,A16,A17,A18,CONNSP_1:12; hence thesis by XBOOLE_1:37; end; theorem R is_Region & p in R & P={q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R} implies R = P proof assume A1: R is_Region & p in R & P={q: q=p or ex P1 being Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q & P1 c=R}; hence R c= P by Th28; thus P c= R by A1,Th27; end; theorem R is_Region & p in R & q in R & p<>q implies ex P st P is_S-P_arc_joining p,q & P c=R proof assume that A1: R is_Region and A2: p in R and A3: q in R and A4: p<>q; set RR={q2: q2=p or ex P1 be Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q2 & P1 c=R}; RR c= the carrier of TOP-REAL 2 proof let x; assume x in RR; then ex q2 st q2=x & (q2=p or ex P1 be Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q2 & P1 c=R); hence thesis; end; then reconsider RR as Subset of TOP-REAL 2; R c= RR by A1,A2,Th28; then q in RR by A3; then ex q1 st q1=q & (q1=p or ex P1 be Subset of TOP-REAL 2 st P1 is_S-P_arc_joining p,q1 & P1 c=R); hence thesis by A4; end;