Journal of Formalized Mathematics
Volume 12, 2000
University of Bialystok
Copyright (c) 2000 Association of Mizar Users

The abstract of the Mizar article:

Gauges and Cages. Part I

by
Artur Kornilowicz,
Robert Milewski,
Adam Naumowicz, and
Andrzej Trybulec

Received September 12, 2000

MML identifier: JORDAN1A
[ Mizar article, MML identifier index ]


environ

 vocabulary EUCLID, COMPTS_1, SPPOL_1, RELAT_2, GOBOARD1, PRE_TOPC, ARYTM,
      NAT_1, ARYTM_1, GROUP_1, ARYTM_3, CONNSP_1, BOOLE, RELAT_1, FINSEQ_1,
      MATRIX_2, TOPREAL2, SEQM_3, GOBOARD5, TOPREAL1, MCART_1, PSCOMP_1,
      JORDAN2C, SUBSET_1, JORDAN6, FUNCT_5, FUNCT_1, RCOMP_1, LATTICES,
      METRIC_1, SQUARE_1, ABSVALUE, JORDAN1, TREES_1, MATRIX_1, FINSEQ_4,
      TOPS_1, COMPLEX1, JORDAN8, INT_1, JORDAN9, GOBOARD9, JORDAN1A;
 notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
      REAL_1, INT_1, NAT_1, SQUARE_1, ABSVALUE, FUNCT_1, FUNCT_2, STRUCT_0,
      FINSEQ_1, FINSEQ_4, BINARITH, NEWTON, PRE_TOPC, TOPS_1, CONNSP_1,
      COMPTS_1, GOBOARD1, MATRIX_1, RCOMP_1, SEQ_4, METRIC_1, EUCLID, WSIERP_1,
      TOPREAL1, TOPREAL2, PSCOMP_1, SPPOL_1, ABIAN, GOBOARD5, GOBOARD9,
      JORDAN1, JGRAPH_1, JORDAN6, JORDAN8, JORDAN9, JORDAN2C, METRIC_6;
 constructors ABSVALUE, CARD_4, CONNSP_1, FINSEQ_4, JORDAN8, JORDAN9, PSCOMP_1,
      REAL_1, GOBRD13, BINARITH, WSIERP_1, RCOMP_1, JORDAN1, JORDAN2C,
      SQUARE_1, GOBOARD9, TOPREAL2, TOPS_1, JORDAN6, TBSP_1, ABIAN, JORDAN5C,
      REALSET1, TOPRNS_1, INT_1;
 clusters XREAL_0, EUCLID, PSCOMP_1, RELSET_1, STRUCT_0, TOPREAL6, JORDAN8,
      JORDAN10, INT_1, GOBOARD5, PRE_TOPC, SPRECT_3, BORSUK_2, NEWTON,
      SPRECT_4, SPRECT_1, MEMBERED, ORDINAL2, NUMBERS;
 requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;


begin  :: Preliminaries

reserve
   i, i1, i2, j, j1, j2, k, m, n, t for Nat,
   D for non empty Subset of TOP-REAL 2,
   E for compact non vertical non horizontal Subset of TOP-REAL 2,
   C for compact connected non vertical non horizontal Subset of TOP-REAL 2,
   G for Go-board,
   p, q, x for Point of TOP-REAL 2,
   r, s for real number;

theorem :: JORDAN1A:1
 for s1,s3,s4,l being real number st s1<=s3 & s1<=s4 & 0<=l & l<=1 holds
  s1<=(1-l)*s3+l*s4;

theorem :: JORDAN1A:2
 for s1,s3,s4,l being real number st s3<=s1 & s4<=s1 & 0<=l & l<=1 holds
  (1-l)*s3+l*s4<=s1;

theorem :: JORDAN1A:3
 n > 0 implies m |^ n mod m = 0;

theorem :: JORDAN1A:4
 j > 0 & i mod j = 0 implies i div j = i / j;

theorem :: JORDAN1A:5
 n > 0 implies i |^ n div i = i |^ n / i;

theorem :: JORDAN1A:6
 0 < n & 1 < r implies 1 < r|^n;

theorem :: JORDAN1A:7
 r > 1 & m > n implies r|^m > r|^n;

theorem :: JORDAN1A:8
 for T being non empty TopSpace,
     A being Subset of T,
     B, C being Subset of T st
   A is connected & C is_a_component_of B & A meets C & A c= B holds A c= C;

definition let f be FinSequence;
 func Center f -> Nat equals
:: JORDAN1A:def 1
  len f div 2 + 1;
end;

theorem :: JORDAN1A:9
   for f being FinSequence st len f is odd holds len f = 2 * Center f - 1;

theorem :: JORDAN1A:10
   for f being FinSequence st len f is even holds len f = 2 * Center f - 2;

begin  :: Some subsets of the plane

definition
 cluster compact non vertical non horizontal
           being_simple_closed_curve non empty Subset of TOP-REAL 2;
 cluster compact non empty horizontal Subset of TOP-REAL 2;
 cluster compact non empty vertical Subset of TOP-REAL 2;
end;

theorem :: JORDAN1A:11
 p in N-most D implies p`2 = N-bound D;

theorem :: JORDAN1A:12
 p in E-most D implies p`1 = E-bound D;

theorem :: JORDAN1A:13
 p in S-most D implies p`2 = S-bound D;

theorem :: JORDAN1A:14
 p in W-most D implies p`1 = W-bound D;

theorem :: JORDAN1A:15
    for D being Subset of TOP-REAL 2 holds BDD D misses D;

theorem :: JORDAN1A:16
   for S being being_simple_closed_curve non empty Subset of TOP-REAL 2
  holds Lower_Arc S c= S & Upper_Arc S c= S;

theorem :: JORDAN1A:17
 p in Vertical_Line(p`1);

theorem :: JORDAN1A:18
   |[r,s]| in Vertical_Line r;

theorem :: JORDAN1A:19
   for A being Subset of TOP-REAL 2 st A c= Vertical_Line s
  holds A is vertical;

theorem :: JORDAN1A:20
   proj2. |[r,s]| = s & proj1. |[r,s]| = r;

theorem :: JORDAN1A:21
   p`1 = q`1 & r in [. proj2.p,proj2.q .] implies |[p`1,r]| in LSeg(p,q);

theorem :: JORDAN1A:22
   p`2 = q`2 & r in [. proj1.p,proj1.q .] implies |[r,p`2]| in LSeg(p,q);

theorem :: JORDAN1A:23
   p in Vertical_Line s & q in Vertical_Line s
  implies LSeg(p,q) c= Vertical_Line s;

definition
 let S be non empty being_simple_closed_curve Subset of TOP-REAL 2;
 cluster Lower_Arc S -> non empty compact;
 cluster Upper_Arc S -> non empty compact;
end;

theorem :: JORDAN1A:24
   for A,B being Subset of TOP-REAL 2 st A meets B
   holds proj2.:A meets proj2.:B;

theorem :: JORDAN1A:25
   for A,B being Subset of TOP-REAL 2
  st A misses B & A c= Vertical_Line s & B c= Vertical_Line s
 holds proj2.:A misses proj2.:B;

theorem :: JORDAN1A:26
 for S being closed Subset of TOP-REAL 2 st S is Bounded
  holds proj2.:S is closed;

theorem :: JORDAN1A:27
 for S being Subset of TOP-REAL 2 st S is Bounded
  holds proj2.:S is bounded;

theorem :: JORDAN1A:28
   for S being compact Subset of TOP-REAL 2
  holds proj2.:S is compact;

scheme TRSubsetEx { n() -> Nat, P[set] } :
 ex A being Subset of TOP-REAL n() st
  for p being Point of TOP-REAL n() holds p in A iff P[p];

scheme TRSubsetUniq { n() -> Nat, P[set] } :
 for A, B being Subset of TOP-REAL n() st
  (for p being Point of TOP-REAL n() holds p in A iff P[p]) &
  (for p being Point of TOP-REAL n() holds p in B iff P[p])
 holds A = B;

definition let p be Point of TOP-REAL 2;
 func north_halfline p -> Subset of TOP-REAL 2 means
:: JORDAN1A:def 2
  for x being Point of TOP-REAL 2 holds
   x in it iff x`1 = p`1 & x`2 >= p`2;

 func east_halfline p -> Subset of TOP-REAL 2 means
:: JORDAN1A:def 3
  for x being Point of TOP-REAL 2 holds
   x in it iff x`1 >= p`1 & x`2 = p`2;

 func south_halfline p -> Subset of TOP-REAL 2 means
:: JORDAN1A:def 4
  for x being Point of TOP-REAL 2 holds
   x in it iff x`1 = p`1 & x`2 <= p`2;

 func west_halfline p -> Subset of TOP-REAL 2 means
:: JORDAN1A:def 5
  for x being Point of TOP-REAL 2 holds
   x in it iff x`1 <= p`1 & x`2 = p`2;
end;

theorem :: JORDAN1A:29
 north_halfline p =
   {q where q is Point of TOP-REAL 2: q`1 = p`1 & q`2 >= p`2};

theorem :: JORDAN1A:30
 north_halfline p =
   { |[ p`1,r ]| where r is Element of REAL: r >= p`2 };

theorem :: JORDAN1A:31
 east_halfline p =
   {q where q is Point of TOP-REAL 2: q`1 >= p`1 & q`2 = p`2};

theorem :: JORDAN1A:32
 east_halfline p =
   { |[ r,p`2 ]| where r is Element of REAL: r >= p`1 };

theorem :: JORDAN1A:33
 south_halfline p =
   {q where q is Point of TOP-REAL 2: q`1 = p`1 & q`2 <= p`2};

theorem :: JORDAN1A:34
 south_halfline p =
   { |[ p`1,r ]| where r is Element of REAL: r <= p`2 };

theorem :: JORDAN1A:35
 west_halfline p =
   {q where q is Point of TOP-REAL 2: q`1 <= p`1 & q`2 = p`2};

theorem :: JORDAN1A:36
 west_halfline p =
   { |[ r,p`2 ]| where r is Element of REAL: r <= p`1 };

definition let p be Point of TOP-REAL 2;
 cluster north_halfline p -> non empty convex;
 cluster east_halfline p -> non empty convex;
 cluster south_halfline p -> non empty convex;
 cluster west_halfline p -> non empty convex;
end;

begin  :: Goboards

theorem :: JORDAN1A:37
   1 <= i & i <= len G & 1 <= j & j <= width G implies
  G*(i,j) in LSeg(G*(i,1),G*(i,width G));

theorem :: JORDAN1A:38
   1 <= i & i <= len G & 1 <= j & j <= width G implies
  G*(i,j) in LSeg(G*(1,j),G*(len G,j));

  theorem :: JORDAN1A:39
    1 <= j1 & j1 <= width G & 1 <= j2 & j2 <= width G &
    1 <= i1 & i1 <= i2 & i2 <= len G implies
     G*(i1,j1)`1 <= G*(i2,j2)`1;

  theorem :: JORDAN1A:40
    1 <= i1 & i1 <= len G & 1 <= i2 & i2 <= len G &
    1 <= j1 & j1 <= j2 & j2 <= width G implies
     G*(i1,j1)`2 <= G*(i2,j2)`2;

  theorem :: JORDAN1A:41
   for f being non constant standard special_circular_sequence st
    f is_sequence_on G & 1 <= t & t <= len G holds
    G*(t,width G)`2 >= N-bound L~f;

  theorem :: JORDAN1A:42
   for f being non constant standard special_circular_sequence st
    f is_sequence_on G & 1 <= t & t <= width G holds
    G*(1,t)`1 <= W-bound L~f;

  theorem :: JORDAN1A:43
   for f being non constant standard special_circular_sequence st
    f is_sequence_on G & 1 <= t & t <= len G holds
    G*(t,1)`2 <= S-bound L~f;

  theorem :: JORDAN1A:44
   for f being non constant standard special_circular_sequence st
    f is_sequence_on G & 1 <= t & t <= width G holds
    G*(len G,t)`1 >= E-bound L~f;

theorem :: JORDAN1A:45
 i<=len G & j<=width G implies cell(G,i,j) is non empty;

theorem :: JORDAN1A:46
 i<=len G & j<=width G implies cell(G,i,j) is connected;

theorem :: JORDAN1A:47
 i <= len G implies cell(G,i,0) is not Bounded;

theorem :: JORDAN1A:48
 i <= len G implies cell(G,i,width G) is not Bounded;

begin  :: Gauges

theorem :: JORDAN1A:49
   width Gauge(D,n) = 2|^n + 3;

theorem :: JORDAN1A:50
   i < j implies len Gauge(D,i) < len Gauge(D,j);

theorem :: JORDAN1A:51
   i <= j implies len Gauge(D,i) <= len Gauge(D,j);

theorem :: JORDAN1A:52
 m <= n & 1 < i & i < len Gauge(D,m)
   implies 1 < 2|^(n-'m)*(i-2)+2 & 2|^(n-'m)*(i-2)+2 < len Gauge(D,n);

theorem :: JORDAN1A:53
 m <= n & 1 < i & i < width Gauge(D,m)
   implies 1 < 2|^(n-'m)*(i-2)+2 & 2|^(n-'m)*(i-2)+2 < width Gauge(D,n);

theorem :: JORDAN1A:54
 m <= n & 1 < i & i < len Gauge(D,m) & 1 < j & j < width Gauge(D,m)
 implies
 for i1,j1 being Nat st
  i1 = 2|^(n-'m)*(i-2)+2 & j1 = 2|^(n-'m)*(j-2)+2
  holds Gauge(D,m)*(i,j) = Gauge(D,n)*(i1,j1);

theorem :: JORDAN1A:55
 m <= n & 1 < i & i+1 < len Gauge(D,m)
   implies 1 < 2|^(n-'m)*(i-1)+2 & 2|^(n-'m)*(i-1)+2 <= len Gauge(D,n);

theorem :: JORDAN1A:56
 m <= n & 1 < i & i+1 < width Gauge(D,m)
   implies 1 < 2|^(n-'m)*(i-1)+2 & 2|^(n-'m)*(i-1)+2 <= width Gauge(D,n);

theorem :: JORDAN1A:57
 1 <= i & i <= len Gauge (D,n) &
 1 <= j & j <= len Gauge (D,m) &
 (n > 0 & m > 0 or n = 0 & m = 0) implies
  Gauge(D,n)*(Center Gauge(D,n), i)`1 =
  Gauge(D,m)*(Center Gauge(D,m), j)`1;

theorem :: JORDAN1A:58
   1 <= i & i <= len Gauge (D,n) &
 1 <= j & j <= len Gauge (D,m) &
 (n > 0 & m > 0 or n = 0 & m = 0) implies
  Gauge(D,n)*(i, Center Gauge(D,n))`2 =
  Gauge(D,m)*(j, Center Gauge(D,m))`2;

theorem :: JORDAN1A:59
   1 <= i & i <= len Gauge(C,1) implies
  Gauge(C,1)*(Center Gauge(C,1),i)`1 = (W-bound C + E-bound C) / 2;

theorem :: JORDAN1A:60
   1 <= i & i <= len Gauge(C,1) implies
  Gauge(C,1)*(i,Center Gauge(C,1))`2 = (S-bound C + N-bound C) / 2;

theorem :: JORDAN1A:61
 1 <= i & i <= len Gauge(E,n) & 1 <= j & j <= len Gauge(E,m) &
 m <= n implies
  Gauge(E,n)*(i,len Gauge(E,n))`2 <= Gauge(E,m)*(j,len Gauge(E,m))`2;

theorem :: JORDAN1A:62
   1 <= i & i <= len Gauge(E,n) & 1 <= j & j <= len Gauge(E,m) &
 m <= n implies
  Gauge(E,n)*(len Gauge(E,n),i)`1 <= Gauge(E,m)*(len Gauge(E,m),j)`1;

theorem :: JORDAN1A:63
   1 <= i & i <= len Gauge(E,n) & 1 <= j & j <= len Gauge(E,m) &
 m <= n implies
  Gauge(E,m)*(1,j)`1 <= Gauge(E,n)*(1,i)`1;

theorem :: JORDAN1A:64
   1 <= i & i <= len Gauge(E,n) & 1 <= j & j <= len Gauge(E,m) &
 m <= n implies
  Gauge(E,m)*(j,1)`2 <= Gauge(E,n)*(i,1)`2;

theorem :: JORDAN1A:65
   1 <= m & m <= n implies
 LSeg(Gauge(E,n)*(Center Gauge(E,n),1),
      Gauge(E,n)*(Center Gauge(E,n),len Gauge(E,n))) c=
 LSeg(Gauge(E,m)*(Center Gauge(E,m),1),
      Gauge(E,m)*(Center Gauge(E,m),len Gauge(E,m)));

theorem :: JORDAN1A:66
   1 <= m & m <= n & 1 <= j & j <= width Gauge(E,n) implies
 LSeg(Gauge(E,n)*(Center Gauge(E,n),1),
      Gauge(E,n)*(Center Gauge(E,n),j)) c=
 LSeg(Gauge(E,m)*(Center Gauge(E,m),1),
      Gauge(E,n)*(Center Gauge(E,n),j));

theorem :: JORDAN1A:67
   1 <= m & m <= n & 1 <= j & j <= width Gauge(E,n) implies
 LSeg(Gauge(E,m)*(Center Gauge(E,m),1),
      Gauge(E,n)*(Center Gauge(E,n),j)) c=
 LSeg(Gauge(E,m)*(Center Gauge(E,m),1),
      Gauge(E,m)*(Center Gauge(E,m),len Gauge(E,m)));

theorem :: JORDAN1A:68
 m <= n & 1 < i & i+1 < len Gauge(E,m) & 1 < j & j+1 < width Gauge(E,m)
  implies
 for i1,j1 being Nat st
   2|^(n-'m)*(i-2)+2 <= i1 & i1 < 2|^(n-'m)*(i-1)+2 &
   2|^(n-'m)*(j-2)+2 <= j1 & j1 < 2|^(n-'m)*(j-1)+2
  holds cell(Gauge(E,n),i1,j1) c= cell(Gauge(E,m),i,j);

theorem :: JORDAN1A:69
   m <= n & 3 <= i & i < len Gauge(E,m) & 1 < j & j+1 < width Gauge(E,m)
implies
 for i1,j1 being Nat st
  i1 = 2|^(n-'m)*(i-2)+2 & j1 = 2|^(n-'m)*(j-2)+2
  holds cell(Gauge(E,n),i1-'1,j1) c= cell(Gauge(E,m),i-'1,j);

theorem :: JORDAN1A:70
   for C being compact non vertical non horizontal Subset of TOP-REAL 2 holds
 i <= len Gauge(C,n) implies cell(Gauge(C,n),i,0) c= UBD C;

theorem :: JORDAN1A:71
   for C being compact non vertical non horizontal Subset of TOP-REAL 2 holds
 i <= len Gauge(E,n) implies cell(Gauge(E,n),i,width Gauge(E,n)) c= UBD E;

begin  :: Cages

theorem :: JORDAN1A:72
 p in C implies north_halfline p meets L~Cage(C,n);

theorem :: JORDAN1A:73
 p in C implies east_halfline p meets L~Cage(C,n);

theorem :: JORDAN1A:74
 p in C implies south_halfline p meets L~Cage(C,n);

theorem :: JORDAN1A:75
 p in C implies west_halfline p meets L~Cage(C,n);

  theorem :: JORDAN1A:76
   ex k,t st 1 <= k & k < len Cage(C,n) & 1 <= t & t <= width (Gauge(C,n)) &
    Cage(C,n)/.k = Gauge(C,n)*(1,t);

  theorem :: JORDAN1A:77
   ex k,t st 1 <= k & k < len Cage(C,n) & 1 <= t & t <= len (Gauge(C,n)) &
    Cage(C,n)/.k = Gauge(C,n)*(t,1);

  theorem :: JORDAN1A:78
   ex k,t st 1 <= k & k < len Cage(C,n) & 1 <= t & t <= width (Gauge(C,n)) &
    Cage(C,n)/.k = Gauge(C,n)*(len(Gauge(C,n)),t);

  theorem :: JORDAN1A:79
   1 <= k & k <= len Cage(C,n) & 1 <= t & t <= len (Gauge(C,n)) &
    Cage(C,n)/.k = Gauge(C,n)*(t,width Gauge(C,n)) implies
     Cage(C,n)/.k in N-most L~Cage(C,n);

  theorem :: JORDAN1A:80
   1 <= k & k <= len Cage(C,n) & 1 <= t & t <= width (Gauge(C,n)) &
    Cage(C,n)/.k = Gauge(C,n)*(1,t) implies Cage(C,n)/.k in W-most L~Cage(C,n);

  theorem :: JORDAN1A:81
   1 <= k & k <= len Cage(C,n) & 1 <= t & t <= len (Gauge(C,n)) &
    Cage(C,n)/.k = Gauge(C,n)*(t,1) implies Cage(C,n)/.k in S-most L~Cage(C,n);

  theorem :: JORDAN1A:82
   1 <= k & k <= len Cage(C,n) & 1 <= t & t <= width (Gauge(C,n)) &
    Cage(C,n)/.k = Gauge(C,n)*(len Gauge(C,n),t) implies
     Cage(C,n)/.k in E-most L~Cage(C,n);

theorem :: JORDAN1A:83
 W-bound L~Cage(C,n) = W-bound C - (E-bound C - W-bound C)/(2|^n);

theorem :: JORDAN1A:84
 S-bound L~Cage(C,n) = S-bound C - (N-bound C - S-bound C)/(2|^n);

theorem :: JORDAN1A:85
 E-bound L~Cage(C,n) = E-bound C + (E-bound C - W-bound C)/(2|^n);

theorem :: JORDAN1A:86
   N-bound L~Cage(C,n) + S-bound L~Cage(C,n) =
  N-bound L~Cage(C,m) + S-bound L~Cage(C,m);

theorem :: JORDAN1A:87
   E-bound L~Cage(C,n) + W-bound L~Cage(C,n) =
  E-bound L~Cage(C,m) + W-bound L~Cage(C,m);

theorem :: JORDAN1A:88
   i < j implies E-bound L~Cage(C,j) < E-bound L~Cage(C,i);

theorem :: JORDAN1A:89
   i < j implies W-bound L~Cage(C,i) < W-bound L~Cage(C,j);

theorem :: JORDAN1A:90
   i < j implies S-bound L~Cage(C,i) < S-bound L~Cage(C,j);

theorem :: JORDAN1A:91
   1 <= i & i <= len Gauge(C,n) implies
  N-bound L~Cage(C,n) = Gauge(C,n)*(i,len Gauge(C,n))`2;

theorem :: JORDAN1A:92
   1 <= i & i <= len Gauge(C,n) implies
  E-bound L~Cage(C,n) = Gauge(C,n)*(len Gauge(C,n),i)`1;

theorem :: JORDAN1A:93
   1 <= i & i <= len Gauge(C,n) implies
  S-bound L~Cage(C,n) = Gauge(C,n)*(i,1)`2;

theorem :: JORDAN1A:94
   1 <= i & i <= len Gauge(C,n) implies
  W-bound L~Cage(C,n) = Gauge(C,n)*(1,i)`1;

theorem :: JORDAN1A:95
 x in C & p in north_halfline x /\ L~Cage(C,n) implies p`2 > x`2;

theorem :: JORDAN1A:96
 x in C & p in east_halfline x /\ L~Cage(C,n) implies p`1 > x`1;

theorem :: JORDAN1A:97
 x in C & p in south_halfline x /\ L~Cage(C,n) implies p`2 < x`2;

theorem :: JORDAN1A:98
 x in C & p in west_halfline x /\ L~Cage(C,n) implies p`1 < x`1;

theorem :: JORDAN1A:99
 x in N-most C & p in north_halfline x &
  1 <= i & i < len Cage(C,n) & p in LSeg(Cage(C,n),i) implies
 LSeg(Cage(C,n),i) is horizontal;

theorem :: JORDAN1A:100
 x in E-most C & p in east_halfline x &
  1 <= i & i < len Cage(C,n) & p in LSeg(Cage(C,n),i) implies
 LSeg(Cage(C,n),i) is vertical;

theorem :: JORDAN1A:101
 x in S-most C & p in south_halfline x &
  1 <= i & i < len Cage(C,n) & p in LSeg(Cage(C,n),i) implies
 LSeg(Cage(C,n),i) is horizontal;

theorem :: JORDAN1A:102
 x in W-most C & p in west_halfline x &
  1 <= i & i < len Cage(C,n) & p in LSeg(Cage(C,n),i) implies
 LSeg(Cage(C,n),i) is vertical;

theorem :: JORDAN1A:103
 x in N-most C & p in north_halfline x /\ L~Cage(C,n)
 implies p`2 = N-bound L~Cage(C,n);

theorem :: JORDAN1A:104
 x in E-most C & p in east_halfline x /\ L~Cage(C,n)
 implies p`1 = E-bound L~Cage(C,n);

theorem :: JORDAN1A:105
 x in S-most C & p in south_halfline x /\ L~Cage(C,n)
 implies p`2 = S-bound L~Cage(C,n);

theorem :: JORDAN1A:106
 x in W-most C & p in west_halfline x /\ L~Cage(C,n)
 implies p`1 = W-bound L~Cage(C,n);

theorem :: JORDAN1A:107
   x in N-most C implies
  ex p being Point of TOP-REAL 2 st north_halfline x /\ L~Cage(C,n) = {p};

theorem :: JORDAN1A:108
   x in E-most C implies
  ex p being Point of TOP-REAL 2 st east_halfline x /\ L~Cage(C,n) = {p};

theorem :: JORDAN1A:109
   x in S-most C implies
  ex p being Point of TOP-REAL 2 st south_halfline x /\ L~Cage(C,n) = {p};

theorem :: JORDAN1A:110
   x in W-most C implies
  ex p being Point of TOP-REAL 2 st west_halfline x /\ L~Cage(C,n) = {p};

Back to top