environ vocabulary RELAT_2, COMPTS_1, SPPOL_1, EUCLID, TOPREAL1, FINSEQ_1, JORDAN9, MATRIX_1, JORDAN8, GOBOARD1, GOBOARD5, TREES_1, BOOLE, ARYTM_1, TARSKI, PSCOMP_1, ARYTM_3, GROUP_1, MCART_1, PRE_TOPC, GOBOARD9, TOPS_1, SUBSET_1, CONNSP_1, RELAT_1, JORDAN2C, LATTICES, CONNSP_3, SETFAM_1, TOPREAL4, PCOMPS_1, WEIERSTR, METRIC_1, JORDAN10, FINSEQ_4; notation TARSKI, XBOOLE_0, SUBSET_1, SETFAM_1, XREAL_0, REAL_1, NAT_1, BINARITH, STRUCT_0, METRIC_1, TBSP_1, FINSEQ_1, NEWTON, FINSEQ_4, WEIERSTR, PRE_TOPC, TOPS_1, CONNSP_1, CONNSP_3, COMPTS_1, PCOMPS_1, MATRIX_1, EUCLID, TOPREAL1, GOBOARD1, GOBOARD5, TOPREAL4, PSCOMP_1, GOBOARD9, SPPOL_1, JORDAN2C, JORDAN8, GOBRD13, GOBRD14, JORDAN9; constructors BINARITH, CARD_4, CONNSP_1, CONNSP_3, FINSEQ_4, GOBOARD9, GOBRD13, GOBRD14, JORDAN2C, JORDAN8, JORDAN9, PSCOMP_1, REAL_1, REALSET1, TBSP_1, TOPREAL4, TOPS_1, WEIERSTR, JORDAN1; clusters XREAL_0, BORSUK_2, EUCLID, GOBRD14, JORDAN8, PCOMPS_1, PRE_TOPC, PSCOMP_1, RELSET_1, SPPOL_2, SPRECT_1, STRUCT_0, TOPREAL6, SUBSET_1, FINSEQ_1, ARYTM_3, SPRECT_4, JORDAN2C, MEMBERED; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin :: Properties of the external approximation of Jordan's curve definition cluster connected compact non vertical non horizontal Subset of TOP-REAL 2; end; reserve i, j, k, n for Nat, P for Subset of TOP-REAL 2, C for connected compact non vertical non horizontal Subset of TOP-REAL 2; theorem :: JORDAN10:1 1 <= k & k+1 <= len Cage(C,n) & [i,j] in Indices Gauge(C,n) & [i,j+1] in Indices Gauge(C,n) & Cage(C,n)/.k = Gauge(C,n)*(i,j) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i,j+1) implies i < len Gauge(C,n); theorem :: JORDAN10:2 1 <= k & k+1 <= len Cage(C,n) & [i,j] in Indices Gauge(C,n) & [i,j+1] in Indices Gauge(C,n) & Cage(C,n)/.k = Gauge(C,n)*(i,j+1) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i,j) implies i > 1; theorem :: JORDAN10:3 1 <= k & k+1 <= len Cage(C,n) & [i,j] in Indices Gauge(C,n) & [i+1,j] in Indices Gauge(C,n) & Cage(C,n)/.k = Gauge(C,n)*(i,j) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i+1,j) implies j > 1; theorem :: JORDAN10:4 1 <= k & k+1 <= len Cage(C,n) & [i,j] in Indices Gauge(C,n) & [i+1,j] in Indices Gauge(C,n) & Cage(C,n)/.k = Gauge(C,n)*(i+1,j) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i,j) implies j < width Gauge(C,n); theorem :: JORDAN10:5 C misses L~Cage(C,n); theorem :: JORDAN10:6 N-bound L~Cage(C,n) = N-bound C + (N-bound C - S-bound C)/(2|^n); theorem :: JORDAN10:7 i < j implies N-bound L~Cage(C,j) < N-bound L~Cage(C,i); definition let C be connected compact non vertical non horizontal Subset of TOP-REAL 2, n be Nat; cluster Cl RightComp Cage(C,n) -> compact; end; theorem :: JORDAN10:8 N-min C in RightComp Cage(C,n); theorem :: JORDAN10:9 C meets RightComp Cage (C,n); theorem :: JORDAN10:10 C misses LeftComp Cage(C,n); theorem :: JORDAN10:11 C c= RightComp Cage(C,n); theorem :: JORDAN10:12 C c= BDD L~Cage(C,n); theorem :: JORDAN10:13 UBD L~Cage(C,n) c= UBD C; definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; func UBD-Family C equals :: JORDAN10:def 1 { UBD L~Cage(C,n) where n is Nat : not contradiction }; func BDD-Family C equals :: JORDAN10:def 2 { Cl BDD L~Cage(C,n) where n is Nat : not contradiction }; end; definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; redefine func UBD-Family C -> Subset-Family of TOP-REAL 2; redefine func BDD-Family C -> Subset-Family of TOP-REAL 2; end; definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; cluster UBD-Family C -> non empty; cluster BDD-Family C -> non empty; end; theorem :: JORDAN10:14 union UBD-Family C = UBD C; theorem :: JORDAN10:15 C c= meet BDD-Family C; theorem :: JORDAN10:16 BDD C misses LeftComp Cage(C,n); theorem :: JORDAN10:17 BDD C c= RightComp Cage(C,n); theorem :: JORDAN10:18 P is_inside_component_of C implies P misses L~Cage(C,n); theorem :: JORDAN10:19 BDD C misses L~Cage(C,n); theorem :: JORDAN10:20 COMPLEMENT UBD-Family C = BDD-Family C; theorem :: JORDAN10:21 meet BDD-Family C = C \/ BDD C;