Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Artur Kornilowicz
- Received June 24, 1999
- MML identifier: JORDAN10
- [
Mizar article,
MML identifier index
]
environ
vocabulary RELAT_2, COMPTS_1, SPPOL_1, EUCLID, TOPREAL1, FINSEQ_1, JORDAN9,
MATRIX_1, JORDAN8, GOBOARD1, GOBOARD5, TREES_1, BOOLE, ARYTM_1, TARSKI,
PSCOMP_1, ARYTM_3, GROUP_1, MCART_1, PRE_TOPC, GOBOARD9, TOPS_1,
SUBSET_1, CONNSP_1, RELAT_1, JORDAN2C, LATTICES, CONNSP_3, SETFAM_1,
TOPREAL4, PCOMPS_1, WEIERSTR, METRIC_1, JORDAN10, FINSEQ_4;
notation TARSKI, XBOOLE_0, SUBSET_1, SETFAM_1, XREAL_0, REAL_1, NAT_1,
BINARITH, STRUCT_0, METRIC_1, TBSP_1, FINSEQ_1, NEWTON, FINSEQ_4,
WEIERSTR, PRE_TOPC, TOPS_1, CONNSP_1, CONNSP_3, COMPTS_1, PCOMPS_1,
MATRIX_1, EUCLID, TOPREAL1, GOBOARD1, GOBOARD5, TOPREAL4, PSCOMP_1,
GOBOARD9, SPPOL_1, JORDAN2C, JORDAN8, GOBRD13, GOBRD14, JORDAN9;
constructors BINARITH, CARD_4, CONNSP_1, CONNSP_3, FINSEQ_4, GOBOARD9,
GOBRD13, GOBRD14, JORDAN2C, JORDAN8, JORDAN9, PSCOMP_1, REAL_1, REALSET1,
TBSP_1, TOPREAL4, TOPS_1, WEIERSTR, JORDAN1;
clusters XREAL_0, BORSUK_2, EUCLID, GOBRD14, JORDAN8, PCOMPS_1, PRE_TOPC,
PSCOMP_1, RELSET_1, SPPOL_2, SPRECT_1, STRUCT_0, TOPREAL6, SUBSET_1,
FINSEQ_1, ARYTM_3, SPRECT_4, JORDAN2C, MEMBERED;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: Properties of the external approximation of Jordan's curve
definition
cluster connected compact non vertical non horizontal Subset of TOP-REAL 2;
end;
reserve i, j, k, n for Nat,
P for Subset of TOP-REAL 2,
C for connected compact non vertical non horizontal Subset of TOP-REAL 2;
theorem :: JORDAN10:1
1 <= k & k+1 <= len Cage(C,n) &
[i,j] in Indices Gauge(C,n) & [i,j+1] in Indices Gauge(C,n) &
Cage(C,n)/.k = Gauge(C,n)*(i,j) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i,j+1)
implies i < len Gauge(C,n);
theorem :: JORDAN10:2
1 <= k & k+1 <= len Cage(C,n) &
[i,j] in Indices Gauge(C,n) & [i,j+1] in Indices Gauge(C,n) &
Cage(C,n)/.k = Gauge(C,n)*(i,j+1) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i,j)
implies i > 1;
theorem :: JORDAN10:3
1 <= k & k+1 <= len Cage(C,n) &
[i,j] in Indices Gauge(C,n) & [i+1,j] in Indices Gauge(C,n) &
Cage(C,n)/.k = Gauge(C,n)*(i,j) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i+1,j)
implies j > 1;
theorem :: JORDAN10:4
1 <= k & k+1 <= len Cage(C,n) &
[i,j] in Indices Gauge(C,n) & [i+1,j] in Indices Gauge(C,n) &
Cage(C,n)/.k = Gauge(C,n)*(i+1,j) & Cage(C,n)/.(k+1) = Gauge(C,n)*(i,j)
implies j < width Gauge(C,n);
theorem :: JORDAN10:5
C misses L~Cage(C,n);
theorem :: JORDAN10:6
N-bound L~Cage(C,n) = N-bound C + (N-bound C - S-bound C)/(2|^n);
theorem :: JORDAN10:7
i < j implies N-bound L~Cage(C,j) < N-bound L~Cage(C,i);
definition
let C be connected compact non vertical non horizontal Subset of TOP-REAL 2,
n be Nat;
cluster Cl RightComp Cage(C,n) -> compact;
end;
theorem :: JORDAN10:8
N-min C in RightComp Cage(C,n);
theorem :: JORDAN10:9
C meets RightComp Cage (C,n);
theorem :: JORDAN10:10
C misses LeftComp Cage(C,n);
theorem :: JORDAN10:11
C c= RightComp Cage(C,n);
theorem :: JORDAN10:12
C c= BDD L~Cage(C,n);
theorem :: JORDAN10:13
UBD L~Cage(C,n) c= UBD C;
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
func UBD-Family C equals
:: JORDAN10:def 1
{ UBD L~Cage(C,n) where n is Nat : not contradiction };
func BDD-Family C equals
:: JORDAN10:def 2
{ Cl BDD L~Cage(C,n) where n is Nat : not contradiction };
end;
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
redefine func UBD-Family C -> Subset-Family of TOP-REAL 2;
redefine func BDD-Family C -> Subset-Family of TOP-REAL 2;
end;
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
cluster UBD-Family C -> non empty;
cluster BDD-Family C -> non empty;
end;
theorem :: JORDAN10:14
union UBD-Family C = UBD C;
theorem :: JORDAN10:15
C c= meet BDD-Family C;
theorem :: JORDAN10:16
BDD C misses LeftComp Cage(C,n);
theorem :: JORDAN10:17
BDD C c= RightComp Cage(C,n);
theorem :: JORDAN10:18
P is_inside_component_of C implies P misses L~Cage(C,n);
theorem :: JORDAN10:19
BDD C misses L~Cage(C,n);
theorem :: JORDAN10:20
COMPLEMENT UBD-Family C = BDD-Family C;
theorem :: JORDAN10:21
meet BDD-Family C = C \/ BDD C;
Back to top