Journal of Formalized Mathematics
Volume 7, 1995
University of Bialystok
Copyright (c) 1995
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Czeslaw Bylinski,
and
- Yatsuka Nakamura
- Received January 30, 1995
- MML identifier: SPPOL_2
- [
Mizar article,
MML identifier index
]
environ
vocabulary EUCLID, FINSEQ_1, PRE_TOPC, ARYTM, MCART_1, TOPREAL1, FINSEQ_5,
RELAT_1, FINSEQ_4, BOOLE, RFINSEQ, ARYTM_1, TARSKI, FUNCT_1, REALSET1,
TOPREAL4, RCOMP_1, COMPTS_1, BORSUK_1, TOPS_2, ORDINAL2, SUBSET_1,
SPPOL_2;
notation TARSKI, XBOOLE_0, ORDINAL1, XREAL_0, STRUCT_0, REAL_1, NAT_1,
FUNCT_1, FINSEQ_1, REALSET1, FINSEQ_4, RFINSEQ, PRE_TOPC, COMPTS_1,
TOPS_2, EUCLID, BORSUK_1, TOPREAL1, TOPREAL4, FINSEQ_5;
constructors TOPMETR, REAL_1, NAT_1, REALSET1, RFINSEQ, COMPTS_1, TOPS_2,
TOPREAL1, TOPREAL4, FINSEQ_4, FINSEQ_5, INT_1, MEMBERED, XBOOLE_0;
clusters PRE_TOPC, FINSEQ_5, RELSET_1, STRUCT_0, EUCLID, XREAL_0, FINSEQ_1,
INT_1, TOPREAL1, MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin :: Segments in TOP-REAL 2
reserve P for Subset of TOP-REAL 2,
f,f1,f2,g for FinSequence of TOP-REAL 2,
p,p1,p2,q,q1,q2 for Point of TOP-REAL 2,
r1,r2,r1',r2' for Real,
i,j,k,n for Nat;
theorem :: SPPOL_2:1
for r1, r2, r1', r2' being real number st
|[ r1,r2 ]| = |[ r1',r2' ]| holds r1 = r1' & r2 = r2';
theorem :: SPPOL_2:2
i+j = len f implies LSeg(f,i) = LSeg(Rev f,j);
theorem :: SPPOL_2:3
i+1 <= len(f|n) implies LSeg(f|n,i) = LSeg(f,i);
theorem :: SPPOL_2:4
n <= len f & 1 <= i implies LSeg(f/^n,i) = LSeg(f,n+i);
theorem :: SPPOL_2:5
1 <= i & i+1 <= len f - n implies LSeg(f/^n,i) = LSeg(f,n+i);
theorem :: SPPOL_2:6
i+1 <= len f implies LSeg(f^g,i) = LSeg(f,i);
theorem :: SPPOL_2:7
1 <= i implies LSeg(f^g,len f + i) = LSeg(g,i);
theorem :: SPPOL_2:8
f is non empty & g is non empty
implies LSeg(f^g,len f) = LSeg(f/.len f,g/.1);
theorem :: SPPOL_2:9
i+1 <= len(f-:p) implies LSeg(f-:p,i) = LSeg(f,i);
theorem :: SPPOL_2:10
p in rng f implies LSeg(f:-p,i+1) = LSeg(f,i+p..f);
theorem :: SPPOL_2:11
L~<*>(the carrier of TOP-REAL 2) = {};
theorem :: SPPOL_2:12
L~<*p*> = {};
theorem :: SPPOL_2:13
p in L~f implies ex i st 1 <= i & i+1 <= len f & p in LSeg(f,i);
theorem :: SPPOL_2:14
p in L~f implies ex i st 1 <= i & i+1 <= len f & p in LSeg(f/.i,f/.(i+1));
theorem :: SPPOL_2:15
1 <= i & i+1 <= len f & p in LSeg(f/.i,f/.(i+1)) implies p in L~f;
theorem :: SPPOL_2:16
1 <= i & i+1 <= len f implies LSeg(f/.i,f/.(i+1)) c= L~f;
theorem :: SPPOL_2:17
p in LSeg(f,i) implies p in L~f;
theorem :: SPPOL_2:18
len f >= 2 implies rng f c= L~f;
theorem :: SPPOL_2:19
f is non empty implies L~(f^<*p*>) = L~f \/ LSeg(f/.len f,p);
theorem :: SPPOL_2:20
f is non empty implies L~(<*p*>^f) = LSeg(p,f/.1) \/ L~f;
theorem :: SPPOL_2:21
L~<*p,q*> = LSeg(p,q);
theorem :: SPPOL_2:22
L~f = L~(Rev f);
theorem :: SPPOL_2:23
f1 is non empty & f2 is non empty implies
L~(f1^f2) = L~f1 \/ LSeg(f1/.len f1,f2/.1) \/ L~f2;
canceled;
theorem :: SPPOL_2:25
q in rng f implies L~f = L~(f-:q) \/ L~(f:-q);
theorem :: SPPOL_2:26
p in LSeg(f,n) implies L~f = L~Ins(f,n,p);
begin
definition
cluster being_S-Seq FinSequence of TOP-REAL 2;
cluster being_S-Seq ->
one-to-one unfolded s.n.c. special non trivial FinSequence of TOP-REAL 2;
cluster one-to-one unfolded s.n.c. special non trivial ->
being_S-Seq FinSequence of TOP-REAL 2;
cluster being_S-Seq -> non empty FinSequence of TOP-REAL 2;
end;
definition
cluster
one-to-one unfolded s.n.c. special non trivial FinSequence of TOP-REAL 2;
end;
theorem :: SPPOL_2:27
len f <= 2 implies f is unfolded;
definition let f be unfolded FinSequence of TOP-REAL 2, n;
cluster f|n -> unfolded;
cluster f/^n -> unfolded;
end;
theorem :: SPPOL_2:28
p in rng f & f is unfolded implies f:-p is unfolded;
definition let f be unfolded FinSequence of TOP-REAL 2, p;
cluster f-:p -> unfolded;
end;
theorem :: SPPOL_2:29
f is unfolded implies Rev f is unfolded;
theorem :: SPPOL_2:30
g is unfolded & LSeg(p,g/.1) /\ LSeg(g,1) = {g/.1}
implies <*p*>^g is unfolded;
theorem :: SPPOL_2:31
f is unfolded & k+1 = len f & LSeg(f,k) /\
LSeg(f/.len f,p) = {f/.len f}
implies f^<*p*> is unfolded;
theorem :: SPPOL_2:32
f is unfolded & g is unfolded &
k+1 = len f & LSeg(f,k) /\ LSeg(f/.len f,g/.1) = {f/.len f} &
LSeg(f/.len f,g/.1) /\ LSeg(g,1) = {g/.1}
implies f^g is unfolded;
theorem :: SPPOL_2:33
f is unfolded & p in LSeg(f,n) implies Ins(f,n,p) is unfolded;
theorem :: SPPOL_2:34
len f <= 2 implies f is s.n.c.;
definition let f be s.n.c. FinSequence of TOP-REAL 2, n;
cluster f|n -> s.n.c.;
cluster f/^n -> s.n.c.;
end;
definition let f be s.n.c. FinSequence of TOP-REAL 2, p;
cluster f-:p -> s.n.c.;
end;
theorem :: SPPOL_2:35
p in rng f & f is s.n.c. implies f:-p is s.n.c.;
theorem :: SPPOL_2:36
f is s.n.c. implies Rev f is s.n.c.;
theorem :: SPPOL_2:37
f is s.n.c. & g is s.n.c. & L~f misses L~g &
(for i st 1<=i & i+2 <= len f holds LSeg(f,i) misses LSeg(f/.len f,g/.1)) &
(for i st 2<=i & i+1 <= len g holds LSeg(g,i) misses LSeg(f/.len f,g/.1))
implies f^g is s.n.c.;
theorem :: SPPOL_2:38
f is unfolded s.n.c. & p in LSeg(f,n) & not p in rng f
implies Ins(f,n,p) is s.n.c.;
definition
cluster <*>(the carrier of TOP-REAL 2) -> special;
end;
theorem :: SPPOL_2:39
<*p*> is special;
theorem :: SPPOL_2:40
p`1 = q`1 or p`2 = q`2 implies <*p,q*> is special;
definition let f be special FinSequence of TOP-REAL 2, n;
cluster f|n -> special;
cluster f/^n -> special;
end;
theorem :: SPPOL_2:41
p in rng f & f is special implies f:-p is special;
definition let f be special FinSequence of TOP-REAL 2, p;
cluster f-:p -> special;
end;
theorem :: SPPOL_2:42
f is special implies Rev f is special;
canceled;
theorem :: SPPOL_2:44
f is special & p in LSeg(f,n) implies Ins(f,n,p) is special;
theorem :: SPPOL_2:45
q in rng f & 1<>q..f & q..f<>len f & f is unfolded s.n.c.
implies L~(f-:q) /\ L~(f:-q) = {q};
theorem :: SPPOL_2:46
p <> q & (p`1 = q`1 or p`2 = q`2) implies <*p,q*> is being_S-Seq;
definition
mode S-Sequence_in_R2 is being_S-Seq FinSequence of TOP-REAL 2;
end;
theorem :: SPPOL_2:47
for f being S-Sequence_in_R2 holds Rev f is being_S-Seq;
theorem :: SPPOL_2:48
for f being S-Sequence_in_R2 st i in dom f holds f/.i in L~f;
theorem :: SPPOL_2:49
p <> q & (p`1 = q`1 or p`2 = q`2) implies LSeg(p,q) is being_S-P_arc;
theorem :: SPPOL_2:50
for f being S-Sequence_in_R2 st p in rng f & p..f <> 1
holds f-:p is being_S-Seq;
theorem :: SPPOL_2:51
for f being S-Sequence_in_R2 st p in rng f & p..f <> len f
holds f:-p is being_S-Seq;
theorem :: SPPOL_2:52
for f being S-Sequence_in_R2 st p in LSeg(f,i) & not p in rng f
holds Ins(f,i,p) is being_S-Seq;
begin :: Special Polygons in TOP-REAL 2
definition
cluster being_S-P_arc Subset of TOP-REAL 2;
end;
theorem :: SPPOL_2:53
P is_S-P_arc_joining p1,p2 implies P is_S-P_arc_joining p2,p1;
definition let p1,p2; let P be Subset of TOP-REAL 2;
pred p1,p2 split P means
:: SPPOL_2:def 1
p1 <> p2 &
ex f1,f2 being S-Sequence_in_R2 st
p1 = f1/.1 & p1 = f2/.1 & p2 = f1/.len f1 & p2 = f2/.len f2 &
L~f1 /\ L~f2 = {p1,p2} & P = L~f1 \/ L~f2;
end;
theorem :: SPPOL_2:54
p1,p2 split P implies p2,p1 split P;
theorem :: SPPOL_2:55
p1,p2 split P & q in P & q <> p1 implies p1,q split P;
theorem :: SPPOL_2:56
p1,p2 split P & q in P & q <> p2 implies q,p2 split P;
theorem :: SPPOL_2:57
p1,p2 split P & q1 in P & q2 in P & q1 <> q2 implies q1,q2 split P;
definition let P be Subset of TOP-REAL 2;
redefine attr P is being_special_polygon means
:: SPPOL_2:def 2
ex p1,p2 st p1,p2 split P;
synonym P is special_polygonal;
end;
definition let r1,r2,r1',r2';
func [.r1,r2,r1',r2'.] -> Subset of TOP-REAL 2 equals
:: SPPOL_2:def 3
{ p: p`1 = r1 & p`2 <= r2' & p`2 >= r1' or
p`1 <= r2 & p`1 >= r1 & p`2 = r2' or
p`1 <= r2 & p`1 >= r1 & p`2 = r1' or
p`1 = r2 & p`2 <= r2' & p`2 >= r1'};
end;
theorem :: SPPOL_2:58
r1<r2 & r1'<r2' implies
[.r1,r2,r1',r2'.] =
( LSeg(|[r1,r1']|,|[r1,r2']|) \/ LSeg(|[r1,r2']|,|[r2,r2']|) ) \/
( LSeg(|[r2,r2']|,|[r2,r1']|) \/ LSeg(|[r2,r1']|,|[r1,r1']|) );
theorem :: SPPOL_2:59
r1<r2 & r1'<r2' implies [.r1,r2,r1',r2'.] is special_polygonal;
theorem :: SPPOL_2:60
R^2-unit_square = [.0,1,0,1.];
definition
cluster special_polygonal Subset of TOP-REAL 2;
end;
theorem :: SPPOL_2:61
R^2-unit_square is special_polygonal;
definition
cluster special_polygonal Subset of TOP-REAL 2;
cluster special_polygonal -> non empty Subset of TOP-REAL 2;
cluster special_polygonal ->
non trivial Subset of TOP-REAL 2;
end;
definition
mode Special_polygon_in_R2 is special_polygonal Subset of TOP-REAL 2;
end;
theorem :: SPPOL_2:62
P is being_S-P_arc implies P is compact;
theorem :: SPPOL_2:63
for G being Special_polygon_in_R2 holds G is compact;
theorem :: SPPOL_2:64
P is special_polygonal implies
for p1,p2 st p1 <> p2 & p1 in P & p2 in P holds p1,p2 split P;
theorem :: SPPOL_2:65
P is special_polygonal implies
for p1,p2 st p1 <> p2 & p1 in P & p2 in P
ex P1,P2 being Subset of TOP-REAL 2
st P1 is_S-P_arc_joining p1,p2 & P2 is_S-P_arc_joining p1,p2 &
P1 /\ P2 = {p1,p2} & P = P1 \/ P2;
Back to top