environ vocabulary RELAT_1, CARD_1, FUNCT_1, BOOLE, TARSKI, FUNCT_2, FINSET_1, FINSEQ_1, ARYTM_1, SQUARE_1, RLVECT_1, PROB_1, ARYTM_3, VECTSP_1, RFINSEQ; notation TARSKI, XBOOLE_0, SUBSET_1, NUMBERS, XREAL_0, RELAT_1, FUNCT_1, FUNCT_2, FINSEQ_1, CARD_1, REAL_1, NAT_1, SQUARE_1, SEQ_1, FINSEQ_4, FINSET_1, RVSUM_1, TOPREAL1; constructors WELLORD2, FINSEQOP, REAL_1, NAT_1, SQUARE_1, TOPREAL1, FINSEQ_4, SEQ_1, MEMBERED, PARTFUN1, XBOOLE_0; clusters FINSET_1, PRELAMB, FUNCT_1, RELSET_1, FINSEQ_1, FUNCT_2, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve x,y for set, n,m for Nat, r,s for Real; definition let F,G be Relation; pred F,G are_fiberwise_equipotent means :: RFINSEQ:def 1 for x be set holds Card (F"{x}) = Card (G"{x}); reflexivity; symmetry; end; theorem :: RFINSEQ:1 for F,G be Function st F,G are_fiberwise_equipotent holds rng F = rng G; theorem :: RFINSEQ:2 for F,G,H be Function st F,G are_fiberwise_equipotent & F,H are_fiberwise_equipotent holds G,H are_fiberwise_equipotent; theorem :: RFINSEQ:3 for F,G be Function holds F,G are_fiberwise_equipotent iff ex H be Function st dom H = dom F & rng H = dom G & H is one-to-one & F = G*H; theorem :: RFINSEQ:4 for F,G be Function holds F,G are_fiberwise_equipotent iff for X be set holds Card (F"X) = Card (G"X); theorem :: RFINSEQ:5 for D be non empty set, F,G be Function st rng F c= D & rng G c= D holds F,G are_fiberwise_equipotent iff for d be Element of D holds Card (F"{d}) = Card (G"{d}); theorem :: RFINSEQ:6 for F,G be Function st dom F = dom G holds F,G are_fiberwise_equipotent iff ex P be Permutation of dom F st F = G*P; theorem :: RFINSEQ:7 for F,G be Function st F,G are_fiberwise_equipotent holds Card (dom F) = Card (dom G); definition let F be finite Function, A be set; cluster F"A -> finite; end; canceled; theorem :: RFINSEQ:9 for F,G be finite Function holds F,G are_fiberwise_equipotent iff for X be set holds card (F"X) = card (G"X); theorem :: RFINSEQ:10 for F,G be finite Function st F,G are_fiberwise_equipotent holds card (dom F) = card (dom G); theorem :: RFINSEQ:11 for D be non empty set, F,G be finite Function st rng F c= D & rng G c= D holds F,G are_fiberwise_equipotent iff for d be Element of D holds card (F"{d}) = card (G"{d}); canceled; theorem :: RFINSEQ:13 for f,g be FinSequence holds f,g are_fiberwise_equipotent iff for X be set holds card (f"X) = card (g"X); theorem :: RFINSEQ:14 for f,g,h be FinSequence holds f,g are_fiberwise_equipotent iff f^h, g^h are_fiberwise_equipotent; theorem :: RFINSEQ:15 for f,g be FinSequence holds f^g, g^f are_fiberwise_equipotent; theorem :: RFINSEQ:16 for f,g be FinSequence st f,g are_fiberwise_equipotent holds len f = len g & dom f = dom g; theorem :: RFINSEQ:17 for f,g be FinSequence holds f,g are_fiberwise_equipotent iff ex P be Permutation of dom g st f = g*P; definition let F be Function, X be finite set; cluster F|X -> finite Function-like; end; theorem :: RFINSEQ:18 for F be Function, X be finite set ex f be FinSequence st F|X, f are_fiberwise_equipotent; definition let D be set, f be FinSequence of D, n be Nat; func f /^ n -> FinSequence of D means :: RFINSEQ:def 2 len it = len f - n & for m be Nat st m in dom it holds it.m = f.(m+n) if n<=len f otherwise it = <*>D; end; theorem :: RFINSEQ:19 for D be non empty set, f be FinSequence of D, n,m be Nat holds n in dom f & m in Seg n implies (f|n).m = f.m & m in dom f; theorem :: RFINSEQ:20 for D be non empty set, f be FinSequence of D, n be Nat, x be set st len f = n+1 & x = f.(n+1) holds f = (f|n) ^ <*x*>; theorem :: RFINSEQ:21 for D be non empty set, f be FinSequence of D, n be Nat holds (f|n)^(f/^n) = f; theorem :: RFINSEQ:22 for R1,R2 be FinSequence of REAL st R1,R2 are_fiberwise_equipotent holds Sum R1 = Sum R2; definition let R be FinSequence of REAL; func MIM(R) -> FinSequence of REAL means :: RFINSEQ:def 3 len it = len R & it.(len it) = R.(len R) & for n be Nat st 1 <= n & n <= len it - 1 holds it.n = (R.n) - (R.(n+1)); end; theorem :: RFINSEQ:23 for R be FinSequence of REAL, r be Real, n be Nat st len R = n+2 & R.(n+1) = r holds MIM(R|(n+1)) = MIM(R)|n ^ <* r *>; theorem :: RFINSEQ:24 for R be FinSequence of REAL, r,s be Real, n be Nat st len R = n+2 & R.(n+1) = r & R.(n+2) = s holds MIM(R) = MIM(R)|n ^ <* r-s,s *>; theorem :: RFINSEQ:25 MIM( <*>REAL ) = <*>REAL; theorem :: RFINSEQ:26 for r be Real holds MIM(<*r*>) = <*r*>; theorem :: RFINSEQ:27 for r,s be Real holds MIM(<*r,s*>) = <*r-s,s*>; theorem :: RFINSEQ:28 for R be FinSequence of REAL, n be Nat holds MIM(R) /^ n = MIM(R/^n); theorem :: RFINSEQ:29 for R be FinSequence of REAL st len R <> 0 holds Sum MIM(R) = R.1; theorem :: RFINSEQ:30 for R be FinSequence of REAL, n be Nat st 1<=n & n<len R holds Sum MIM(R/^n) = R.(n+1); definition let IT be FinSequence of REAL; attr IT is non-increasing means :: RFINSEQ:def 4 for n be Nat st n in dom IT & n+1 in dom IT holds IT.n >= IT.(n+1); end; definition cluster non-increasing FinSequence of REAL; end; theorem :: RFINSEQ:31 for R be FinSequence of REAL st len R = 0 or len R = 1 holds R is non-increasing; theorem :: RFINSEQ:32 for R be FinSequence of REAL holds R is non-increasing iff for n,m be Nat st n in dom R & m in dom R & n<m holds R.n>=R.m; theorem :: RFINSEQ:33 for R be non-increasing FinSequence of REAL, n be Nat holds R|n is non-increasing FinSequence of REAL; theorem :: RFINSEQ:34 for R be non-increasing FinSequence of REAL, n be Nat holds R /^ n is non-increasing FinSequence of REAL; theorem :: RFINSEQ:35 for R be FinSequence of REAL ex R1 be non-increasing FinSequence of REAL st R,R1 are_fiberwise_equipotent; theorem :: RFINSEQ:36 for R1,R2 be non-increasing FinSequence of REAL st R1,R2 are_fiberwise_equipotent holds R1 = R2; theorem :: RFINSEQ:37 for R be FinSequence of REAL, r,s be Real st r <> 0 holds R"{s/r} = (r*R)"{s} ; theorem :: RFINSEQ:38 for R be FinSequence of REAL holds (0*R)"{0} = dom R;