Journal of Formalized Mathematics
Volume 1, 1989
University of Bialystok
Copyright (c) 1989
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Jaroslaw Kotowicz
- Received July 4, 1989
- MML identifier: SEQ_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary FUNCT_1, ARYTM, RELAT_1, PARTFUN1, BOOLE, ARYTM_1, ABSVALUE,
ARYTM_3, SEQ_1, ZF_REFLE;
notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
NAT_1, REAL_1, RELAT_1, FUNCT_1, ABSVALUE, RELSET_1, PARTFUN1, FUNCT_2;
constructors REAL_1, ABSVALUE, FUNCT_2, PARTFUN1, MEMBERED, XBOOLE_0;
clusters XREAL_0, RELSET_1, FUNCT_2, MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2;
requirements NUMERALS, SUBSET, BOOLE, ARITHM;
begin
reserve f for Function;
reserve n,k,n1 for Nat;
reserve r,p for real number;
reserve x,y,z for set;
definition
mode Real_Sequence is Function of NAT,REAL;
end;
reserve seq,seq1,seq2,seq3,seq',seq1' for Real_Sequence;
canceled 2;
theorem :: SEQ_1:3
f is Real_Sequence iff (dom f=NAT & for x st x in NAT holds f.x is real);
theorem :: SEQ_1:4
f is Real_Sequence iff (dom f=NAT & for n holds f.n is real);
definition let f be Relation;
attr f is real-yielding means
:: SEQ_1:def 1
rng f c= REAL;
end;
definition let C be set;
cluster -> real-yielding PartFunc of C, REAL;
end;
definition
cluster real-yielding Function;
end;
definition let f be real-yielding Function, x be set;
cluster f.x -> real;
end;
definition let f be real-yielding Function, x be set;
redefine func f.x -> Real;
end;
definition let C be set, f be PartFunc of C, REAL, x be set;
redefine func f.x -> Real;
end;
definition
let f be PartFunc of NAT, REAL;
redefine attr f is non-empty means
:: SEQ_1:def 2
rng f c= REAL \ {0};
synonym f is being_not_0;
synonym f is_not_0;
end;
canceled;
theorem :: SEQ_1:6
seq is being_not_0 iff for x st x in NAT holds seq.x<>0;
theorem :: SEQ_1:7
seq is being_not_0 iff for n holds seq.n<>0;
theorem :: SEQ_1:8
for seq,seq1 st (for x st x in NAT holds seq.x=seq1.x) holds seq=seq1;
canceled;
theorem :: SEQ_1:10
for r ex seq st rng seq={r};
scheme ExRealSeq{F(set)->real number}:
ex seq st for n holds seq.n=F(n);
::
:: BASIC OPERATIONS ON SEQUENCES
::
scheme PartFuncExD'{D,C()->non empty set, P[set,set]}:
ex f being PartFunc of D(),C() st
(for d be Element of D() holds
d in dom f iff (ex c be Element of C() st P[d,c])) &
(for d be Element of D() st d in dom f holds P[d,f.d]);
scheme LambdaPFD'{D,C()->non empty set, F(set)->Element of C(), P[set]}:
ex f being PartFunc of D(),C() st
(for d be Element of D() holds d in dom f iff P[d]) &
(for d be Element of D() st d in dom f holds f.d = F(d));
scheme UnPartFuncD'{C,D,X() -> set, F(set)->set}:
for f,g being PartFunc of C(),D() st
(dom f=X() & for c be Element of C() st c in dom f holds f.c = F(c)) &
(dom g=X() & for c be Element of C() st c in dom g holds g.c = F(c))
holds f = g;
definition let C be :::non empty
set; let f1,f2 be PartFunc of C,REAL;
func f1+f2 -> PartFunc of C,REAL means
:: SEQ_1:def 3
dom it = dom f1 /\ dom f2 &
for c being Element of C st c in dom it holds it.c = f1.c + f2.c;
commutativity;
func f1-f2 -> PartFunc of C,REAL means
:: SEQ_1:def 4
dom it = dom f1 /\ dom f2 &
for c being Element of C st c in dom it holds it.c = f1.c - f2.c;
func f1(#)f2 -> PartFunc of C,REAL means
:: SEQ_1:def 5
dom it = dom f1 /\ dom f2 &
for c being Element of C st c in dom it holds it.c = f1.c * f2.c;
commutativity;
end;
theorem :: SEQ_1:11
seq = seq1 + seq2 iff for n holds seq.n =seq1.n + seq2.n;
theorem :: SEQ_1:12
seq = seq1 (#) seq2 iff for n holds seq.n =seq1.n * seq2.n;
definition
let seq1,seq2;
cluster seq1+seq2 -> total;
cluster seq1(#)seq2 -> total;
end;
definition let C be set; let f be PartFunc of C,REAL;
let r be real number;
func r(#)f -> PartFunc of C,REAL means
:: SEQ_1:def 6
dom it = dom f & for c being Element of C st c in dom it holds it.c = r * f.c;
end;
definition
let r,seq;
cluster r(#)seq -> total;
end;
theorem :: SEQ_1:13
seq1 = r(#)seq2 iff for n holds seq1.n=r*seq2.n;
definition let C be set; let f be PartFunc of C,REAL;
func -f ->PartFunc of C,REAL means
:: SEQ_1:def 7
dom it = dom f & for c being Element of C st c in dom it holds it.c = -(f.c);
end;
definition
let seq;
cluster - seq -> total;
end;
theorem :: SEQ_1:14
seq1 = -seq2 iff for n holds seq1.n= -seq2.n;
definition
let seq1,seq2;
cluster seq1-seq2 -> total;
end;
theorem :: SEQ_1:15
seq1 - seq2 = seq1 +- seq2;
definition
let seq;
func seq" -> Real_Sequence means
:: SEQ_1:def 8
for n holds it.n=(seq.n)";
end;
definition
let seq1,seq;
func seq1 /" seq ->Real_Sequence equals
:: SEQ_1:def 9
seq1(#)(seq");
end;
definition let C be set; let f be PartFunc of C,REAL;
func abs f -> PartFunc of C,REAL means
:: SEQ_1:def 10
dom it = dom f & for c being Element of C st c in dom it holds
it.c = abs(f.c);
end;
definition let seq;
cluster abs seq -> total;
end;
theorem :: SEQ_1:16
seq1 = abs seq iff for n holds seq1.n= abs(seq.n);
canceled 3;
theorem :: SEQ_1:20
(seq1+seq2)+seq3=seq1+(seq2+seq3);
canceled;
theorem :: SEQ_1:22
(seq1(#)seq2)(#)seq3=seq1(#)(seq2(#)seq3);
theorem :: SEQ_1:23
(seq1+seq2)(#)seq3=seq1(#)seq3+seq2(#)seq3;
theorem :: SEQ_1:24
seq3(#)(seq1+seq2)=seq3(#)seq1+seq3(#)seq2;
theorem :: SEQ_1:25
-seq=(-1)(#)seq;
theorem :: SEQ_1:26
r(#)(seq1(#)seq2)=r(#)seq1(#)seq2;
theorem :: SEQ_1:27
r(#)(seq1(#)seq2)=seq1(#)(r(#)seq2);
theorem :: SEQ_1:28
(seq1-seq2)(#)seq3=seq1(#)seq3-seq2(#)seq3;
theorem :: SEQ_1:29
seq3(#)seq1-seq3(#)seq2=seq3(#)(seq1-seq2);
theorem :: SEQ_1:30
r(#)(seq1+seq2)=r(#)seq1+r(#)seq2;
theorem :: SEQ_1:31
(r*p)(#)seq=r(#)(p(#)seq);
theorem :: SEQ_1:32
r(#)(seq1-seq2)=r(#)seq1-r(#)seq2;
theorem :: SEQ_1:33
r(#)(seq1/"seq)=(r(#)seq1)/"seq;
theorem :: SEQ_1:34
seq1-(seq2+seq3)=seq1-seq2-seq3;
theorem :: SEQ_1:35
1(#)seq=seq;
theorem :: SEQ_1:36
-(-seq)=seq;
theorem :: SEQ_1:37
seq1-(-seq2)=seq1+seq2;
theorem :: SEQ_1:38
seq1-(seq2-seq3)=seq1-seq2+seq3;
theorem :: SEQ_1:39
seq1+(seq2-seq3)=seq1+seq2-seq3;
theorem :: SEQ_1:40
(-seq1)(#)seq2=-(seq1(#)seq2) & seq1(#)(-seq2)=-(seq1(#)seq2);
theorem :: SEQ_1:41
seq is being_not_0 implies seq" is being_not_0;
theorem :: SEQ_1:42
seq""=seq;
theorem :: SEQ_1:43
seq is being_not_0 & seq1 is being_not_0 iff seq(#)seq1 is being_not_0;
theorem :: SEQ_1:44
seq"(#)seq1"=(seq(#)seq1)";
theorem :: SEQ_1:45
seq is being_not_0 implies (seq1/"seq)(#)seq=seq1;
theorem :: SEQ_1:46
(seq'/"seq)(#)(seq1'/"seq1)=(seq'(#)seq1')/"(seq(#)seq1);
theorem :: SEQ_1:47
seq is being_not_0 & seq1 is being_not_0 implies seq/"seq1 is being_not_0;
theorem :: SEQ_1:48
(seq/"seq1)"=seq1/"seq;
theorem :: SEQ_1:49
seq2(#)(seq1/"seq)=(seq2(#)seq1)/"seq;
theorem :: SEQ_1:50
seq2/"(seq/"seq1)=(seq2(#)seq1)/"seq;
theorem :: SEQ_1:51
seq1 is being_not_0 implies
seq2/"seq=(seq2(#)seq1)/"(seq(#)seq1);
theorem :: SEQ_1:52
r<>0 & seq is being_not_0 implies r(#)seq is being_not_0;
theorem :: SEQ_1:53
seq is being_not_0 implies -seq is being_not_0;
theorem :: SEQ_1:54
(r(#)seq)"=r"(#)seq";
theorem :: SEQ_1:55
(-seq)"=(-1)(#)seq";
theorem :: SEQ_1:56
-seq1/"seq=(-seq1)/"seq & seq1/"(-seq)=-seq1/"seq;
theorem :: SEQ_1:57
seq1/"seq + seq1'/"seq=(seq1+seq1')/"seq &
seq1/"seq - seq1'/"seq=(seq1-seq1')/"seq;
theorem :: SEQ_1:58
seq is being_not_0 & seq' is being_not_0 implies
(seq1/"seq + seq1'/"seq'=(seq1(#)seq'+seq1'(#)seq)/"(seq(#)seq')) &
(seq1/"seq - seq1'/"seq'=(seq1(#)seq'-seq1'(#)seq)/"(seq(#)seq'));
theorem :: SEQ_1:59
(seq1'/"seq)/"(seq'/"seq1)=(seq1'(#)seq1)/"(seq(#)seq');
theorem :: SEQ_1:60
abs(seq(#)seq')=abs(seq)(#)abs(seq');
theorem :: SEQ_1:61
seq is being_not_0 implies abs(seq) is being_not_0;
theorem :: SEQ_1:62
abs(seq)"=abs(seq");
theorem :: SEQ_1:63
abs(seq'/"seq)=abs(seq')/"abs(seq);
theorem :: SEQ_1:64
abs(r(#)seq)=abs(r)(#)abs(seq);
Back to top