Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec,
and
- Yatsuka Nakamura
- Received January 21, 1999
- MML identifier: SPRECT_4
- [
Mizar article,
MML identifier index
]
environ
vocabulary COMPTS_1, PRE_TOPC, SPPOL_2, EUCLID, TOPREAL1, BOOLE, FINSEQ_4,
JORDAN3, JORDAN5C, FINSEQ_1, GROUP_2, RELAT_1, FUNCT_1, ARYTM_1,
SPRECT_2, SEQM_3, GOBOARD5, PSCOMP_1, GOBOARD9, SPRECT_1, GOBOARD2,
TREES_1, MATRIX_1, ARYTM_3, TOPS_1, MCART_1, TOPREAL4, SPPOL_1, FINSEQ_5,
FINSEQ_6;
notation TARSKI, XBOOLE_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, FINSEQ_1,
FINSEQ_4, BINARITH, MATRIX_1, STRUCT_0, PRE_TOPC, TOPS_1, COMPTS_1,
EUCLID, TOPREAL1, TOPREAL4, FINSEQ_5, FINSEQ_6, GOBOARD1, GOBOARD2,
SPPOL_1, SPPOL_2, GOBOARD5, GOBOARD9, JORDAN3, PSCOMP_1, JORDAN5C,
SPRECT_1, SPRECT_2;
constructors SPRECT_2, GOBOARD9, FINSEQ_4, JORDAN5C, TOPS_2, TOPMETR,
BINARITH, COMPTS_1, TOPS_1, SPRECT_1, TOPREAL4, GOBOARD2, SPPOL_1,
PSCOMP_1, JORDAN3, REAL_1, TOPREAL2, MATRIX_2, REALSET1, WAYBEL_3;
clusters RELSET_1, SPRECT_1, SPPOL_2, GOBOARD2, FINSEQ_6, BORSUK_2, SPRECT_3,
GOBOARD9, REVROT_1, ARYTM_3, PRE_TOPC, WAYBEL_3, MEMBERED;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin
reserve i,j,l for Nat;
definition let T be being_T2 (non empty TopSpace);
cluster compact -> closed Subset of T;
end;
theorem :: SPRECT_4:1
for f being S-Sequence_in_R2, Q being closed Subset of TOP-REAL 2
st L~f meets Q & not f/.1 in Q
holds L~R_Cut(f,First_Point(L~f,f/.1,f/.len f,Q)) /\ Q =
{ First_Point(L~f,f/.1,f/.len f,Q) };
theorem :: SPRECT_4:2
for f being non empty FinSequence of TOP-REAL 2,
p being Point of TOP-REAL 2 st f is_S-Seq & p = f/.len f holds
L~L_Cut (f,p) = {};
canceled;
theorem :: SPRECT_4:4
for f being S-Sequence_in_R2, p being Point of TOP-REAL 2, j st
1 <=j & j < len f & p in L~mid(f,j,len f)
holds LE f/.j, p, L~f, f/.1, f/.len f;
theorem :: SPRECT_4:5
for f being S-Sequence_in_R2, p,q being Point of TOP-REAL 2, j st
1 <=j & j < len f & p in LSeg(f,j) & q in LSeg(p,f/.(j+1))
holds LE p, q, L~f, f/.1, f/.len f;
theorem :: SPRECT_4:6
for f being S-Sequence_in_R2, Q being closed Subset of TOP-REAL 2
st L~f meets Q & not f/.len f in Q
holds L~L_Cut(f,Last_Point(L~f,f/.1,f/.len f,Q)) /\ Q =
{ Last_Point(L~f,f/.1,f/.len f,Q) };
reserve q for Point of TOP-REAL 2;
theorem :: SPRECT_4:7
for f being non constant standard special_circular_sequence
holds LeftComp f <> RightComp f;
Back to top