environ vocabulary COMPTS_1, PRE_TOPC, SPPOL_2, EUCLID, TOPREAL1, BOOLE, FINSEQ_4, JORDAN3, JORDAN5C, FINSEQ_1, GROUP_2, RELAT_1, FUNCT_1, ARYTM_1, SPRECT_2, SEQM_3, GOBOARD5, PSCOMP_1, GOBOARD9, SPRECT_1, GOBOARD2, TREES_1, MATRIX_1, ARYTM_3, TOPS_1, MCART_1, TOPREAL4, SPPOL_1, FINSEQ_5, FINSEQ_6; notation TARSKI, XBOOLE_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, FINSEQ_1, FINSEQ_4, BINARITH, MATRIX_1, STRUCT_0, PRE_TOPC, TOPS_1, COMPTS_1, EUCLID, TOPREAL1, TOPREAL4, FINSEQ_5, FINSEQ_6, GOBOARD1, GOBOARD2, SPPOL_1, SPPOL_2, GOBOARD5, GOBOARD9, JORDAN3, PSCOMP_1, JORDAN5C, SPRECT_1, SPRECT_2; constructors SPRECT_2, GOBOARD9, FINSEQ_4, JORDAN5C, TOPS_2, TOPMETR, BINARITH, COMPTS_1, TOPS_1, SPRECT_1, TOPREAL4, GOBOARD2, SPPOL_1, PSCOMP_1, JORDAN3, REAL_1, TOPREAL2, MATRIX_2, REALSET1, WAYBEL_3; clusters RELSET_1, SPRECT_1, SPPOL_2, GOBOARD2, FINSEQ_6, BORSUK_2, SPRECT_3, GOBOARD9, REVROT_1, ARYTM_3, PRE_TOPC, WAYBEL_3, MEMBERED; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve i,j,l for Nat; definition let T be being_T2 (non empty TopSpace); cluster compact -> closed Subset of T; end; theorem :: SPRECT_4:1 for f being S-Sequence_in_R2, Q being closed Subset of TOP-REAL 2 st L~f meets Q & not f/.1 in Q holds L~R_Cut(f,First_Point(L~f,f/.1,f/.len f,Q)) /\ Q = { First_Point(L~f,f/.1,f/.len f,Q) }; theorem :: SPRECT_4:2 for f being non empty FinSequence of TOP-REAL 2, p being Point of TOP-REAL 2 st f is_S-Seq & p = f/.len f holds L~L_Cut (f,p) = {}; canceled; theorem :: SPRECT_4:4 for f being S-Sequence_in_R2, p being Point of TOP-REAL 2, j st 1 <=j & j < len f & p in L~mid(f,j,len f) holds LE f/.j, p, L~f, f/.1, f/.len f; theorem :: SPRECT_4:5 for f being S-Sequence_in_R2, p,q being Point of TOP-REAL 2, j st 1 <=j & j < len f & p in LSeg(f,j) & q in LSeg(p,f/.(j+1)) holds LE p, q, L~f, f/.1, f/.len f; theorem :: SPRECT_4:6 for f being S-Sequence_in_R2, Q being closed Subset of TOP-REAL 2 st L~f meets Q & not f/.len f in Q holds L~L_Cut(f,Last_Point(L~f,f/.1,f/.len f,Q)) /\ Q = { Last_Point(L~f,f/.1,f/.len f,Q) }; reserve q for Point of TOP-REAL 2; theorem :: SPRECT_4:7 for f being non constant standard special_circular_sequence holds LeftComp f <> RightComp f;