Journal of Formalized Mathematics
Volume 7, 1995
University of Bialystok
Copyright (c) 1995
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec
- Received October 29, 1995
- MML identifier: GOBOARD9
- [
Mizar article,
MML identifier index
]
environ
vocabulary SEQM_3, GOBOARD5, PRE_TOPC, EUCLID, GOBOARD1, ARYTM_1, CONNSP_1,
BOOLE, RELAT_1, SUBSET_1, RELAT_2, TOPREAL1, JORDAN1, FINSEQ_1, FINSEQ_5,
FUNCT_1, MCART_1, GOBOARD2, CARD_1, MATRIX_1, ABSVALUE, FINSEQ_6, ARYTM,
TREES_1, TOPS_1, ARYTM_3, GOBOARD9, FINSEQ_4, ORDINAL2;
notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, ORDINAL2, XCMPLX_0, XREAL_0,
REAL_1, NAT_1, ABSVALUE, BINARITH, FUNCT_1, FINSEQ_1, FINSEQ_4, MATRIX_1,
CARD_1, STRUCT_0, PRE_TOPC, TOPS_1, CONNSP_1, EUCLID, TOPREAL1, GOBOARD1,
GOBOARD2, JORDAN1, FINSEQ_5, FINSEQ_6, GOBOARD5;
constructors SEQM_3, REAL_1, ABSVALUE, BINARITH, TOPS_1, CONNSP_1, GOBOARD2,
JORDAN1, FINSEQ_5, GOBOARD5, FINSEQ_4, INT_1, MEMBERED;
clusters STRUCT_0, GOBOARD5, RELSET_1, PRE_TOPC, GOBOARD2, FINSEQ_6, EUCLID,
FINSEQ_1, TOPREAL1, INT_1, XREAL_0, MEMBERED, ARYTM_3;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin
reserve f for non constant standard special_circular_sequence,
i,j,k,i1,i2,j1,j2 for Nat,
r,s,r1,s1,r2,s2 for Real,
a,b for natural number,
p,q for Point of TOP-REAL 2,
G for Go-board;
theorem :: GOBOARD9:1
a -' a = 0;
theorem :: GOBOARD9:2
a -' b <= a;
theorem :: GOBOARD9:3
for GX being non empty TopSpace, A1,A2,B being Subset of GX
st A1 is_a_component_of B & A2 is_a_component_of B
holds A1 = A2 or A1 misses A2;
theorem :: GOBOARD9:4
for GX being non empty TopSpace,
A,B being non empty Subset of GX,
AA being Subset of GX|B st A = AA holds GX|A = GX|B|AA;
theorem :: GOBOARD9:5
for GX being non empty TopSpace,
A being non empty Subset of GX,
B being non empty Subset of GX
st A c= B & A is connected
ex C being Subset of GX st C is_a_component_of B & A c= C;
theorem :: GOBOARD9:6
for GX being non empty TopSpace, A,C,D being Subset of GX,
B being Subset of GX st B is connected & C is_a_component_of D
& A c= C & A meets B & B c= D
holds B c= C;
theorem :: GOBOARD9:7
LSeg(p,q) is convex;
theorem :: GOBOARD9:8
LSeg(p,q) is connected;
definition
cluster convex non empty Subset of TOP-REAL 2;
end;
theorem :: GOBOARD9:9
for P,Q being convex Subset of TOP-REAL 2 holds P /\ Q is convex;
theorem :: GOBOARD9:10
for f being FinSequence of TOP-REAL 2
holds Rev X_axis f = X_axis Rev f;
theorem :: GOBOARD9:11
for f being FinSequence of TOP-REAL 2
holds Rev Y_axis f = Y_axis Rev f;
definition
cluster non constant FinSequence;
end;
definition let f be non constant FinSequence;
cluster Rev f -> non constant;
end;
definition let f be standard special_circular_sequence;
redefine func Rev f -> standard special_circular_sequence;
end;
theorem :: GOBOARD9:12
i >= 1 & j >= 1 & i+j = len f implies left_cell(f,i) = right_cell(Rev f,j);
theorem :: GOBOARD9:13
i >= 1 & j >= 1 & i+j = len f implies left_cell(Rev f,i) = right_cell(f,j);
theorem :: GOBOARD9:14
1 <= k & k+1 <= len f implies
ex i,j st i <= len GoB f & j <=
width GoB f & cell(GoB f,i,j) = left_cell(f,k);
theorem :: GOBOARD9:15
j <= width G implies Int h_strip(G,j) is convex;
theorem :: GOBOARD9:16
i <= len G implies Int v_strip(G,i) is convex;
theorem :: GOBOARD9:17
i <= len G & j <= width G implies Int cell(G,i,j) <> {};
theorem :: GOBOARD9:18
1 <= k & k+1 <= len f implies Int left_cell(f,k) <> {};
theorem :: GOBOARD9:19
1 <= k & k+1 <= len f implies Int right_cell(f,k) <> {};
theorem :: GOBOARD9:20
i <= len G & j <= width G implies Int cell(G,i,j) is convex;
theorem :: GOBOARD9:21
i <= len G & j <= width G implies Int cell(G,i,j) is connected;
theorem :: GOBOARD9:22
1 <= k & k+1 <= len f implies Int left_cell(f,k) is connected;
theorem :: GOBOARD9:23
1 <= k & k+1 <= len f implies Int right_cell(f,k) is connected;
definition let f;
func LeftComp f -> Subset of TOP-REAL 2 means
:: GOBOARD9:def 1
it is_a_component_of (L~f)` & Int left_cell(f,1) c= it;
func RightComp f -> Subset of TOP-REAL 2 means
:: GOBOARD9:def 2
it is_a_component_of (L~f)` & Int right_cell(f,1) c= it;
end;
theorem :: GOBOARD9:24
for k st 1 <= k & k+1 <= len f holds Int left_cell(f,k) c= LeftComp f;
theorem :: GOBOARD9:25
GoB Rev f = GoB f;
theorem :: GOBOARD9:26
RightComp f = LeftComp Rev f;
theorem :: GOBOARD9:27
RightComp Rev f = LeftComp f;
theorem :: GOBOARD9:28
for k st 1 <= k & k+1 <= len f holds Int right_cell(f,k) c= RightComp f;
Back to top