environ vocabulary FINSEQ_1, MATRIX_1, RELAT_1, FINSEQ_4, BOOLE, FUNCT_1, GOBOARD1, ABSVALUE, ARYTM_1, RFINSEQ, PRE_TOPC, EUCLID, GOBOARD5, TOPREAL1, GOBOARD2, TREES_1, MCART_1, SEQM_3, COMPTS_1, SPPOL_1, PSCOMP_1, ARYTM_3, GROUP_1, INCSP_1, JORDAN8; notation TARSKI, XBOOLE_0, ZFMISC_1, XREAL_0, REAL_1, NAT_1, STRUCT_0, BINARITH, ABSVALUE, RELAT_1, FUNCT_1, CARD_4, FINSEQ_1, FINSEQ_4, RFINSEQ, MATRIX_1, PRE_TOPC, COMPTS_1, EUCLID, TOPREAL1, GOBOARD1, GOBOARD2, SPPOL_1, PSCOMP_1, GOBOARD5; constructors REAL_1, ABSVALUE, FINSEQ_4, CARD_4, RFINSEQ, SEQM_3, BINARITH, COMPTS_1, GOBOARD2, SPPOL_1, PSCOMP_1, GOBOARD5; clusters STRUCT_0, RELAT_1, RELSET_1, EUCLID, GOBOARD2, FINSEQ_5, SPRECT_1, NAT_1, MEMBERED; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve i,i1,i2,i',i1',j,j1,j2,j',j1',k,l,m,n for Nat; reserve r,s,r',s' for Real; reserve D for set, f for FinSequence of D, G for Matrix of D; theorem :: JORDAN8:1 len f >= 2 implies f|2 = <*f/.1,f/.2*>; theorem :: JORDAN8:2 k+1 <= len f implies f|(k+1) = (f|k)^<*f/.(k+1)*>; theorem :: JORDAN8:3 <*>D is_sequence_on G; canceled; theorem :: JORDAN8:5 for D being non empty set, f being FinSequence of D, G being Matrix of D st f is_sequence_on G holds f/^m is_sequence_on G; theorem :: JORDAN8:6 1 <= k & k+1 <= len f & f is_sequence_on G implies ex i1,j1,i2,j2 being Nat st [i1,j1] in Indices G & f/.k = G*(i1,j1) & [i2,j2] in Indices G & f/.(k+1) = G*(i2,j2) & (i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1); reserve G for Go-board, p for Point of TOP-REAL 2; theorem :: JORDAN8:7 for f being non empty FinSequence of TOP-REAL 2 st f is_sequence_on G holds f is standard special; theorem :: JORDAN8:8 for f being non empty FinSequence of TOP-REAL 2 st len f >= 2 & f is_sequence_on G holds f is non constant; theorem :: JORDAN8:9 for f being non empty FinSequence of TOP-REAL 2 st f is_sequence_on G & (ex i,j st [i,j] in Indices G & p = G*(i,j)) & (for i1,j1,i2,j2 st [i1,j1] in Indices G & [i2,j2] in Indices G & f/.len f = G*(i1,j1) & p = G*(i2,j2) holds abs(i2-i1)+abs(j2-j1) = 1) holds f^<*p*> is_sequence_on G; theorem :: JORDAN8:10 i+k < len G & 1 <= j & j < width G & cell(G,i,j) meets cell(G,i+k,j) implies k <= 1; theorem :: JORDAN8:11 for C being non empty compact Subset of TOP-REAL 2 holds C is vertical iff E-bound C <= W-bound C; theorem :: JORDAN8:12 for C being non empty compact Subset of TOP-REAL 2 holds C is horizontal iff N-bound C <= S-bound C; definition let C be Subset of TOP-REAL 2, n be Nat; func Gauge (C,n) -> Matrix of TOP-REAL 2 means :: JORDAN8:def 1 len it = 2|^n + 3 & len it = width it & for i,j st [i,j] in Indices it holds it*(i,j) = |[(W-bound C)+(((E-bound C)-(W-bound C))/(2|^n))*(i-2), (S-bound C)+(((N-bound C)-(S-bound C))/(2|^n))*(j-2)]|; end; definition let C be non empty Subset of TOP-REAL 2, n be Nat; cluster Gauge (C,n) -> non empty-yielding X_equal-in-line Y_equal-in-column; end; definition let C be compact non vertical non horizontal non empty Subset of TOP-REAL 2, n; cluster Gauge (C,n) -> Y_increasing-in-line X_increasing-in-column; end; reserve T for non empty Subset of TOP-REAL 2; theorem :: JORDAN8:13 len Gauge(T,n) >= 4; theorem :: JORDAN8:14 1 <= j & j <= len Gauge(T,n) implies Gauge(T,n)*(2,j)`1 = W-bound T; theorem :: JORDAN8:15 1 <= j & j <= len Gauge(T,n) implies Gauge(T,n)*(len Gauge(T,n)-'1,j)`1 = E-bound T; theorem :: JORDAN8:16 1 <= i & i <= len Gauge(T,n) implies Gauge(T,n)*(i,2)`2 = S-bound T; theorem :: JORDAN8:17 1 <= i & i <= len Gauge(T,n) implies Gauge(T,n)*(i,len Gauge(T,n)-'1)`2 = N-bound T; reserve C for compact non vertical non horizontal non empty Subset of TOP-REAL 2; theorem :: JORDAN8:18 i <= len Gauge(C,n) implies cell(Gauge(C,n),i,len Gauge(C,n)) misses C; theorem :: JORDAN8:19 j <= len Gauge(C,n) implies cell(Gauge(C,n),len Gauge(C,n),j) misses C; theorem :: JORDAN8:20 i <= len Gauge(C,n) implies cell(Gauge(C,n),i,0) misses C; theorem :: JORDAN8:21 j <= len Gauge(C,n) implies cell(Gauge(C,n),0,j) misses C;