environ vocabulary EUCLID, COMPTS_1, PSCOMP_1, ORDINAL2, FUNCT_5, REALSET1, FINSEQ_1, SPRECT_2, RELAT_1, FINSEQ_5, FINSEQ_4, ARYTM_1, PRE_TOPC, TOPREAL1, JORDAN3, BOOLE, GROUP_2, FUNCT_1, SPPOL_1, FINSEQ_6, JORDAN9, GRAPH_2, TOPREAL2, CARD_1, RELAT_2, MCART_1, GOBOARD1, JORDAN8, MATRIX_1, TREES_1, JORDAN1E; notation TARSKI, XBOOLE_0, ENUMSET1, XCMPLX_0, XREAL_0, NAT_1, FUNCT_1, FINSEQ_1, FINSEQ_4, FINSEQ_5, MATRIX_1, FINSEQ_6, STRUCT_0, GRAPH_2, PRE_TOPC, TOPREAL2, CARD_1, BINARITH, CONNSP_1, COMPTS_1, EUCLID, PSCOMP_1, SPRECT_2, GOBOARD1, TOPREAL1, SPPOL_1, JORDAN3, JORDAN8, JORDAN9; constructors JORDAN8, REALSET1, REAL_1, CARD_4, PSCOMP_1, BINARITH, CONNSP_1, JORDAN9, FINSEQ_4, GOBRD13, JORDAN3, TOPREAL2, FINSEQ_5, ENUMSET1, FINSOP_1, GRAPH_2, PARTFUN1; clusters XREAL_0, SPRECT_1, TOPREAL6, JORDAN8, REVROT_1, RELSET_1, ARYTM_3, PSCOMP_1, SPRECT_3, FINSEQ_5, SPPOL_2, JORDAN1A, GOBOARD4, JORDAN1B, MEMBERED; requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM; begin :: Preliminaries reserve n for Nat; theorem :: JORDAN1E:1 for X be non empty Subset of TOP-REAL 2 for Y be compact Subset of TOP-REAL 2 st X c= Y holds N-bound X <= N-bound Y; theorem :: JORDAN1E:2 for X be non empty Subset of TOP-REAL 2 for Y be compact Subset of TOP-REAL 2 st X c= Y holds E-bound X <= E-bound Y; theorem :: JORDAN1E:3 for X be non empty Subset of TOP-REAL 2 for Y be compact Subset of TOP-REAL 2 st X c= Y holds S-bound X >= S-bound Y; theorem :: JORDAN1E:4 for X be non empty Subset of TOP-REAL 2 for Y be compact Subset of TOP-REAL 2 st X c= Y holds W-bound X >= W-bound Y; theorem :: JORDAN1E:5 for f,g be FinSequence of TOP-REAL 2 st f is_in_the_area_of g for p be Element of TOP-REAL 2 st p in rng f holds f-:p is_in_the_area_of g; theorem :: JORDAN1E:6 for f,g be FinSequence of TOP-REAL 2 st f is_in_the_area_of g for p be Element of TOP-REAL 2 st p in rng f holds f:-p is_in_the_area_of g; theorem :: JORDAN1E:7 for f be non empty FinSequence of TOP-REAL 2 for p be Point of TOP-REAL 2 st p in L~f holds L_Cut (f,p) <> {}; theorem :: JORDAN1E:8 for f be non empty FinSequence of TOP-REAL 2 for p be Point of TOP-REAL 2 st p in L~f & len R_Cut(f,p) >= 2 holds f.1 in L~R_Cut(f,p); theorem :: JORDAN1E:9 for f be non empty FinSequence of TOP-REAL 2 st f is_S-Seq for p be Point of TOP-REAL 2 st p in L~f holds not f.1 in L~mid(f,Index(p,f)+1,len f); theorem :: JORDAN1E:10 for i,j,m,n be Nat holds i+j = m+n & i <= m & j <= n implies i = m; theorem :: JORDAN1E:11 for f be non empty FinSequence of TOP-REAL 2 st f is_S-Seq for p be Point of TOP-REAL 2 st p in L~f & f.1 in L~L_Cut(f,p) holds f.1 = p; begin :: About Upper and Lower Sequence of a Cage definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; let n be Nat; func Upper_Seq(C,n) -> FinSequence of TOP-REAL 2 equals :: JORDAN1E:def 1 Rotate(Cage(C,n),W-min L~Cage(C,n))-:E-max L~Cage(C,n); end; theorem :: JORDAN1E:12 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds len Upper_Seq(C,n) = (E-max L~Cage(C,n))..Rotate(Cage(C,n),W-min L~Cage(C,n)); definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; let n be Nat; func Lower_Seq(C,n) -> FinSequence of TOP-REAL 2 equals :: JORDAN1E:def 2 Rotate(Cage(C,n),W-min L~Cage(C,n)):-E-max L~Cage(C,n); end; theorem :: JORDAN1E:13 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds len Lower_Seq(C,n) = len Rotate(Cage(C,n),W-min L~Cage(C,n))- (E-max L~Cage(C,n))..Rotate(Cage(C,n),W-min L~Cage(C,n))+1; definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; let n be Nat; cluster Upper_Seq(C,n) -> non empty; cluster Lower_Seq(C,n) -> non empty; end; definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; let n be Nat; cluster Upper_Seq(C,n) -> one-to-one special unfolded s.n.c.; cluster Lower_Seq(C,n) -> one-to-one special unfolded s.n.c.; end; theorem :: JORDAN1E:14 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds len Upper_Seq(C,n) + len Lower_Seq(C,n) = len Cage(C,n)+1; theorem :: JORDAN1E:15 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds Rotate(Cage(C,n),W-min L~Cage(C,n)) = Upper_Seq(C,n) ^' Lower_Seq(C,n); theorem :: JORDAN1E:16 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds L~Cage(C,n) = L~(Upper_Seq(C,n) ^' Lower_Seq(C,n)); theorem :: JORDAN1E:17 for C be compact non vertical non horizontal non empty Subset of TOP-REAL 2 for n be Nat holds L~Cage(C,n) = L~Upper_Seq(C,n) \/ L~Lower_Seq(C,n); theorem :: JORDAN1E:18 for P be Simple_closed_curve holds W-min(P) <> E-min(P); theorem :: JORDAN1E:19 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds len Upper_Seq(C,n) >= 3 & len Lower_Seq(C,n) >= 3; definition let C be compact non vertical non horizontal Subset of TOP-REAL 2; let n be Nat; cluster Upper_Seq(C,n) -> being_S-Seq; cluster Lower_Seq(C,n) -> being_S-Seq; end; theorem :: JORDAN1E:20 for C be compact non vertical non horizontal Subset of TOP-REAL 2 for n be Nat holds L~Upper_Seq(C,n) /\ L~Lower_Seq(C,n) = {W-min L~Cage(C,n),E-max L~Cage(C,n)}; theorem :: JORDAN1E:21 for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds Upper_Seq(C,n) is_in_the_area_of Cage(C,n); theorem :: JORDAN1E:22 for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds Lower_Seq(C,n) is_in_the_area_of Cage(C,n); theorem :: JORDAN1E:23 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds (Cage(C,n)/.2)`2 = N-bound L~Cage(C,n); theorem :: JORDAN1E:24 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for k be Nat st 1 <= k & k+1 <= len Cage(C,n) & Cage(C,n)/.k = E-max L~Cage(C,n) holds (Cage(C,n)/.(k+1))`1 = E-bound L~Cage(C,n); theorem :: JORDAN1E:25 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for k be Nat st 1 <= k & k+1 <= len Cage(C,n) & Cage(C,n)/.k = S-max L~Cage(C,n) holds (Cage(C,n)/.(k+1))`2 = S-bound L~Cage(C,n); theorem :: JORDAN1E:26 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for k be Nat st 1 <= k & k+1 <= len Cage(C,n) & Cage(C,n)/.k = W-min L~Cage(C,n) holds (Cage(C,n)/.(k+1))`1 = W-bound L~Cage(C,n);