Journal of Formalized Mathematics
Volume 13, 2001
University of Bialystok
Copyright (c) 2001
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Robert Milewski
- Received August 8, 2001
- MML identifier: JORDAN1E
- [
Mizar article,
MML identifier index
]
environ
vocabulary EUCLID, COMPTS_1, PSCOMP_1, ORDINAL2, FUNCT_5, REALSET1, FINSEQ_1,
SPRECT_2, RELAT_1, FINSEQ_5, FINSEQ_4, ARYTM_1, PRE_TOPC, TOPREAL1,
JORDAN3, BOOLE, GROUP_2, FUNCT_1, SPPOL_1, FINSEQ_6, JORDAN9, GRAPH_2,
TOPREAL2, CARD_1, RELAT_2, MCART_1, GOBOARD1, JORDAN8, MATRIX_1, TREES_1,
JORDAN1E;
notation TARSKI, XBOOLE_0, ENUMSET1, XCMPLX_0, XREAL_0, NAT_1, FUNCT_1,
FINSEQ_1, FINSEQ_4, FINSEQ_5, MATRIX_1, FINSEQ_6, STRUCT_0, GRAPH_2,
PRE_TOPC, TOPREAL2, CARD_1, BINARITH, CONNSP_1, COMPTS_1, EUCLID,
PSCOMP_1, SPRECT_2, GOBOARD1, TOPREAL1, SPPOL_1, JORDAN3, JORDAN8,
JORDAN9;
constructors JORDAN8, REALSET1, REAL_1, CARD_4, PSCOMP_1, BINARITH, CONNSP_1,
JORDAN9, FINSEQ_4, GOBRD13, JORDAN3, TOPREAL2, FINSEQ_5, ENUMSET1,
FINSOP_1, GRAPH_2, PARTFUN1;
clusters XREAL_0, SPRECT_1, TOPREAL6, JORDAN8, REVROT_1, RELSET_1, ARYTM_3,
PSCOMP_1, SPRECT_3, FINSEQ_5, SPPOL_2, JORDAN1A, GOBOARD4, JORDAN1B,
MEMBERED;
requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM;
begin :: Preliminaries
reserve n for Nat;
theorem :: JORDAN1E:1
for X be non empty Subset of TOP-REAL 2
for Y be compact Subset of TOP-REAL 2 st X c= Y holds
N-bound X <= N-bound Y;
theorem :: JORDAN1E:2
for X be non empty Subset of TOP-REAL 2
for Y be compact Subset of TOP-REAL 2 st X c= Y holds
E-bound X <= E-bound Y;
theorem :: JORDAN1E:3
for X be non empty Subset of TOP-REAL 2
for Y be compact Subset of TOP-REAL 2 st X c= Y holds
S-bound X >= S-bound Y;
theorem :: JORDAN1E:4
for X be non empty Subset of TOP-REAL 2
for Y be compact Subset of TOP-REAL 2 st X c= Y holds
W-bound X >= W-bound Y;
theorem :: JORDAN1E:5
for f,g be FinSequence of TOP-REAL 2 st f is_in_the_area_of g
for p be Element of TOP-REAL 2 st p in rng f holds
f-:p is_in_the_area_of g;
theorem :: JORDAN1E:6
for f,g be FinSequence of TOP-REAL 2 st f is_in_the_area_of g
for p be Element of TOP-REAL 2 st p in rng f holds
f:-p is_in_the_area_of g;
theorem :: JORDAN1E:7
for f be non empty FinSequence of TOP-REAL 2
for p be Point of TOP-REAL 2 st p in L~f holds
L_Cut (f,p) <> {};
theorem :: JORDAN1E:8
for f be non empty FinSequence of TOP-REAL 2
for p be Point of TOP-REAL 2 st p in L~f & len R_Cut(f,p) >= 2 holds
f.1 in L~R_Cut(f,p);
theorem :: JORDAN1E:9
for f be non empty FinSequence of TOP-REAL 2 st f is_S-Seq
for p be Point of TOP-REAL 2
st p in L~f holds not f.1 in L~mid(f,Index(p,f)+1,len f);
theorem :: JORDAN1E:10
for i,j,m,n be Nat holds
i+j = m+n & i <= m & j <= n implies i = m;
theorem :: JORDAN1E:11
for f be non empty FinSequence of TOP-REAL 2 st f is_S-Seq
for p be Point of TOP-REAL 2 st p in L~f & f.1 in L~L_Cut(f,p) holds
f.1 = p;
begin :: About Upper and Lower Sequence of a Cage
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
let n be Nat;
func Upper_Seq(C,n) -> FinSequence of TOP-REAL 2 equals
:: JORDAN1E:def 1
Rotate(Cage(C,n),W-min L~Cage(C,n))-:E-max L~Cage(C,n);
end;
theorem :: JORDAN1E:12
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds len Upper_Seq(C,n) =
(E-max L~Cage(C,n))..Rotate(Cage(C,n),W-min L~Cage(C,n));
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
let n be Nat;
func Lower_Seq(C,n) -> FinSequence of TOP-REAL 2 equals
:: JORDAN1E:def 2
Rotate(Cage(C,n),W-min L~Cage(C,n)):-E-max L~Cage(C,n);
end;
theorem :: JORDAN1E:13
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds len Lower_Seq(C,n) =
len Rotate(Cage(C,n),W-min L~Cage(C,n))-
(E-max L~Cage(C,n))..Rotate(Cage(C,n),W-min L~Cage(C,n))+1;
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
let n be Nat;
cluster Upper_Seq(C,n) -> non empty;
cluster Lower_Seq(C,n) -> non empty;
end;
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
let n be Nat;
cluster Upper_Seq(C,n) -> one-to-one special unfolded s.n.c.;
cluster Lower_Seq(C,n) -> one-to-one special unfolded s.n.c.;
end;
theorem :: JORDAN1E:14
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds
len Upper_Seq(C,n) + len Lower_Seq(C,n) = len Cage(C,n)+1;
theorem :: JORDAN1E:15
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds
Rotate(Cage(C,n),W-min L~Cage(C,n)) = Upper_Seq(C,n) ^' Lower_Seq(C,n);
theorem :: JORDAN1E:16
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds
L~Cage(C,n) = L~(Upper_Seq(C,n) ^' Lower_Seq(C,n));
theorem :: JORDAN1E:17
for C be compact non vertical non horizontal non empty Subset of TOP-REAL
2
for n be Nat holds
L~Cage(C,n) = L~Upper_Seq(C,n) \/ L~Lower_Seq(C,n);
theorem :: JORDAN1E:18
for P be Simple_closed_curve holds W-min(P) <> E-min(P);
theorem :: JORDAN1E:19
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds
len Upper_Seq(C,n) >= 3 & len Lower_Seq(C,n) >= 3;
definition
let C be compact non vertical non horizontal Subset of TOP-REAL 2;
let n be Nat;
cluster Upper_Seq(C,n) -> being_S-Seq;
cluster Lower_Seq(C,n) -> being_S-Seq;
end;
theorem :: JORDAN1E:20
for C be compact non vertical non horizontal Subset of TOP-REAL 2
for n be Nat holds
L~Upper_Seq(C,n) /\ L~Lower_Seq(C,n) =
{W-min L~Cage(C,n),E-max L~Cage(C,n)};
theorem :: JORDAN1E:21
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
Upper_Seq(C,n) is_in_the_area_of Cage(C,n);
theorem :: JORDAN1E:22
for C be compact non vertical non horizontal Subset of TOP-REAL 2 holds
Lower_Seq(C,n) is_in_the_area_of Cage(C,n);
theorem :: JORDAN1E:23
for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
holds (Cage(C,n)/.2)`2 = N-bound L~Cage(C,n);
theorem :: JORDAN1E:24
for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
for k be Nat st 1 <= k & k+1 <= len Cage(C,n) &
Cage(C,n)/.k = E-max L~Cage(C,n) holds
(Cage(C,n)/.(k+1))`1 = E-bound L~Cage(C,n);
theorem :: JORDAN1E:25
for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
for k be Nat st 1 <= k & k+1 <= len Cage(C,n) &
Cage(C,n)/.k = S-max L~Cage(C,n) holds
(Cage(C,n)/.(k+1))`2 = S-bound L~Cage(C,n);
theorem :: JORDAN1E:26
for C be compact connected non vertical non horizontal Subset of TOP-REAL
2
for k be Nat st 1 <= k & k+1 <= len Cage(C,n) &
Cage(C,n)/.k = W-min L~Cage(C,n) holds
(Cage(C,n)/.(k+1))`1 = W-bound L~Cage(C,n);
Back to top