environ vocabulary PRE_TOPC, EUCLID, FINSEQ_1, GOBOARD1, FINSEQ_4, RELAT_1, INCSP_1, MATRIX_1, TREES_1, BOOLE, FUNCT_1, ARYTM_1, ABSVALUE, MATRIX_2, TOPREAL1, GOBOARD2, MCART_1, TOPREAL4, GOBOARD4; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, NUMBERS, XREAL_0, REAL_1, NAT_1, FUNCT_1, FINSEQ_1, STRUCT_0, PRE_TOPC, ABSVALUE, FINSEQ_4, MATRIX_1, EUCLID, TOPREAL1, TOPREAL4, GOBOARD1, GOBOARD2; constructors REAL_1, NAT_1, ABSVALUE, TOPREAL1, MATRIX_2, TOPREAL4, GOBOARD2, FINSEQ_4, INT_1, MEMBERED, XBOOLE_0; clusters GOBOARD1, RELSET_1, GOBOARD2, STRUCT_0, EUCLID, INT_1, MEMBERED, ZFMISC_1, XBOOLE_0, NUMBERS, ORDINAL2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve p,p1,p2,q1,q2 for Point of TOP-REAL 2, P1,P2 for Subset of TOP-REAL 2, f,f1,f2,g1,g2 for FinSequence of TOP-REAL 2, n,m,i,j,k for Nat, G,G1 for Go-board, x,y for set; theorem :: GOBOARD4:1 for G,f1,f2 st 1<=len f1 & 1<=len f2 & f1 is_sequence_on G & f2 is_sequence_on G & f1/.1 in rng Line(G,1) & f1/.len f1 in rng Line(G,len G) & f2/.1 in rng Col(G,1) & f2/.len f2 in rng Col(G,width G) holds rng f1 meets rng f2; theorem :: GOBOARD4:2 for G,f1,f2 st 2<=len f1 & 2<=len f2 & f1 is_sequence_on G & f2 is_sequence_on G & f1/.1 in rng Line(G,1) & f1/.len f1 in rng Line(G,len G) & f2/.1 in rng Col(G,1) & f2/.len f2 in rng Col(G,width G) holds L~f1 meets L~f2; theorem :: GOBOARD4:3 for G,f1,f2 st 2 <= len f1 & 2 <= len f2 & f1 is_sequence_on G & f2 is_sequence_on G & f1/.1 in rng Line(G,1) & f1/.len f1 in rng Line(G,len G) & f2/.1 in rng Col(G,1) & f2/.len f2 in rng Col(G,width G) holds L~f1 meets L~f2; definition let f be FinSequence of REAL, r,s be Real; pred f lies_between r,s means :: GOBOARD4:def 1 for n st n in dom f holds r <= f.n & f.n <= s; end; definition let D be non empty set; let f1 be FinSequence of D, f2 be non empty FinSequence of D; cluster f1^f2 -> non empty; cluster f2^f1 -> non empty; end; theorem :: GOBOARD4:4 for f1,f2 being FinSequence of TOP-REAL 2 st 2<=len f1 & 2<=len f2 & f1 is special & f2 is special & (for n st n in dom f1 & n+1 in dom f1 holds f1/.n <> f1/.(n+1)) & (for n st n in dom f2 & n+1 in dom f2 holds f2/.n <> f2/.(n+1)) & X_axis(f1) lies_between (X_axis(f1)).1, (X_axis(f1)).(len f1) & X_axis(f2) lies_between (X_axis(f1)).1, (X_axis(f1)).(len f1) & Y_axis(f1) lies_between (Y_axis(f2)).1, (Y_axis(f2)).(len f2) & Y_axis(f2) lies_between (Y_axis(f2)).1, (Y_axis(f2)).(len f2) holds L~f1 meets L~f2; theorem :: GOBOARD4:5 for f1,f2 being FinSequence of TOP-REAL 2 st f1 is one-to-one special & 2 <= len f1 & f2 is one-to-one special & 2 <= len f2 & X_axis(f1) lies_between (X_axis(f1)).1, (X_axis(f1)).(len f1) & X_axis(f2) lies_between (X_axis(f1)).1, (X_axis(f1)).(len f1) & Y_axis(f1) lies_between (Y_axis(f2)).1, (Y_axis(f2)).(len f2) & Y_axis(f2) lies_between (Y_axis(f2)).1, (Y_axis(f2)).(len f2) holds L~f1 meets L~f2; canceled 2; theorem :: GOBOARD4:8 for P1,P2,p1,p2,q1,q2 st P1 is_S-P_arc_joining p1,q1 & P2 is_S-P_arc_joining p2,q2 & (for p st p in P1 \/ P2 holds p1`1<=p`1 & p`1<=q1`1) & (for p st p in P1 \/ P2 holds p2`2<=p`2 & p`2<=q2`2) holds P1 meets P2;