environ vocabulary TARSKI, BOOLE; notation TARSKI, XBOOLE_0; constructors TARSKI, XBOOLE_0; clusters XBOOLE_0; begin reserve x,x1,x2,x3,x4,x5,x6,x7,x8,y,X,Z for set; scheme UI1{x1()->set,P[set]}: P[x1()] provided for x1 holds P[x1]; scheme UI2{x1, x2()->set,P[set,set]}: P[x1(),x2()] provided for x1,x2 holds P[x1,x2]; scheme UI3{x1, x2, x3()->set,P[set,set,set]}: P[x1(),x2(),x3()] provided for x1,x2,x3 holds P[x1,x2,x3]; scheme UI4{x1, x2, x3, x4()->set,P[set,set,set,set]}: P[x1(),x2(),x3(),x4()] provided for x1,x2,x3,x4 holds P[x1,x2,x3,x4]; scheme UI5 {x1, x2, x3, x4, x5()->set, P[set,set,set,set,set]}: P[x1(),x2(),x3(),x4(),x5()] provided for x1,x2,x3,x4,x5 holds P[x1,x2,x3,x4,x5]; scheme UI6 {x1, x2, x3, x4, x5, x6()->set, P[set,set,set,set,set,set]}: P[x1(),x2(),x3(),x4(),x5(),x6()] provided for x1,x2,x3,x4,x5,x6 holds P[x1,x2,x3,x4,x5,x6]; scheme UI7 {x1, x2, x3, x4, x5, x6, x7()->set, P[set,set,set,set,set,set,set]}: P[x1(),x2(),x3(),x4(),x5(),x6(),x7()] provided for x1,x2,x3,x4,x5,x6,x7 holds P[x1,x2,x3,x4,x5,x6,x7]; scheme UI8 {x1, x2, x3, x4, x5, x6, x7, x8()->set, P[set,set,set,set,set,set,set,set]}: P[x1(),x2(),x3(),x4(),x5(),x6(),x7(),x8()] provided for x1,x2,x3,x4,x5,x6,x7,x8 holds P[x1,x2,x3,x4,x5,x6,x7,x8] ; scheme UI9 {x1, x2, x3, x4, x5, x6, x7, x8, x9()->set, P[set,set,set,set,set,set,set,set,set]}: P[x1(),x2(),x3(),x4(),x5(),x6(),x7(),x8(),x9()] provided for x1,x2,x3,x4,x5,x6,x7,x8,x9 being set holds P[x1,x2,x3,x4,x5,x6,x7,x8,x9]; definition let x1,x2,x3; func { x1,x2,x3 } -> set means :: ENUMSET1:def 1 x in it iff x=x1 or x=x2 or x=x3; end; canceled 12; theorem :: ENUMSET1:13 x in { x1,x2,x3 } implies x=x1 or x=x2 or x=x3; theorem :: ENUMSET1:14 x=x1 or x=x2 or x=x3 implies x in { x1,x2,x3 }; theorem :: ENUMSET1:15 for x1,x2,x3,X st for x holds x in X iff x=x1 or x=x2 or x=x3 holds X = { x1,x2,x3 }; definition let x1,x2,x3,x4; func { x1,x2,x3,x4 } -> set means :: ENUMSET1:def 2 x in it iff x=x1 or x=x2 or x=x3 or x=x4; end; canceled 2; theorem :: ENUMSET1:18 x in { x1,x2,x3,x4 } implies x=x1 or x=x2 or x=x3 or x = x4; theorem :: ENUMSET1:19 x=x1 or x=x2 or x=x3 or x = x4 implies x in { x1,x2,x3,x4 }; theorem :: ENUMSET1:20 for x1,x2,x3,x4,X st for x holds x in X iff x=x1 or x=x2 or x=x3 or x = x4 holds X = { x1,x2,x3,x4 }; definition let x1,x2,x3,x4,x5; func { x1,x2,x3,x4,x5 } -> set means :: ENUMSET1:def 3 x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5; end; canceled 2; theorem :: ENUMSET1:23 x in { x1,x2,x3,x4,x5 } implies x=x1 or x=x2 or x=x3 or x=x4 or x=x5; theorem :: ENUMSET1:24 x=x1 or x=x2 or x=x3 or x=x4 or x=x5 implies x in { x1,x2,x3,x4,x5 }; theorem :: ENUMSET1:25 for X being set st for x holds x in X iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 holds X = { x1,x2,x3,x4,x5 }; definition let x1,x2,x3,x4,x5,x6; func { x1,x2,x3,x4,x5,x6 } -> set means :: ENUMSET1:def 4 x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6; end; canceled 2; theorem :: ENUMSET1:28 x in { x1,x2,x3,x4,x5,x6 } implies x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6; theorem :: ENUMSET1:29 x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 implies x in { x1,x2,x3,x4,x5,x6 }; theorem :: ENUMSET1:30 for X being set st for x holds x in X iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 holds X = { x1,x2,x3,x4,x5,x6 }; definition let x1,x2,x3,x4,x5,x6,x7; func { x1,x2,x3,x4,x5,x6,x7 } -> set means :: ENUMSET1:def 5 x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7; end; canceled 2; theorem :: ENUMSET1:33 x in { x1,x2,x3,x4,x5,x6,x7 } implies x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7; theorem :: ENUMSET1:34 x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 implies x in { x1,x2,x3,x4,x5,x6,x7 }; theorem :: ENUMSET1:35 for X being set st for x holds x in X iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 holds X = { x1,x2,x3,x4,x5,x6,x7 }; definition let x1,x2,x3,x4,x5,x6,x7,x8; func { x1,x2,x3,x4,x5,x6,x7,x8 } -> set means :: ENUMSET1:def 6 x in it iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8; end; canceled 2; theorem :: ENUMSET1:38 x in { x1,x2,x3,x4,x5,x6,x7,x8 } implies x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8; theorem :: ENUMSET1:39 x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 implies x in { x1,x2,x3,x4,x5,x6,x7,x8 }; theorem :: ENUMSET1:40 for X being set st for x holds x in X iff x=x1 or x=x2 or x=x3 or x=x4 or x=x5 or x=x6 or x=x7 or x=x8 holds X = { x1,x2,x3,x4,x5,x6,x7,x8 }; theorem :: ENUMSET1:41 { x1,x2 } = { x1 } \/ { x2 }; theorem :: ENUMSET1:42 { x1,x2,x3 } = { x1 } \/ { x2,x3 }; theorem :: ENUMSET1:43 { x1,x2,x3 } = { x1,x2 } \/ { x3 }; theorem :: ENUMSET1:44 { x1,x2,x3,x4 } = { x1 } \/ { x2,x3,x4 }; theorem :: ENUMSET1:45 { x1,x2,x3,x4 } = { x1,x2 } \/ { x3,x4 }; theorem :: ENUMSET1:46 { x1,x2,x3,x4 } = { x1,x2,x3 } \/ { x4 }; theorem :: ENUMSET1:47 { x1,x2,x3,x4,x5 } = { x1 } \/ { x2,x3,x4,x5 }; theorem :: ENUMSET1:48 { x1,x2,x3,x4,x5 } = { x1,x2 } \/ { x3,x4,x5 }; theorem :: ENUMSET1:49 { x1,x2,x3,x4,x5 } = { x1,x2,x3 } \/ { x4,x5 }; theorem :: ENUMSET1:50 { x1,x2,x3,x4,x5 } = { x1,x2,x3,x4 } \/ { x5 }; theorem :: ENUMSET1:51 { x1,x2,x3,x4,x5,x6 } = { x1 } \/ { x2,x3,x4,x5,x6 }; theorem :: ENUMSET1:52 { x1,x2,x3,x4,x5,x6 } = { x1,x2 } \/ { x3,x4,x5,x6 }; theorem :: ENUMSET1:53 { x1,x2,x3,x4,x5,x6 } = { x1,x2,x3 } \/ { x4,x5,x6 }; theorem :: ENUMSET1:54 { x1,x2,x3,x4,x5,x6 } = { x1,x2,x3,x4 } \/ { x5,x6 }; theorem :: ENUMSET1:55 { x1,x2,x3,x4,x5,x6 } = { x1,x2,x3,x4,x5 } \/ { x6 }; theorem :: ENUMSET1:56 { x1,x2,x3,x4,x5,x6,x7 } = { x1 } \/ { x2,x3,x4,x5,x6,x7 }; theorem :: ENUMSET1:57 { x1,x2,x3,x4,x5,x6,x7 } = { x1,x2 } \/ { x3,x4,x5,x6,x7 }; theorem :: ENUMSET1:58 { x1,x2,x3,x4,x5,x6,x7 } = { x1,x2,x3 } \/ { x4,x5,x6,x7 }; theorem :: ENUMSET1:59 { x1,x2,x3,x4,x5,x6,x7 } = { x1,x2,x3,x4 } \/ { x5,x6,x7 }; theorem :: ENUMSET1:60 { x1,x2,x3,x4,x5,x6,x7 } = { x1,x2,x3,x4,x5 } \/ { x6,x7 }; theorem :: ENUMSET1:61 { x1,x2,x3,x4,x5,x6,x7 } = { x1,x2,x3,x4,x5,x6 } \/ { x7 }; theorem :: ENUMSET1:62 { x1,x2,x3,x4,x5,x6,x7,x8 } = { x1 } \/ { x2,x3,x4,x5,x6,x7,x8 }; theorem :: ENUMSET1:63 { x1,x2,x3,x4,x5,x6,x7,x8 } = { x1,x2 } \/ { x3,x4,x5,x6,x7,x8 }; theorem :: ENUMSET1:64 { x1,x2,x3,x4,x5,x6,x7,x8 } = { x1,x2,x3 } \/ { x4,x5,x6,x7,x8 }; theorem :: ENUMSET1:65 { x1,x2,x3,x4,x5,x6,x7,x8 } = { x1,x2,x3,x4 } \/ { x5,x6,x7,x8 }; theorem :: ENUMSET1:66 { x1,x2,x3,x4,x5,x6,x7,x8 } = { x1,x2,x3,x4,x5 } \/ { x6,x7,x8 }; theorem :: ENUMSET1:67 { x1,x2,x3,x4,x5,x6,x7,x8 } = { x1,x2,x3,x4,x5,x6 } \/ { x7,x8 }; theorem :: ENUMSET1:68 { x1,x2,x3,x4,x5,x6,x7,x8 } = { x1,x2,x3,x4,x5,x6,x7 } \/ { x8 }; theorem :: ENUMSET1:69 { x1,x1 } = { x1 }; theorem :: ENUMSET1:70 { x1,x1,x2 } = { x1,x2 }; theorem :: ENUMSET1:71 { x1,x1,x2,x3 } = { x1,x2,x3 }; theorem :: ENUMSET1:72 { x1,x1,x2,x3,x4 } = { x1,x2,x3,x4 }; theorem :: ENUMSET1:73 { x1,x1,x2,x3,x4,x5 } = { x1,x2,x3,x4,x5 }; theorem :: ENUMSET1:74 { x1,x1,x2,x3,x4,x5,x6 } = { x1,x2,x3,x4,x5,x6 }; theorem :: ENUMSET1:75 { x1,x1,x2,x3,x4,x5,x6,x7 } = { x1,x2,x3,x4,x5,x6,x7 }; theorem :: ENUMSET1:76 { x1,x1,x1 } = { x1 }; theorem :: ENUMSET1:77 { x1,x1,x1,x2 } = { x1,x2 }; theorem :: ENUMSET1:78 { x1,x1,x1,x2,x3 } = { x1,x2,x3 }; theorem :: ENUMSET1:79 { x1,x1,x1,x2,x3,x4 } = { x1,x2,x3,x4 }; theorem :: ENUMSET1:80 { x1,x1,x1,x2,x3,x4,x5 } = { x1,x2,x3,x4,x5 }; theorem :: ENUMSET1:81 { x1,x1,x1,x2,x3,x4,x5,x6 } = { x1,x2,x3,x4,x5,x6 }; theorem :: ENUMSET1:82 { x1,x1,x1,x1 } = { x1 }; theorem :: ENUMSET1:83 { x1,x1,x1,x1,x2 } = { x1,x2 }; theorem :: ENUMSET1:84 { x1,x1,x1,x1,x2,x3 } = { x1,x2,x3 }; theorem :: ENUMSET1:85 { x1,x1,x1,x1,x2,x3,x4 } = { x1,x2,x3,x4 }; theorem :: ENUMSET1:86 { x1,x1,x1,x1,x2,x3,x4,x5 } = { x1,x2,x3,x4,x5 }; theorem :: ENUMSET1:87 { x1,x1,x1,x1,x1 } = { x1 }; theorem :: ENUMSET1:88 { x1,x1,x1,x1,x1,x2 } = { x1,x2 }; theorem :: ENUMSET1:89 { x1,x1,x1,x1,x1,x2,x3 } = { x1,x2,x3 }; theorem :: ENUMSET1:90 { x1,x1,x1,x1,x1,x2,x3,x4 } = { x1,x2,x3,x4 }; theorem :: ENUMSET1:91 { x1,x1,x1,x1,x1,x1 } = { x1 }; theorem :: ENUMSET1:92 { x1,x1,x1,x1,x1,x1,x2 } = { x1,x2 }; theorem :: ENUMSET1:93 { x1,x1,x1,x1,x1,x1,x2,x3 } = { x1,x2,x3 }; theorem :: ENUMSET1:94 { x1,x1,x1,x1,x1,x1,x1 } = { x1 }; theorem :: ENUMSET1:95 { x1,x1,x1,x1,x1,x1,x1,x2 } = { x1,x2 }; theorem :: ENUMSET1:96 { x1,x1,x1,x1,x1,x1,x1,x1 } = { x1 }; canceled; theorem :: ENUMSET1:98 { x1,x2,x3 } = { x1,x3,x2 }; theorem :: ENUMSET1:99 { x1,x2,x3 } = { x2,x1,x3 }; theorem :: ENUMSET1:100 { x1,x2,x3 } = { x2,x3,x1 }; canceled; theorem :: ENUMSET1:102 { x1,x2,x3 } = { x3,x2,x1 }; theorem :: ENUMSET1:103 { x1,x2,x3,x4 } = { x1,x2,x4,x3 }; theorem :: ENUMSET1:104 { x1,x2,x3,x4 } = { x1,x3,x2,x4 }; theorem :: ENUMSET1:105 { x1,x2,x3,x4 } = { x1,x3,x4,x2 }; canceled; theorem :: ENUMSET1:107 { x1,x2,x3,x4 } = { x1,x4,x3,x2 }; theorem :: ENUMSET1:108 { x1,x2,x3,x4 } = { x2,x1,x3,x4 }; theorem :: ENUMSET1:109 { x1,x2,x3,x4 } = { x2,x1,x4,x3 }; theorem :: ENUMSET1:110 { x1,x2,x3,x4 } = { x2,x3,x1,x4 }; theorem :: ENUMSET1:111 { x1,x2,x3,x4 } = { x2,x3,x4,x1 }; theorem :: ENUMSET1:112 { x1,x2,x3,x4 } = { x2,x4,x1,x3 }; theorem :: ENUMSET1:113 { x1,x2,x3,x4 } = { x2,x4,x3,x1 }; canceled 2; theorem :: ENUMSET1:116 { x1,x2,x3,x4 } = { x3,x2,x1,x4 }; theorem :: ENUMSET1:117 { x1,x2,x3,x4 } = { x3,x2,x4,x1 }; theorem :: ENUMSET1:118 { x1,x2,x3,x4 } = { x3,x4,x1,x2 }; theorem :: ENUMSET1:119 { x1,x2,x3,x4 } = { x3,x4,x2,x1 }; canceled 3; theorem :: ENUMSET1:123 { x1,x2,x3,x4 } = { x4,x2,x3,x1 }; canceled; theorem :: ENUMSET1:125 { x1,x2,x3,x4 } = { x4,x3,x2,x1 };