Journal of Formalized Mathematics
Volume 14, 2002
University of Bialystok
Copyright (c) 2002
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Jaroslaw Kotowicz
- Received November 5, 2002
- MML identifier: VECTSP10
- [
Mizar article,
MML identifier index
]
environ
vocabulary RLVECT_1, VECTSP_1, ARYTM_1, HAHNBAN, FUNCT_1, GRCAT_1, UNIALG_1,
BINOP_1, LATTICES, RELAT_1, HAHNBAN1, MCART_1, RLSUB_1, RLSUB_2,
RLVECT_3, RLVECT_2, FUNCT_2, ALGSTR_2, REALSET1, BOOLE, SEQM_3, GROUP_6,
SETFAM_1, ARYTM_3, VECTSP10;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, DOMAIN_1, STRUCT_0, FUNCT_1,
REALSET1, RLVECT_1, BINOP_1, RLVECT_2, VECTSP_1, RELSET_1, FUNCT_2,
SEQM_3, FRAENKEL, VECTSP_4, VECTSP_5, VECTSP_6, VECTSP_7, HAHNBAN1;
constructors DOMAIN_1, REALSET1, BINOP_1, RLVECT_2, VECTSP_5, VECTSP_6,
VECTSP_7, SEQM_3, HAHNBAN1;
clusters STRUCT_0, SUBSET_1, FUNCT_1, RELSET_1, VECTSP_1, HAHNBAN1, VECTSP_4,
XBOOLE_0;
requirements SUBSET, BOOLE;
begin
::Auxiliary Facts about Double Loops and Vector Spaces
theorem :: VECTSP10:1
for K be add-associative right_zeroed right_complementable
left-distributive left_unital (non empty doubleLoopStr)
for a be Element of K holds (- 1_ K) * a = - a;
definition
let K be doubleLoopStr;
func StructVectSp(K) -> strict VectSpStr over K equals
:: VECTSP10:def 1
VectSpStr (# the carrier of K, the add of K, the Zero of K, the mult of K#);
end;
definition
let K be non empty doubleLoopStr;
cluster StructVectSp(K) -> non empty;
end;
definition
let K be Abelian (non empty doubleLoopStr);
cluster StructVectSp(K) -> Abelian;
end;
definition
let K be add-associative (non empty doubleLoopStr);
cluster StructVectSp(K) -> add-associative;
end;
definition
let K be right_zeroed (non empty doubleLoopStr);
cluster StructVectSp(K) -> right_zeroed;
end;
definition
let K be right_complementable (non empty doubleLoopStr);
cluster StructVectSp(K) -> right_complementable;
end;
definition
let K be associative left_unital distributive (non empty doubleLoopStr);
cluster StructVectSp(K) -> VectSp-like;
end;
definition
let K be non degenerated (non empty doubleLoopStr);
cluster StructVectSp(K) -> non trivial;
end;
definition
let K be non degenerated (non empty doubleLoopStr);
cluster non trivial (non empty VectSpStr over K);
end;
definition
let K be add-associative right_zeroed right_complementable
(non empty doubleLoopStr);
cluster add-associative right_zeroed right_complementable strict
(non empty VectSpStr over K);
end;
definition
let K be add-associative right_zeroed right_complementable associative
left_unital distributive (non empty doubleLoopStr);
cluster add-associative right_zeroed right_complementable VectSp-like strict
(non empty VectSpStr over K);
end;
definition
let K be Abelian add-associative right_zeroed right_complementable associative
left_unital distributive non degenerated (non empty doubleLoopStr);
cluster Abelian add-associative right_zeroed right_complementable VectSp-like
strict non trivial (non empty VectSpStr over K);
end;
theorem :: VECTSP10:2
for K be add-associative right_zeroed right_complementable associative
left_unital distributive (non empty doubleLoopStr),
a be Element of K
for V be add-associative right_zeroed right_complementable VectSp-like
(non empty VectSpStr over K),
v be Vector of V holds (0.K)*v = 0.V & a*(0.V) = 0.V;
theorem :: VECTSP10:3
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for S, T be Subspace of V, v be Vector of V st
S /\ T = (0).V & v in S & v in T holds v = 0.V;
theorem :: VECTSP10:4
for K be Field, V be VectSp of K
for x be set, v be Vector of V holds
x in Lin{v} iff ex a be Element of K st x =a*v;
theorem :: VECTSP10:5
for K be Field, V be VectSp of K, v be Vector of V, a,b be Scalar of V
st v <> 0.V & a * v = b * v holds a = b;
theorem :: VECTSP10:6
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for W1,W2 be Subspace of V st V is_the_direct_sum_of W1,W2
for v,v1,v2 be Vector of V st v1 in W1 & v2 in W2 & v = v1 + v2
holds v |-- (W1,W2) = [v1,v2];
theorem :: VECTSP10:7
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for W1,W2 be Subspace of V st V is_the_direct_sum_of W1,W2
for v,v1,v2 be Vector of V st v |-- (W1,W2) = [v1,v2] holds v = v1 + v2;
theorem :: VECTSP10:8
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for W1,W2 be Subspace of V st V is_the_direct_sum_of W1,W2
for v,v1,v2 be Vector of V st v |-- (W1,W2) = [v1,v2]
holds v1 in W1 & v2 in W2;
theorem :: VECTSP10:9
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for W1,W2 be Subspace of V st V is_the_direct_sum_of W1,W2
for v,v1,v2 be Vector of V st v |-- (W1,W2) = [v1,v2]
holds v |-- (W2,W1) = [v2,v1];
theorem :: VECTSP10:10
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for W1,W2 be Subspace of V st V is_the_direct_sum_of W1,W2
for v be Vector of V st v in W1 holds v |-- (W1,W2) = [v,0.V];
theorem :: VECTSP10:11
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for W1,W2 be Subspace of V st V is_the_direct_sum_of W1,W2
for v be Vector of V st v in W2 holds v |-- (W1,W2) = [0.V,v];
theorem :: VECTSP10:12
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for V1 be Subspace of V, W1 be Subspace of V1,
v be Vector of V st v in W1 holds v is Vector of V1;
theorem :: VECTSP10:13
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K
for V1,V2,W be Subspace of V, W1,W2 be Subspace of W
st W1 = V1 & W2 = V2 holds W1 + W2 = V1 + V2;
theorem :: VECTSP10:14
for K be Field, V be VectSp of K, W be Subspace of V
for v be Vector of V, w be Vector of W st v = w holds Lin{w} = Lin{v};
theorem :: VECTSP10:15
for K be Field, V be VectSp of K
for v be Vector of V, X be Subspace of V st not v in X
for y be Vector of X + Lin{v}, W be Subspace of X + Lin{v}
st v = y & W = X
holds X + Lin{v} is_the_direct_sum_of W,Lin{y};
theorem :: VECTSP10:16
for K be Field, V be VectSp of K, v be Vector of V, X be Subspace of V,
y be Vector of X + Lin{v}, W be Subspace of X + Lin{v}
st v = y & X = W & not v in X holds y |-- (W,Lin{y}) = [0.W,y];
theorem :: VECTSP10:17
for K be Field, V be VectSp of K, v be Vector of V, X be Subspace of V
for y be Vector of X + Lin{v}, W be Subspace of X + Lin{v}
st v = y & X = W & not v in X
for w be Vector of X + Lin{v} st w in X holds w |-- (W,Lin{y}) = [w,0.V];
theorem :: VECTSP10:18
for K be add-associative right_zeroed right_complementable associative
Abelian left_unital distributive (non empty doubleLoopStr),
V be VectSp of K
for v be Vector of V, W1,W2 be Subspace of V
ex v1,v2 be Vector of V st v |-- (W1,W2) = [v1,v2];
theorem :: VECTSP10:19
for K be Field, V be VectSp of K
for v be Vector of V, X be Subspace of V,
y be Vector of X + Lin{v}, W be Subspace of X + Lin{v}
st v = y & X = W & not v in X
for w be Vector of X + Lin{v}
ex x be Vector of X,
r be Element of K st w |-- (W,Lin{y}) = [x,r*v];
theorem :: VECTSP10:20
for K be Field, V be VectSp of K
for v be Vector of V, X be Subspace of V,
y be Vector of X + Lin{v}, W be Subspace of X + Lin{v}
st v = y & X = W & not v in X
for w1,w2 be Vector of X + Lin{v}, x1,x2 be Vector of X,
r1,r2 be Element of K
st w1 |-- (W,Lin{y}) = [x1,r1*v] & w2 |-- (W,Lin{y}) = [x2,r2*v]
holds w1 + w2 |-- (W,Lin{y}) = [x1 + x2, (r1+r2)*v];
theorem :: VECTSP10:21
for K be Field, V be VectSp of K
for v be Vector of V, X be Subspace of V,
y be Vector of X + Lin{v}, W be Subspace of X + Lin{v}
st v = y & X = W & not v in X
for w be Vector of X + Lin{v}, x be Vector of X,
t,r be Element of K
st w |-- (W,Lin{y}) = [x,r*v]
holds t*w |-- (W,Lin{y}) = [t*x, t*r*v];
begin
:: Quotient Vector Space for non commutative Double Loop
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let W be Subspace of V;
func CosetSet(V,W) ->non empty Subset-Family of V equals
:: VECTSP10:def 2
{A where A is Coset of W: not contradiction};
end;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let W be Subspace of V;
func addCoset(V,W) -> BinOp of CosetSet(V,W) means
:: VECTSP10:def 3
for A,B be Element of CosetSet(V,W)
for a,b be Vector of V st A = a + W & B = b + W holds it.(A,B) = (a+b)+W;
end;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let W be Subspace of V;
func zeroCoset(V,W) -> Element of CosetSet(V,W) equals
:: VECTSP10:def 4
the carrier of W;
end;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let W be Subspace of V;
func lmultCoset(V,W) -> Function of [:the carrier of K, CosetSet(V,W):],
CosetSet(V,W) means
:: VECTSP10:def 5
for z be Element of K, A be Element of CosetSet(V,W)
for a be Vector of V st A = a+W holds it.(z,A) = z*a +W;
end;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let W be Subspace of V;
func VectQuot(V,W) -> strict Abelian add-associative right_zeroed
right_complementable VectSp-like (non empty VectSpStr over K) means
:: VECTSP10:def 6
the carrier of it = CosetSet(V,W) &
the add of it = addCoset(V,W) &
the Zero of it = zeroCoset(V,W) &
the lmult of it = lmultCoset(V,W);
end;
theorem :: VECTSP10:22
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr),
V be VectSp of K, W be Subspace of V holds
zeroCoset(V,W) = 0.V + W & 0.(VectQuot(V,W)) = zeroCoset(V,W);
theorem :: VECTSP10:23
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K, W be Subspace of V, w be Vector of VectQuot(V,W)
holds w is Coset of W & ex v be Vector of V st w = v + W;
theorem :: VECTSP10:24
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K, W be Subspace of V, v be Vector of V
holds v+W is Coset of W & v+W is Vector of VectQuot(V,W);
theorem :: VECTSP10:25
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K, W be Subspace of V, A be Coset of W
holds A is Vector of VectQuot(V,W);
theorem :: VECTSP10:26
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr),
V be VectSp of K, W be Subspace of V
for A be Vector of VectQuot(V,W), v be Vector of V, a be Scalar of V
st A = v + W holds a*A = a*v + W;
theorem :: VECTSP10:27
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr),
V be VectSp of K, W be Subspace of V
for A1,A2 be Vector of VectQuot(V,W), v1,v2 be Vector of V
st A1 = v1 + W & A2 = v2 + W holds A1 + A2 = v1 + v2 + W;
begin
:: Auxiliary Facts about Functionals
theorem :: VECTSP10:28
for K be Field, V be VectSp of K
for X be Subspace of V, fi be linear-Functional of X,
v be Vector of V,
y be Vector of X + Lin {v} st v = y & not v in X
for r be Element of K
ex psi be linear-Functional of X + Lin{v} st
psi|the carrier of X=fi & psi.y = r;
definition
let K be right_zeroed (non empty LoopStr);
let V be non empty VectSpStr over K;
cluster additive 0-preserving Functional of V;
end;
definition
let K be add-associative right_zeroed right_complementable
(non empty doubleLoopStr);
let V be right_zeroed (non empty VectSpStr over K);
cluster additive -> 0-preserving Functional of V;
end;
definition
let K be add-associative right_zeroed right_complementable associative
left_unital distributive (non empty doubleLoopStr);
let V be add-associative right_zeroed right_complementable VectSp-like
(non empty VectSpStr over K);
cluster homogeneous -> 0-preserving Functional of V;
end;
definition
let K be non empty ZeroStr;
let V be non empty VectSpStr over K;
cluster 0Functional(V) -> constant;
end;
definition
let K be non empty ZeroStr;
let V be non empty VectSpStr over K;
cluster constant Functional of V;
end;
definition
let K be add-associative right_zeroed right_complementable
(non empty doubleLoopStr);
let V be right_zeroed (non empty VectSpStr over K);
let f be 0-preserving Functional of V;
redefine attr f is constant means
:: VECTSP10:def 7
f = 0Functional(V);
end;
definition
let K be add-associative right_zeroed right_complementable
(non empty doubleLoopStr);
let V be right_zeroed (non empty VectSpStr over K);
cluster constant additive 0-preserving Functional of V;
end;
definition
let K be non empty 1-sorted;
let V be non empty VectSpStr over K;
cluster non constant -> non trivial Functional of V;
end;
definition
let K be Field;
let V be non trivial VectSp of K;
cluster additive homogeneous non constant non trivial Functional of V;
end;
definition
let K be Field;
let V be non trivial VectSp of K;
cluster trivial -> constant Functional of V;
end;
definition
let K be Field;
let V be non trivial VectSp of K;
let v be Vector of V;
let W be Linear_Compl of Lin{v};
assume v <> 0.V;
func coeffFunctional(v,W) -> non constant non trivial linear-Functional of V
means
:: VECTSP10:def 8
it.v = 1_ K & it|the carrier of W = 0Functional(W);
end;
theorem :: VECTSP10:29
for K be Field, V be non trivial VectSp of K
for f be non constant 0-preserving Functional of V
ex v be Vector of V st v <> 0.V & f.v <> 0.K;
theorem :: VECTSP10:30
for K be Field, V be non trivial VectSp of K
for v be Vector of V, a be Scalar of V
for W be Linear_Compl of Lin{v} st v <> 0.V holds
(coeffFunctional(v,W)).(a*v) = a;
theorem :: VECTSP10:31
for K be Field, V be non trivial VectSp of K
for v,w be Vector of V
for W be Linear_Compl of Lin{v} st v <> 0.V & w in W holds
(coeffFunctional(v,W)).w = 0.K;
theorem :: VECTSP10:32
for K be Field, V be non trivial VectSp of K
for v,w be Vector of V, a be Scalar of V
for W be Linear_Compl of Lin{v} st v <> 0.V & w in W holds
(coeffFunctional(v,W)).(a*v+w) = a;
theorem :: VECTSP10:33
for K be non empty LoopStr
for V be non empty VectSpStr over K
for f,g be Functional of V, v be Vector of V holds (f-g).v = f.v - g.v;
definition
let K be Field;
let V be non trivial VectSp of K;
cluster V*' -> non trivial;
end;
begin
:: Kernel of Additive Functional and Subspace Generated by Kernel of
:: Linear Functional. Linear Functionals in Quotient Vector Space
:: generated by Additive Functional
definition
let K be non empty ZeroStr;
let V be non empty VectSpStr over K;
let f be Functional of V;
func ker f -> Subset of V equals
:: VECTSP10:def 9
{v where v is Vector of V : f.v = 0.K};
end;
definition
let K be right_zeroed (non empty LoopStr);
let V be non empty VectSpStr over K;
let f be 0-preserving Functional of V;
cluster ker f -> non empty;
end;
theorem :: VECTSP10:34
for K be add-associative right_zeroed right_complementable
associative left_unital distributive (non empty doubleLoopStr)
for V be add-associative right_zeroed right_complementable
VectSp-like (non empty VectSpStr over K)
for f be linear-Functional of V holds ker f is lineary-closed;
definition
let K be non empty ZeroStr;
let V be non empty VectSpStr over K;
let f be Functional of V;
attr f is degenerated means
:: VECTSP10:def 10
ker f <> {0.V};
end;
definition
let K be non degenerated (non empty doubleLoopStr);
let V be non trivial (non empty VectSpStr over K);
cluster non degenerated 0-preserving -> non constant Functional of V;
end;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let f be linear-Functional of V;
func Ker f -> strict non empty Subspace of V means
:: VECTSP10:def 11
the carrier of it = ker f;
end;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let W be Subspace of V;
let f be additive Functional of V;
assume the carrier of W c= ker f;
func
QFunctional(f,W) -> additive Functional of VectQuot(V,W) means
:: VECTSP10:def 12
for A be Vector of VectQuot(V,W), a be Vector of V
st A = a+W holds it.A = f.a;
end;
theorem :: VECTSP10:35
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K, W be Subspace of V
for f be linear-Functional of V st the carrier of W c= ker f
holds QFunctional(f,W) is homogeneous;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let f be linear-Functional of V;
func CQFunctional(f) -> linear-Functional of VectQuot(V,Ker f) equals
:: VECTSP10:def 13
QFunctional(f,Ker f);
end;
theorem :: VECTSP10:36
for K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr)
for V be VectSp of K, f be linear-Functional of V
for A be Vector of VectQuot(V,Ker f), v be Vector of V st A = v+Ker f holds
(CQFunctional(f)).A = f.v;
definition
let K be Field;
let V be non trivial VectSp of K;
let f be non constant linear-Functional of V;
cluster CQFunctional(f) -> non constant;
end;
definition
let K be add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr);
let V be VectSp of K;
let f be linear-Functional of V;
cluster CQFunctional(f) -> non degenerated;
end;
Back to top