Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Wojciech A. Trybulec
- Received July 27, 1990
- MML identifier: VECTSP_6
- [
Mizar article,
MML identifier index
]
environ
vocabulary FINSEQ_1, RLVECT_1, BINOP_1, VECTSP_1, LATTICES, FUNCT_1, FINSET_1,
RELAT_1, BOOLE, ARYTM_1, RLVECT_2, FUNCT_2, SEQ_1, FINSEQ_4, RLSUB_1,
CARD_1;
notation TARSKI, XBOOLE_0, ENUMSET1, SUBSET_1, XCMPLX_0, XREAL_0, FINSET_1,
FINSEQ_1, RELAT_1, FUNCT_1, FUNCT_2, FRAENKEL, NAT_1, CARD_1, STRUCT_0,
RLVECT_1, VECTSP_1, FINSEQ_4, VECTSP_4, PRE_TOPC;
constructors REAL_1, NAT_1, RLVECT_2, VECTSP_4, FINSEQ_4, PRE_TOPC, XREAL_0,
MEMBERED, PARTFUN1, XBOOLE_0;
clusters FUNCT_1, VECTSP_1, RLVECT_2, RELSET_1, STRUCT_0, PRE_TOPC, FINSET_1,
ARYTM_3, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements NUMERALS, REAL, BOOLE, SUBSET;
begin
reserve p,q,r for FinSequence,
x,y,y1,y2 for set,
i,k,n for Nat,
GF for add-associative right_zeroed right_complementable
Abelian associative left_unital distributive (non empty doubleLoopStr),
V for Abelian add-associative right_zeroed right_complementable
VectSp-like (non empty VectSpStr over GF),
u,v,v1,v2,v3,w for Element of V,
a,b for Element of GF,
F,G,H for FinSequence of the carrier of V,
A,B for Subset of V,
f for Function of the carrier of V, the carrier of GF;
definition
let GF be non empty ZeroStr; let V be non empty VectSpStr over GF;
canceled 3;
mode Linear_Combination of V ->
Element of Funcs(the carrier of V, the carrier of GF) means
:: VECTSP_6:def 4
ex T being finite Subset of V st
for v being Element of V st not v in T holds it.v = 0.GF;
end;
reserve L,L1,L2,L3 for Linear_Combination of V;
definition let GF be non empty ZeroStr; let V be non empty VectSpStr over GF;
let L be Linear_Combination of V;
func Carrier(L) -> finite Subset of V equals
:: VECTSP_6:def 5
{v where v is Element of V: L.v <> 0.GF};
end;
canceled 18;
theorem :: VECTSP_6:19
x in Carrier(L) iff ex v st x = v & L.v <> 0.GF;
theorem :: VECTSP_6:20
L.v = 0.GF iff not v in Carrier(L);
definition let GF be non empty ZeroStr; let V be non empty VectSpStr over GF;
func ZeroLC(V) -> Linear_Combination of V means
:: VECTSP_6:def 6
Carrier(it) = {};
end;
canceled;
theorem :: VECTSP_6:22
ZeroLC(V).v = 0.GF;
definition let GF be non empty ZeroStr; let V be non empty VectSpStr over GF;
let A be Subset of V;
mode Linear_Combination of A -> Linear_Combination of V means
:: VECTSP_6:def 7
Carrier(it) c= A;
end;
reserve l for Linear_Combination of A;
canceled 2;
theorem :: VECTSP_6:25
A c= B implies l is Linear_Combination of B;
theorem :: VECTSP_6:26
ZeroLC(V) is Linear_Combination of A;
theorem :: VECTSP_6:27
for l being Linear_Combination of {}(the carrier of V) holds
l = ZeroLC(V);
theorem :: VECTSP_6:28
L is Linear_Combination of Carrier(L);
definition let GF be non empty LoopStr;
let V be non empty VectSpStr over GF;
let F be FinSequence of the carrier of V;
let f be Function of the carrier of V, the carrier of GF;
func f (#) F -> FinSequence of the carrier of V means
:: VECTSP_6:def 8
len it = len F &
for i st i in dom it holds it.i = f.(F/.i) * F/.i;
end;
canceled 3;
theorem :: VECTSP_6:32
i in dom F & v = F.i implies (f (#) F).i = f.v * v;
theorem :: VECTSP_6:33
f (#) <*>(the carrier of V) = <*>(the carrier of V);
theorem :: VECTSP_6:34
f (#) <* v *> = <* f.v * v *>;
theorem :: VECTSP_6:35
f (#) <* v1,v2 *> = <* f.v1 * v1, f.v2 * v2 *>;
theorem :: VECTSP_6:36
f (#) <* v1,v2,v3 *> = <* f.v1 * v1, f.v2 * v2, f.v3 * v3 *>;
theorem :: VECTSP_6:37
f (#) (F ^ G) = (f (#) F) ^ (f (#) G);
definition let GF be non empty LoopStr;
let V be non empty VectSpStr over GF;
let L be Linear_Combination of V;
assume V is Abelian add-associative right_zeroed right_complementable;
func Sum(L) -> Element of V means
:: VECTSP_6:def 9
ex F being FinSequence of the carrier of V st
F is one-to-one & rng F = Carrier(L) & it = Sum(L (#) F);
end;
canceled 2;
theorem :: VECTSP_6:40
0.GF <> 1_ GF implies
(A <> {} & A is lineary-closed iff for l holds Sum(l) in A);
theorem :: VECTSP_6:41
Sum(ZeroLC(V)) = 0.V;
theorem :: VECTSP_6:42
for l being Linear_Combination of {}(the carrier of V) holds
Sum(l) = 0.V;
theorem :: VECTSP_6:43
for l being Linear_Combination of {v} holds
Sum(l) = l.v * v;
theorem :: VECTSP_6:44
v1 <> v2 implies
for l being Linear_Combination of {v1,v2} holds
Sum(l) = l.v1 * v1 + l.v2 * v2;
theorem :: VECTSP_6:45
Carrier(L) = {} implies Sum(L) = 0.V;
theorem :: VECTSP_6:46
Carrier(L) = {v} implies Sum(L) = L.v * v;
theorem :: VECTSP_6:47
Carrier(L) = {v1,v2} & v1 <> v2 implies Sum(L) = L.v1 * v1 + L.v2 * v2;
definition let GF be non empty ZeroStr;
let V be non empty VectSpStr over GF;
let L1,L2 be Linear_Combination of V;
redefine pred L1 = L2 means
:: VECTSP_6:def 10
for v being Element of V holds L1.v = L2.v;
end;
definition let GF; let V; let L1,L2;
func L1 + L2 -> Linear_Combination of V means
:: VECTSP_6:def 11
for v holds it.v = L1.v + L2.v;
end;
canceled 3;
theorem :: VECTSP_6:51
Carrier(L1 + L2) c= Carrier(L1) \/ Carrier(L2);
theorem :: VECTSP_6:52
L1 is Linear_Combination of A & L2 is Linear_Combination of A implies
L1 + L2 is Linear_Combination of A;
theorem :: VECTSP_6:53
L1 + L2 = L2 + L1;
theorem :: VECTSP_6:54
L1 + (L2 + L3) = L1 + L2 + L3;
theorem :: VECTSP_6:55
L + ZeroLC(V) = L & ZeroLC(V) + L = L;
definition let GF; let V,a; let L;
func a * L -> Linear_Combination of V means
:: VECTSP_6:def 12
for v holds it.v = a * L.v;
end;
canceled 2;
theorem :: VECTSP_6:58
Carrier(a * L) c= Carrier(L);
theorem :: VECTSP_6:59
for GF being Field, V being VectSp of GF,
a being Element of GF,
L being Linear_Combination of V
st a <> 0.GF holds Carrier(a * L) = Carrier(L);
theorem :: VECTSP_6:60
0.GF * L = ZeroLC(V);
theorem :: VECTSP_6:61
L is Linear_Combination of A implies a * L is Linear_Combination of A;
theorem :: VECTSP_6:62
(a + b) * L = a * L + b * L;
theorem :: VECTSP_6:63
a * (L1 + L2) = a * L1 + a * L2;
theorem :: VECTSP_6:64
a * (b * L) = (a * b) * L;
theorem :: VECTSP_6:65
1_ GF * L = L;
definition let GF; let V; let L;
func - L -> Linear_Combination of V equals
:: VECTSP_6:def 13
(- 1_ GF) * L;
involutiveness;
end;
canceled;
theorem :: VECTSP_6:67
(- L).v = - L.v;
theorem :: VECTSP_6:68
L1 + L2 = ZeroLC(V) implies L2 = - L1;
theorem :: VECTSP_6:69
Carrier(- L) = Carrier(L);
theorem :: VECTSP_6:70
L is Linear_Combination of A implies - L is Linear_Combination of A;
definition let GF; let V; let L1,L2;
func L1 - L2 -> Linear_Combination of V equals
:: VECTSP_6:def 14
L1 + (- L2);
end;
canceled 2;
theorem :: VECTSP_6:73
(L1 - L2).v = L1.v - L2.v;
theorem :: VECTSP_6:74
Carrier(L1 - L2) c= Carrier(L1) \/ Carrier(L2);
theorem :: VECTSP_6:75
L1 is Linear_Combination of A & L2 is Linear_Combination of A implies
L1 - L2 is Linear_Combination of A;
theorem :: VECTSP_6:76
L - L = ZeroLC(V);
theorem :: VECTSP_6:77
Sum(L1 + L2) = Sum(L1) + Sum(L2);
theorem :: VECTSP_6:78
for GF being Field, V being VectSp of GF, L being Linear_Combination of V,
a being Element of GF
holds Sum(a * L) = a * Sum(L);
theorem :: VECTSP_6:79
Sum(- L) = - Sum(L);
theorem :: VECTSP_6:80
Sum(L1 - L2) = Sum(L1) - Sum(L2);
::
:: Auxiliary theorems.
::
theorem :: VECTSP_6:81
(- 1_ GF) * a = - a;
theorem :: VECTSP_6:82
for GF being Field holds - 1_ GF <> 0.GF;
Back to top