Journal of Formalized Mathematics
Volume 14, 2002
University of Bialystok
Copyright (c) 2002
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec
- Received August 19, 2002
- MML identifier: JORDAN1K
- [
Mizar article,
MML identifier index
]
environ
vocabulary JORDAN1K, JGRAPH_2, TARSKI, BOOLE, SUBSET_1, ARYTM, RELAT_2,
RELAT_1, ARYTM_1, PRE_TOPC, COMPTS_1, CONNSP_1, EUCLID, TOPREAL2,
SQUARE_1, GOBOARD5, JORDAN2C, JORDAN1H, JORDAN11, ABSVALUE, SEQ_2, SEQ_4,
TREES_1, JORDAN8, TOPREAL1, ORDINAL2, JORDAN6, JORDAN9, FINSEQ_1,
FUNCT_1, PSCOMP_1, MCART_1, ARYTM_3, JORDAN5C, PCOMPS_1, WEIERSTR,
LATTICES, METRIC_1, COMPLEX1, SGRAPH1;
notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XREAL_0, REAL_1,
NAT_1, ABSVALUE, SQUARE_1, FUNCT_1, RELSET_1, BINARITH, PARTFUN1,
FUNCT_2, FINSEQ_1, MATRIX_1, SEQ_4, STRUCT_0, GRCAT_1, PRE_TOPC,
COMPTS_1, CONNSP_1, METRIC_1, METRIC_6, PSCOMP_1, PCOMPS_1, EUCLID,
TOPREAL1, TOPREAL2, WEIERSTR, GOBOARD5, JORDAN2C, JORDAN5C, JORDAN6,
JORDAN8, JORDAN9, GOBRD14, JGRAPH_1, JGRAPH_2, JORDAN1H, JORDAN11;
constructors JORDAN1, CONNSP_1, JORDAN2C, TOPS_1, JORDAN1H, JORDAN11, REAL_1,
REALSET1, PSCOMP_1, JORDAN8, JORDAN6, JORDAN9, JORDAN5C, TOPS_2,
T_0TOPSP, WEIERSTR, TBSP_1, TOPRNS_1, SQUARE_1, ABSVALUE, JGRAPH_2,
GOBRD14, GRCAT_1, BINARITH, CARD_4, MEMBERED, PARTFUN1;
clusters METRIC_1, PCOMPS_1, GOBRD14, TOPS_1, TOPMETR, FINSET_1, EUCLID,
JGRAPH_2, TOPREAL6, JORDAN8, RELSET_1, SUBSET_1, PRE_TOPC, JORDAN1A,
NAT_1, BORSUK_3, STRUCT_0, BORSUK_4, SPRECT_4, BORSUK_2, JORDAN1C,
XREAL_0, MEMBERED, ZFMISC_1, FUNCT_2, PARTFUN1;
requirements NUMERALS, SUBSET, BOOLE, REAL, ARITHM;
begin :: Preliminaries
reserve X for set, Y for non empty set;
theorem :: JORDAN1K:1
for f being Function of X,Y st f is onto
for y being Element of Y ex x being set st x in X & y = f.x;
theorem :: JORDAN1K:2
for f being Function of X,Y st f is onto
for y being Element of Y ex x being Element of X st y = f.x;
theorem :: JORDAN1K:3
for f being Function of X,Y, A being Subset of X st f is onto
holds (f.:A)` c= f.:A`;
theorem :: JORDAN1K:4
for f being Function of X,Y, A being Subset of X st f is one-to-one
holds f.:A` c= (f.:A)`;
theorem :: JORDAN1K:5
for f being Function of X,Y, A being Subset of X st f is bijective
holds (f.:A)` = f.:A`;
begin :: Topological and metrizable spaces
theorem :: JORDAN1K:6
for T being TopSpace
for A be Subset of T
holds A is_a_component_of {}T iff A is empty;
theorem :: JORDAN1K:7
for T being non empty TopSpace
for A,B,C being Subset of T st A c= B &
A is_a_component_of C & B is_a_component_of C
holds A = B;
reserve n for Nat;
theorem :: JORDAN1K:8
n >= 1 implies
for P being Subset of Euclid n holds
P is bounded implies P` is not bounded;
reserve r for Real,
M for non empty MetrSpace;
theorem :: JORDAN1K:9
for C being non empty Subset of TopSpaceMetr M,
p being Point of TopSpaceMetr M
holds (dist_min C).p >= 0;
theorem :: JORDAN1K:10
for C being non empty Subset of TopSpaceMetr M,
p being Point of M
st for q being Point of M st q in C holds dist(p,q) >= r
holds (dist_min C).p >= r;
theorem :: JORDAN1K:11
for A,B being non empty Subset of TopSpaceMetr M
holds min_dist_min(A,B) >= 0;
theorem :: JORDAN1K:12
for A,B being compact Subset of TopSpaceMetr M st A meets B
holds min_dist_min(A,B) = 0;
theorem :: JORDAN1K:13
for A,B being non empty Subset of TopSpaceMetr M
st for p,q being Point of M st p in A & q in B
holds dist(p,q) >= r
holds min_dist_min(A,B) >= r;
begin :: Euclid topological spaces
theorem :: JORDAN1K:14
for P,Q being Subset of TOP-REAL n st P is_a_component_of Q`
holds P is_inside_component_of Q or P is_outside_component_of Q;
theorem :: JORDAN1K:15
n>= 1 implies BDD {}TOP-REAL n = {}TOP-REAL n;
theorem :: JORDAN1K:16
BDD [#]TOP-REAL n = {}TOP-REAL n;
theorem :: JORDAN1K:17
n>= 1 implies UBD {}TOP-REAL n = [#]TOP-REAL n;
theorem :: JORDAN1K:18
UBD [#]TOP-REAL n = {}TOP-REAL n;
theorem :: JORDAN1K:19
for P being connected Subset of TOP-REAL n,
Q being Subset of TOP-REAL n st P misses Q
holds P c= UBD Q or P c= BDD Q;
begin :: Euclid plane
reserve C,D for Simple_closed_curve,
n for Nat,
p,q,q1,q2 for Point of TOP-REAL 2,
r,s1,s2,t1,t2 for Real,
x,y for Point of Euclid 2;
theorem :: JORDAN1K:20
dist(|[0,0]|,r*q) = abs(r)*dist(|[0,0]|,q);
theorem :: JORDAN1K:21
dist(q1+q,q2+q) = dist(q1,q2);
theorem :: JORDAN1K:22
p <> q implies dist(p,q) > 0;
theorem :: JORDAN1K:23
dist(q1-q,q2-q) = dist(q1,q2);
theorem :: JORDAN1K:24
dist(p,q) = dist(-p,-q);
theorem :: JORDAN1K:25
dist(q-q1,q-q2) = dist(q1,q2);
theorem :: JORDAN1K:26
dist(r*p,r*q) = abs(r)*dist(p,q);
theorem :: JORDAN1K:27
r <= 1 implies dist(p,r*p+(1-r)*q) = (1-r)*dist(p,q);
theorem :: JORDAN1K:28
0 <= r implies dist(q,r*p+(1-r)*q) = r*dist(p,q);
theorem :: JORDAN1K:29
p in LSeg(q1,q2) implies dist(q1,p) + dist(p,q2) = dist(q1,q2);
theorem :: JORDAN1K:30
q1 in LSeg(q2,p) & q1 <> q2 implies dist(q1,p) < dist(q2,p);
theorem :: JORDAN1K:31
y = |[0,0]| implies Ball(y,r) = {q : |.q.| < r };
begin :: Affine maps
theorem :: JORDAN1K:32
AffineMap(r,s1,r,s2).p = r*p+|[s1,s2]|;
theorem :: JORDAN1K:33
AffineMap(r,q`1,r,q`2).p = r*p+q;
theorem :: JORDAN1K:34
s1 > 0 & s2 > 0 implies
AffineMap(s1,t1,s2,t2)*AffineMap(1/s1,-t1/s1,1/s2,-t2/s2) = id REAL 2;
theorem :: JORDAN1K:35
y = |[0,0]| & x = q & r > 0 implies
AffineMap(r,q`1,r,q`2).:Ball(y,1) = Ball(x,r);
theorem :: JORDAN1K:36
for A,B,C,D being Real st A>0 & C>0
holds AffineMap(A,B,C,D) is onto;
theorem :: JORDAN1K:37
Ball(x,r)` is connected Subset of TOP-REAL 2;
begin :: Minimal distance between subsets
definition let n; let A,B be Subset of TOP-REAL n;
func dist_min(A,B) -> Real means
:: JORDAN1K:def 1
ex A',B' being Subset of TopSpaceMetr Euclid n
st A = A' & B = B' & it = min_dist_min(A',B');
end;
definition
let M be non empty MetrSpace;
let P,Q be non empty compact Subset of TopSpaceMetr M;
redefine func min_dist_min(P,Q);
commutativity;
func max_dist_max(P,Q);
commutativity;
end;
definition let n;
let A,B be non empty compact Subset of TOP-REAL n;
redefine func dist_min(A,B);
commutativity;
end;
theorem :: JORDAN1K:38
for A,B being non empty Subset of TOP-REAL n
holds dist_min(A,B) >= 0;
theorem :: JORDAN1K:39
for A,B being compact Subset of TOP-REAL n st A meets B
holds dist_min(A,B) = 0;
theorem :: JORDAN1K:40
for A,B being non empty Subset of TOP-REAL n
st for p,q being Point of TOP-REAL n st p in A & q in B
holds dist(p,q) >= r
holds dist_min(A,B) >= r;
theorem :: JORDAN1K:41
for D being Subset of TOP-REAL n,
A,C being non empty Subset of TOP-REAL n st C c= D
holds dist_min(A,D) <= dist_min(A,C);
theorem :: JORDAN1K:42
for A,B being non empty compact Subset of TOP-REAL n
ex p,q being Point of TOP-REAL n
st p in A & q in B & dist_min(A,B) = dist(p,q);
theorem :: JORDAN1K:43
for p,q being Point of TOP-REAL n
holds dist_min({p},{q}) = dist(p,q);
definition let n; let p be Point of TOP-REAL n;
let B be Subset of TOP-REAL n;
func dist(p,B) -> Real equals
:: JORDAN1K:def 2
dist_min({p},B);
end;
theorem :: JORDAN1K:44
for A being non empty Subset of TOP-REAL n,
p being Point of TOP-REAL n
holds dist(p,A) >= 0;
theorem :: JORDAN1K:45
for A being compact Subset of TOP-REAL n,
p being Point of TOP-REAL n st p in A
holds dist(p,A) = 0;
theorem :: JORDAN1K:46
for A being non empty compact Subset of TOP-REAL n,
p being Point of TOP-REAL n
ex q being Point of TOP-REAL n
st q in A & dist(p,A) = dist(p,q);
theorem :: JORDAN1K:47
for C being non empty Subset of TOP-REAL n
for D being Subset of TOP-REAL n st C c= D
for q being Point of TOP-REAL n
holds dist(q,D) <= dist(q,C);
theorem :: JORDAN1K:48
for A being non empty Subset of TOP-REAL n, p being Point of TOP-REAL n
st for q being Point of TOP-REAL n st q in A holds dist(p,q) >= r
holds dist(p,A) >= r;
theorem :: JORDAN1K:49
for p,q being Point of TOP-REAL n
holds dist(p,{q}) = dist(p,q);
theorem :: JORDAN1K:50
for A being non empty Subset of TOP-REAL n,
p,q being Point of TOP-REAL n st q in A
holds dist(p,A) <= dist(p,q);
theorem :: JORDAN1K:51
for A being compact non empty Subset of TOP-REAL 2,
B being open Subset of TOP-REAL 2 st A c= B
for p being Point of TOP-REAL 2 st not p in B
holds dist(p,B) < dist(p,A);
begin :: BDD & UBD
theorem :: JORDAN1K:52
UBD C meets UBD D;
theorem :: JORDAN1K:53
q in UBD C & p in BDD C implies dist(q,C) < dist(q,p);
definition let C;
cluster BDD C -> non empty;
end;
theorem :: JORDAN1K:54
not p in BDD C implies dist(p,C) <= dist(p,BDD C);
theorem :: JORDAN1K:55
not(C c= BDD D & D c= BDD C);
theorem :: JORDAN1K:56
C c= BDD D implies D c= UBD C;
begin :: Main definitions
theorem :: JORDAN1K:57
L~Cage(C,n) c= UBD C;
definition let C;
func Lower_Middle_Point C -> Point of TOP-REAL 2 equals
:: JORDAN1K:def 3
First_Point(Lower_Arc C,W-min C,E-max C,
Vertical_Line((W-bound C+E-bound C)/2));
func Upper_Middle_Point C -> Point of TOP-REAL 2 equals
:: JORDAN1K:def 4
First_Point(Upper_Arc C,W-min C,E-max C,
Vertical_Line((W-bound C+E-bound C)/2));
end;
theorem :: JORDAN1K:58
Lower_Arc C meets Vertical_Line((W-bound C+E-bound C)/2);
theorem :: JORDAN1K:59
Upper_Arc C meets Vertical_Line((W-bound C+E-bound C)/2);
theorem :: JORDAN1K:60
(Lower_Middle_Point C)`1 = (W-bound C+E-bound C)/2;
theorem :: JORDAN1K:61
(Upper_Middle_Point C)`1 = (W-bound C+E-bound C)/2;
theorem :: JORDAN1K:62
Lower_Middle_Point C in Lower_Arc C;
theorem :: JORDAN1K:63
Upper_Middle_Point C in Upper_Arc C;
Back to top