environ vocabulary JORDAN13, JORDAN11, FINSEQ_1, TOPREAL1, GOBOARD1, BOOLE, JORDAN1H, FINSEQ_4, EUCLID, MATRIX_1, PRE_TOPC, SEQM_3, SPPOL_1, SPRECT_2, GOBOARD5, ABSVALUE, CONNSP_1, TOPREAL2, ARYTM_1, TOPS_1, RELAT_1, FUNCT_1, SUBSET_1, RELAT_2, RFINSEQ, GOBOARD9, TARSKI, TREES_1, CARD_1, JORDAN8, GOBRD13, FINSEQ_5, JORDAN2C, METRIC_1, PCOMPS_1, GROUP_1, ARYTM; notation TARSKI, GOBOARD5, XBOOLE_0, SUBSET_1, STRUCT_0, ORDINAL1, NUMBERS, XREAL_0, REAL_1, NAT_1, BINARITH, ABSVALUE, RELAT_1, FUNCT_1, FUNCT_2, CARD_1, CARD_4, PARTFUN1, FINSEQ_1, FINSEQ_2, FINSEQ_4, RFINSEQ, MATRIX_1, METRIC_1, PRE_TOPC, TOPS_1, CONNSP_1, PCOMPS_1, EUCLID, TOPREAL1, TOPREAL2, GOBOARD1, SPPOL_1, SPRECT_2, GOBOARD9, JORDAN8, GOBRD13, JORDAN2C, JORDAN1H, JORDAN11; constructors REAL_1, FINSEQ_4, CARD_4, RFINSEQ, BINARITH, TOPS_1, CONNSP_1, PSCOMP_1, REALSET1, SPRECT_2, GOBOARD9, JORDAN8, JORDAN2C, JORDAN11, GROUP_1, TOPREAL4, PARTFUN1, JORDAN1H, MEMBERED; clusters RELSET_1, FINSEQ_1, SPPOL_2, REVROT_1, SPRECT_2, XREAL_0, GOBOARD9, JORDAN8, GOBRD13, SUBSET_1, TOPREAL6, SPRECT_3, INT_1, EUCLID, JORDAN1A, MEMBERED, ZFMISC_1, NUMBERS, ORDINAL2; requirements NUMERALS, SUBSET, BOOLE, REAL, ARITHM; begin :: Spans reserve i, j, k, l, m, n, i1, i2, j1, j2 for Nat; definition let C be non vertical non horizontal non empty being_simple_closed_curve Subset of TOP-REAL 2, n be Nat; assume n is_sufficiently_large_for C; func Span(C,n) -> clockwise_oriented (standard non constant special_circular_sequence) means :: JORDAN13:def 1 it is_sequence_on Gauge(C,n) & it/.1 = Gauge(C,n)*(X-SpanStart(C,n),Y-SpanStart(C,n)) & it/.2 = Gauge(C,n)*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) & for k being Nat st 1 <= k & k+2 <= len it holds (front_right_cell(it,k,Gauge(C,n)) misses C & front_left_cell(it,k,Gauge(C,n)) misses C implies it turns_left k,Gauge(C,n)) & (front_right_cell(it,k,Gauge(C,n)) misses C & front_left_cell(it,k,Gauge(C,n)) meets C implies it goes_straight k,Gauge(C,n)) & (front_right_cell(it,k,Gauge(C,n)) meets C implies it turns_right k,Gauge(C,n)); end;