Copyright (c) 2002 Association of Mizar Users
environ vocabulary JORDAN13, JORDAN11, FINSEQ_1, TOPREAL1, GOBOARD1, BOOLE, JORDAN1H, FINSEQ_4, EUCLID, MATRIX_1, PRE_TOPC, SEQM_3, SPPOL_1, SPRECT_2, GOBOARD5, ABSVALUE, CONNSP_1, TOPREAL2, ARYTM_1, TOPS_1, RELAT_1, FUNCT_1, SUBSET_1, RELAT_2, RFINSEQ, GOBOARD9, TARSKI, TREES_1, CARD_1, JORDAN8, GOBRD13, FINSEQ_5, JORDAN2C, METRIC_1, PCOMPS_1, GROUP_1, ARYTM; notation TARSKI, GOBOARD5, XBOOLE_0, SUBSET_1, STRUCT_0, ORDINAL1, NUMBERS, XREAL_0, REAL_1, NAT_1, BINARITH, ABSVALUE, RELAT_1, FUNCT_1, FUNCT_2, CARD_1, CARD_4, PARTFUN1, FINSEQ_1, FINSEQ_2, FINSEQ_4, RFINSEQ, MATRIX_1, METRIC_1, PRE_TOPC, TOPS_1, CONNSP_1, PCOMPS_1, EUCLID, TOPREAL1, TOPREAL2, GOBOARD1, SPPOL_1, SPRECT_2, GOBOARD9, JORDAN8, GOBRD13, JORDAN2C, JORDAN1H, JORDAN11; constructors REAL_1, FINSEQ_4, CARD_4, RFINSEQ, BINARITH, TOPS_1, CONNSP_1, PSCOMP_1, REALSET1, SPRECT_2, GOBOARD9, JORDAN8, JORDAN2C, JORDAN11, GROUP_1, TOPREAL4, PARTFUN1, JORDAN1H, MEMBERED; clusters RELSET_1, FINSEQ_1, SPPOL_2, REVROT_1, SPRECT_2, XREAL_0, GOBOARD9, JORDAN8, GOBRD13, SUBSET_1, TOPREAL6, SPRECT_3, INT_1, EUCLID, JORDAN1A, MEMBERED, ZFMISC_1, NUMBERS, ORDINAL2; requirements NUMERALS, SUBSET, BOOLE, REAL, ARITHM; definitions TARSKI, XBOOLE_0, GOBOARD1, GOBOARD5; theorems NAT_1, FINSEQ_1, GOBOARD1, FINSEQ_4, EUCLID, FINSEQ_3, AXIOMS, REAL_1, TOPREAL4, SPPOL_2, JORDAN3, FINSEQ_5, FINSEQ_6, CQC_THE1, GOBOARD7, TOPREAL1, BINARITH, AMI_5, XBOOLE_0, XBOOLE_1, RLVECT_1, GOBOARD5, SPPOL_1, ABSVALUE, FUNCT_1, FUNCT_2, GROUP_5, GOBOARD9, RELAT_1, FINSEQ_2, UNIFORM1, SUBSET_1, GOBRD11, JORDAN4, GOBOARD2, SPRECT_3, CARD_1, RFINSEQ, GOBOARD6, TOPREAL3, TOPMETR, TOPS_1, JORDAN8, GOBRD13, SPRECT_4, CONNSP_1, GOBRD14, JORDAN9, JORDAN5B, JORDAN2C, PARTFUN2, RELSET_1, TBSP_1, SCMFSA_7, JORDAN1H, JORDAN11, XREAL_0, ZFMISC_1, XCMPLX_0, XCMPLX_1; schemes NAT_1, LATTICE5; begin :: Spans reserve i, j, k, l, m, n, i1, i2, j1, j2 for Nat; definition let C be non vertical non horizontal non empty being_simple_closed_curve Subset of TOP-REAL 2, n be Nat; assume A1: n is_sufficiently_large_for C; func Span(C,n) -> clockwise_oriented (standard non constant special_circular_sequence) means it is_sequence_on Gauge(C,n) & it/.1 = Gauge(C,n)*(X-SpanStart(C,n),Y-SpanStart(C,n)) & it/.2 = Gauge(C,n)*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) & for k being Nat st 1 <= k & k+2 <= len it holds (front_right_cell(it,k,Gauge(C,n)) misses C & front_left_cell(it,k,Gauge(C,n)) misses C implies it turns_left k,Gauge(C,n)) & (front_right_cell(it,k,Gauge(C,n)) misses C & front_left_cell(it,k,Gauge(C,n)) meets C implies it goes_straight k,Gauge(C,n)) & (front_right_cell(it,k,Gauge(C,n)) meets C implies it turns_right k,Gauge(C,n)); existence proof set G = Gauge(C,n); A2: len G = 2|^n+3 & len G = width G by JORDAN8:def 1; defpred P[Nat,set,set] means ($1 = 0 implies $3 = <*G*(X-SpanStart(C,n),Y-SpanStart(C,n))*>) & ($1 = 1 implies $3 = <*G*(X-SpanStart(C,n),Y-SpanStart(C,n)), G*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n))*>) & ($1 > 1 & $2 is FinSequence of TOP-REAL 2 implies for f being FinSequence of TOP-REAL 2 st $2 = f holds (len f = $1 implies (f is_sequence_on G & left_cell(f,len f-'1,G) meets C implies (front_right_cell(f,(len f)-'1,G) misses C & front_left_cell(f,(len f)-'1,G) misses C implies ex i,j st f^<*G*(i,j)*> turns_left (len f)-'1,G & $3 = f^<*G*(i,j)*>) & (front_right_cell(f,(len f)-'1,G) misses C & front_left_cell(f,(len f)-'1,G) meets C implies ex i,j st f^<*G*(i,j)*> goes_straight (len f)-'1,G & $3 = f^<*G*(i,j)*>) & (front_right_cell(f,(len f)-'1,G) meets C implies ex i,j st f^<*G*(i,j)*> turns_right (len f)-'1,G & $3 = f^<*G*(i,j)*>)) & (not f is_sequence_on G or left_cell(f,len f-'1,G) misses C implies $3 = f^<*G*(1,1)*>)) & (len f <> $1 implies $3 = {})) & ($1 > 1 & $2 is not FinSequence of TOP-REAL 2 implies $3 = {}); A3: for k being Nat, x being set ex y being set st P[k,x,y] proof let k be Nat, x be set; per cases by CQC_THE1:2; suppose A4: k=0; take <*G*(X-SpanStart(C,n),Y-SpanStart(C,n))*>; thus thesis by A4; suppose A5: k = 1; take <*G*(X-SpanStart(C,n),Y-SpanStart(C,n)), G*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n))*>; thus thesis by A5; suppose that A6: k > 1 and A7: x is FinSequence of TOP-REAL 2; reconsider f = x as FinSequence of TOP-REAL 2 by A7; thus thesis proof per cases; suppose A8: len f = k; thus thesis proof per cases; suppose A9: f is_sequence_on G & left_cell(f,len f-'1,G) meets C; A10: 1 <= (len f)-'1 by A6,A8,JORDAN3:12; A11: (len f) -'1 +1 = len f by A6,A8,AMI_5:4; then consider i1,j1,i2,j2 being Nat such that A12: [i1,j1] in Indices G & f/.((len f)-'1) = G*(i1,j1) and A13: [i2,j2] in Indices G & f/.((len f) -'1+1) = G*(i2,j2) and A14: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A9,A10,JORDAN8:6; A15: 1 <= i1 & i1 <= len G & 1 <= j1 & j1 <= width G by A12,GOBOARD5:1; A16: 1 <= i2 & i2 <= len G & 1 <= j2 & j2 <= width G by A13,GOBOARD5:1; A17: i1-'1 <= len G & j1-'1 <= width G by A15,JORDAN3:7; A18: 1 <= i2+1 & 1 <= j2+1 by NAT_1:37; A19: i2-'1 <= len G & j2-'1 <= width G by A16,JORDAN3:7; (len f)-'1 <= len f by GOBOARD9:2; then A20: (len f)-'1 in dom f & (len f)-'1+1 in dom f by A6,A8,A10,A11,FINSEQ_3:27; A21: (len f)-'1+(1+1) = (len f)+1 by A11,XCMPLX_1:1; thus thesis proof per cases; suppose A22: front_right_cell(f,(len f)-'1,G) misses C & front_left_cell(f,(len f)-'1,G) misses C; thus thesis proof per cases by A14; suppose A23: i1 = i2 & j1+1 = j2; take f1 = f^<*G*(i2-'1,j2)*>; now take i=i2-'1 ,j=j2; now let i1',j1',i2',j2' be Nat; assume that A24: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A25: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A25,GROUP_5:95; then A26: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A24,GOBOARD1:21; now assume i2-'1 < 1; then i2-'1 = 0 by RLVECT_1:98; then i2 <= 1 by JORDAN4:1; then i2 = 1 by A16,AXIOMS:21; then cell(G,1-'1,j1) meets C by A9,A10,A11,A12,A13,A23,GOBRD13:22; then cell(G,0,j1) meets C by GOBOARD9:1; hence contradiction by A2,A15,JORDAN8:21; end; hence i1' = i2' & j1'+1 = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2'+1 & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2' & j1' = j2'+1 & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') by A16,A19,A21,A23,A26,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_left (len f)-'1,G by GOBRD13:def 7; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A22; suppose A27: i1+1 = i2 & j1 = j2; take f1 = f^<*G*(i2,j2+1)*>; now take i=i2 ,j=j2+1; now let i1',j1',i2',j2' be Nat; assume that A28: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A29: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A29,GROUP_5:95; then A30: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A28,GOBOARD1:21; now assume j2+1 > len G; then j2+1 <= (len G)+1 & (len G)+1 <= j2+1 by A2,A16,AXIOMS:24,NAT_1:38; then j2+1 = (len G)+1 by AXIOMS:21; then j2 = len G by XCMPLX_1:2; then cell(G,i1,len G) meets C by A9,A10,A11,A12,A13,A27,GOBRD13:24; hence contradiction by A15,JORDAN8:18; end; hence i1' = i2' & j1'+1 = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2'+1 & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2' & j1' = j2'+1 & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') by A2,A16,A18,A21,A27,A30,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_left (len f)-'1,G by GOBRD13:def 7; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A22; suppose A31: i1 = i2+1 & j1 = j2; take f1 = f^<*G*(i2,j2-'1)*>; now take i=i2 ,j=j2-'1; now let i1',j1',i2',j2' be Nat; assume that A32: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A33: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A33,GROUP_5:95; then A34: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A32,GOBOARD1:21; now assume j2-'1 < 1; then j2-'1 = 0 by RLVECT_1:98; then j2 <= 1 by JORDAN4:1; then j2 = 1 by A16,AXIOMS:21; then cell(G,i2,1-'1) meets C by A9,A10,A11,A12,A13,A31,GOBRD13:26; then cell(G,i2,0) meets C by GOBOARD9:1; hence contradiction by A16,JORDAN8:20; end; hence i1' = i2' & j1'+1 = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2'+1 & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2' & j1' = j2'+1 & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') by A16,A19,A21,A31,A34,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_left (len f)-'1,G by GOBRD13:def 7; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A22; suppose A35: i1 = i2 & j1 = j2+1; take f1 = f^<*G*(i2+1,j2)*>; now take i=i2+1 ,j=j2; now let i1',j1',i2',j2' be Nat; assume that A36: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A37: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A37,GROUP_5:95; then A38: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A36,GOBOARD1:21; now assume i2+1 > len G; then i2+1 <= (len G)+1 & (len G)+1 <= i2+1 by A16,AXIOMS:24,NAT_1:38; then i2+1 = (len G)+1 by AXIOMS:21; then i2 = len G by XCMPLX_1:2; then cell(G,len G,j2) meets C by A9,A10,A11,A12,A13,A35,GOBRD13:28; hence contradiction by A2,A16,JORDAN8:19; end; hence i1' = i2' & j1'+1 = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2'+1 & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2' & j1' = j2'+1 & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') by A16,A18,A21,A35,A38,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_left (len f)-'1,G by GOBRD13:def 7; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A22; end; suppose A39: front_right_cell(f,(len f)-'1,G) misses C & front_left_cell(f,(len f)-'1,G) meets C; thus thesis proof per cases by A14; suppose A40: i1 = i2 & j1+1 = j2; take f1 = f^<*G*(i2,j2+1)*>; now take i=i2 ,j=j2+1; now let i1',j1',i2',j2' be Nat; assume that A41: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A42: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A42,GROUP_5:95; then A43: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A41,GOBOARD1:21; now assume j2+1 > len G; then j2+1 <= (len G)+1 & (len G)+1 <= j2+1 by A2,A16,AXIOMS:24,NAT_1:38; then j2+1 = (len G)+1 by AXIOMS:21; then j2 = len G by XCMPLX_1:2; then cell(G,i1-'1,len G) meets C by A9,A10,A11,A12,A13,A39,A40,GOBRD13:35; hence contradiction by A17,JORDAN8:18; end; hence i1' = i2' & j1'+1 = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1'+1 = i2' & j1' = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1' = i2'+1 & j1' = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1' = i2' & j1' = j2'+1 & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) by A2,A16,A18,A21,A40,A43,GOBOARD7:10,TOPREAL4:1; end; hence f1 goes_straight (len f)-'1,G by GOBRD13:def 8; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A39; suppose A44: i1+1 = i2 & j1 = j2; take f1 = f^<*G*(i2+1,j2)*>; now take i=i2+1 ,j=j2; now let i1',j1',i2',j2' be Nat; assume that A45: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A46: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A46,GROUP_5:95; then A47: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A45,GOBOARD1:21; now assume i2+1 > len G; then i2+1 <= (len G)+1 & (len G)+1 <= i2+1 by A16,AXIOMS:24,NAT_1:38; then i2+1 = (len G)+1 by AXIOMS:21; then i2 = len G by XCMPLX_1:2; then cell(G,len G,j1) meets C by A9,A10,A11,A12,A13,A39,A44,GOBRD13:37; hence contradiction by A2,A15,JORDAN8:19; end; hence i1' = i2' & j1'+1 = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1'+1 = i2' & j1' = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1' = i2'+1 & j1' = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1' = i2' & j1' = j2'+1 & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) by A16,A18,A21,A44,A47,GOBOARD7:10,TOPREAL4:1; end; hence f1 goes_straight (len f)-'1,G by GOBRD13:def 8; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A39; suppose A48: i1 = i2+1 & j1 = j2; take f1 = f^<*G*(i2-'1,j2)*>; now take i=i2-'1 ,j=j2; now let i1',j1',i2',j2' be Nat; assume that A49: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A50: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A50,GROUP_5:95; then A51: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A49,GOBOARD1:21; now assume i2-'1 < 1; then i2-'1 = 0 by RLVECT_1:98; then i2 <= 1 by JORDAN4:1; then i2 = 1 by A16,AXIOMS:21; then cell(G,1-'1,j1-'1) meets C by A9,A10,A11,A12,A13,A39,A48,GOBRD13:39; then cell(G,0,j1-'1) meets C by GOBOARD9:1; hence contradiction by A2,A17,JORDAN8:21; end; hence i1' = i2' & j1'+1 = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1'+1 = i2' & j1' = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1' = i2'+1 & j1' = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1' = i2' & j1' = j2'+1 & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) by A16,A19,A21,A48,A51,GOBOARD7:10,TOPREAL4:1; end; hence f1 goes_straight (len f)-'1,G by GOBRD13:def 8; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A39; suppose A52: i1 = i2 & j1 = j2+1; take f1 = f^<*G*(i2,j2-'1)*>; now take i=i2 ,j=j2-'1; now let i1',j1',i2',j2' be Nat; assume that A53: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A54: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A54,GROUP_5:95; then A55: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A53,GOBOARD1:21; now assume j2-'1 < 1; then j2-'1 = 0 by RLVECT_1:98; then j2 <= 1 by JORDAN4:1; then j2 = 1 by A16,AXIOMS:21; then cell(G,i1,1-'1) meets C by A9,A10,A11,A12,A13,A39,A52,GOBRD13:41; then cell(G,i1,0) meets C by GOBOARD9:1; hence contradiction by A15,JORDAN8:20; end; hence i1' = i2' & j1'+1 = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1'+1 = i2' & j1' = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1' = i2'+1 & j1' = j2' & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') or i1' = i2' & j1' = j2'+1 & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) by A16,A19,A21,A52,A55,GOBOARD7:10,TOPREAL4:1; end; hence f1 goes_straight (len f)-'1,G by GOBRD13:def 8; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A39; end; suppose A56: front_right_cell(f,(len f)-'1,G) meets C; thus thesis proof per cases by A14; suppose A57: i1 = i2 & j1+1 = j2; take f1 = f^<*G*(i2+1,j2)*>; now take i=i2+1 ,j=j2; now let i1',j1',i2',j2' be Nat; assume that A58: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A59: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A59,GROUP_5:95; then A60: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A58,GOBOARD1:21; now assume i2+1 > len G; then i2+1 <= (len G)+1 & (len G)+1 <= i2+1 by A16,AXIOMS:24,NAT_1:38; then i2+1 = (len G)+1 by AXIOMS:21; then i2 = len G by XCMPLX_1:2; then cell(G,len G,j2) meets C by A9,A10,A11,A12,A13,A56,A57,GOBRD13:36; hence contradiction by A2,A16,JORDAN8:19; end; hence i1' = i2' & j1'+1 = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2'+1 & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2' & j1' = j2'+1 & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') by A16,A18,A21,A57,A60,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_right (len f)-'1,G by GOBRD13:def 6; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A56; suppose A61: i1+1 = i2 & j1 = j2; take f1 = f^<*G*(i2,j2-'1)*>; now take i=i2 ,j=j2-'1; now let i1',j1',i2',j2' be Nat; assume that A62: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A63: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A63,GROUP_5:95; then A64: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A62,GOBOARD1:21; now assume j2-'1 < 1; then j2-'1 = 0 by RLVECT_1:98; then j2 <= 1 by JORDAN4:1; then j2 = 1 by A16,AXIOMS:21; then cell(G,i2,1-'1) meets C by A9,A10,A11,A12,A13,A56,A61,GOBRD13:38; then cell(G,i2,0) meets C by GOBOARD9:1; hence contradiction by A16,JORDAN8:20; end; hence i1' = i2' & j1'+1 = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2'+1 & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2' & j1' = j2'+1 & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') by A16,A19,A21,A61,A64,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_right (len f)-'1,G by GOBRD13:def 6; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A56; suppose A65: i1 = i2+1 & j1 = j2; take f1 = f^<*G*(i2,j2+1)*>; now take i=i2 ,j=j2+1; now let i1',j1',i2',j2' be Nat; assume that A66: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A67: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A67,GROUP_5:95; then A68: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A66,GOBOARD1:21; now assume j2+1 > len G; then j2+1 <= (len G)+1 & (len G)+1 <= j2+1 by A2,A16,AXIOMS:24,NAT_1:38; then j2+1 = (len G)+1 by AXIOMS:21; then j2 = len G by XCMPLX_1:2; then cell(G,i2-'1,len G) meets C by A9,A10,A11,A12,A13,A56,A65,GOBRD13:40; hence contradiction by A19,JORDAN8:18; end; hence i1' = i2' & j1'+1 = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2'+1 & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2' & j1' = j2'+1 & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') by A2,A16,A18,A21,A65,A68,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_right (len f)-'1,G by GOBRD13:def 6; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A56; suppose A69: i1 = i2 & j1 = j2+1; take f1 = f^<*G*(i2-'1,j2)*>; now take i=i2-'1 ,j=j2; now let i1',j1',i2',j2' be Nat; assume that A70: [i1',j1'] in Indices G & [i2',j2'] in Indices G and A71: f1/.((len f)-'1) = G*(i1',j1') & f1/.((len f)-'1+1) = G*(i2',j2'); f/.((len f)-'1) = G*(i1',j1') & f/.((len f)-'1+1) = G*(i2',j2') by A20,A71,GROUP_5:95; then A72: i1 = i1' & j1 = j1' & i2 = i2' & j2 = j2' by A12,A13,A70,GOBOARD1:21; now assume i2-'1 < 1; then i2-'1 = 0 by RLVECT_1:98; then i2 <= 1 by JORDAN4:1; then i2 = 1 by A16,AXIOMS:21; then cell(G,1-'1,j2-'1) meets C by A9,A10,A11,A12,A13,A56,A69,GOBRD13:42; then cell(G,0,j2-'1) meets C by GOBOARD9:1; hence contradiction by A2,A19,JORDAN8:21; end; hence i1' = i2' & j1'+1 = j2' & [i2'+1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'+1,j2') or i1'+1 = i2' & j1' = j2' & [i2',j2'-'1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'-'1) or i1' = i2'+1 & j1' = j2' & [i2',j2'+1] in Indices G & f1/.(len f -'1+2) = G*(i2',j2'+1) or i1' = i2' & j1' = j2'+1 & [i2'-'1,j2'] in Indices G & f1/.(len f -'1+2) = G*(i2'-'1,j2') by A16,A19,A21,A69,A72,GOBOARD7:10,TOPREAL4:1; end; hence f1 turns_right (len f)-'1,G by GOBRD13:def 6; thus f1 = f^<*G*(i,j)*>; end; hence thesis by A6,A8,A9,A56; end; end; suppose A73: not f is_sequence_on G or left_cell(f,len f-'1,G) misses C; take f^<*G*(1,1)*>; thus thesis by A6,A8,A73; end; suppose A74: len f <> k; take {}; thus thesis by A6,A74; end; suppose A75: k > 1 & x is not FinSequence of TOP-REAL 2; take {}; thus thesis by A75; end; consider F being Function such that A76: dom F = NAT and A77: F.0 = {} and A78: for k being Element of NAT holds P[k,F.k,F.(k+1)] from RecChoice(A3); defpred P[Nat] means F.$1 is FinSequence of TOP-REAL 2; A79: {} = <*>(the carrier of TOP-REAL 2); then A80: P[0] by A77; A81: for k st P[k] holds P[k+1] proof let k such that A82: F.k is FinSequence of TOP-REAL 2; per cases by CQC_THE1:2; suppose k = 0; hence F.(k+1) is FinSequence of TOP-REAL 2 by A78; suppose k = 1; hence F.(k+1) is FinSequence of TOP-REAL 2 by A78; suppose A83: k > 1; thus thesis proof reconsider f = F.k as FinSequence of TOP-REAL 2 by A82; per cases; suppose A84: len f = k; thus thesis proof per cases; suppose f is_sequence_on G & left_cell(f,len f-'1,G) meets C; then (front_right_cell(f,(len f)-'1,G) misses C & front_left_cell(f,(len f)-'1,G) misses C implies ex i,j st f^<*G*(i,j)*> turns_left (len f)-'1,G & F.(k+1) = f^<*G*(i,j)*>) & (front_right_cell(f,(len f)-'1,G) misses C & front_left_cell(f,(len f)-'1,G) meets C implies ex i,j st f^<*G*(i,j)*> goes_straight (len f)-'1,G & F.(k+1) = f^<*G*(i,j)*>) & (front_right_cell(f,(len f)-'1,G) meets C implies ex i,j st f^<*G*(i,j)*> turns_right (len f)-'1,G & F.(k+1) = f^<*G*(i,j)*>) by A78,A83,A84; hence F.(k+1) is FinSequence of TOP-REAL 2; suppose A85: not f is_sequence_on G or left_cell(f,len f-'1,G) misses C; f^<*G*(1,1)*> is FinSequence of TOP-REAL 2; hence F.(k+1) is FinSequence of TOP-REAL 2 by A78,A83,A84,A85; end; suppose len f <> k; hence F.(k+1) is FinSequence of TOP-REAL 2 by A78,A79,A83; end; end; A86: for k holds P[k] from Ind(A80,A81); rng F c= (the carrier of TOP-REAL 2)* proof let y be set; assume y in rng F; then ex x being set st x in dom F & F.x = y by FUNCT_1:def 5; then y is FinSequence of TOP-REAL 2 by A76,A86; hence thesis by FINSEQ_1:def 11; end; then reconsider F as Function of NAT,(the carrier of TOP-REAL 2)* by A76,FUNCT_2:def 1,RELSET_1:11; defpred P[Nat] means len(F.$1) = $1; A87: P[0] by A77,FINSEQ_1:25; A88: for k st P[k] holds P[k+1] proof let k such that A89: len(F.k) = k; A90: P[k,F.k,F.(k+1)] by A78; per cases by CQC_THE1:2; suppose k = 0; hence thesis by A90,FINSEQ_1:56; suppose k = 1; hence thesis by A90,FINSEQ_1:61; suppose A91: k > 1; thus thesis proof per cases; suppose F.k is_sequence_on G & left_cell(F.k,len(F.k)-'1,G) meets C; then (front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C implies ex i,j st (F.k)^<*G*(i,j)*> turns_left (len(F.k))-'1,G & F.(k+1) = (F.k)^<*G*(i,j)*>) & (front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C implies ex i,j st (F.k)^<*G*(i,j)*> goes_straight (len(F.k))-'1,G & F.(k+1) = (F.k)^<*G*(i,j)*>) & (front_right_cell(F.k,(len(F.k))-'1,G) meets C implies ex i,j st (F.k)^<*G*(i,j)*> turns_right (len(F.k))-'1,G & F.(k+1) = (F.k)^<*G*(i,j)*>) by A78,A89,A91; hence thesis by A89,FINSEQ_2:19; suppose not F.k is_sequence_on G or left_cell(F.k,len(F.k)-'1,G) misses C; then F.(k+1) = (F.k)^<*G*(1,1)*> by A78,A89,A91; hence thesis by A89,FINSEQ_2:19; end; end; A92: for k holds P[k] from Ind(A87,A88); set XS = X-SpanStart(C,n), YS = Y-SpanStart(C,n); 2 < XS by JORDAN1H:58; then A93: 1 <= XS by AXIOMS:22; defpred Q[Nat] means F.$1 is_sequence_on G & for m st 1 <= m & m+1 <= len(F.$1) holds right_cell(F.$1,m,G) misses C & left_cell(F.$1,m,G) meets C; A94: Q[0] proof (for n st n in dom(F.0) ex i,j st [i,j] in Indices G & (F.0)/.n = G*(i,j)) & (for n st n in dom(F.0) & n+1 in dom(F.0) holds for m,k,i,j st [m,k] in Indices G & [i,j] in Indices G & (F.0)/.n = G*(m,k) & (F.0)/.(n+1) = G*(i,j) holds abs(m-i)+abs(k-j) = 1) by A77,RELAT_1:60; hence F.0 is_sequence_on G by GOBOARD1:def 11; let m; assume A95: 1 <= m & m+1 <= len(F.0); 1 <= m+1 by NAT_1:37; then 1 <= len(F.0) by A95,AXIOMS:22; then 1 <= 0 by A77,FINSEQ_1:25; hence right_cell(F.0,m,G) misses C & left_cell(F.0,m,G) meets C; end; A96: [X-SpanStart(C,n),Y-SpanStart(C,n)] in Indices G by A1,JORDAN11:8; 1+1 <= XS by JORDAN1H:58; then A97: 1 <= XS-'1 & XS <= len G by JORDAN1H:58,SPRECT_3:8; A98: for k st Q[k] holds Q[k+1] proof let k such that A99: F.k is_sequence_on G and A100: for m st 1 <= m & m+1 <= len(F.k) holds right_cell(F.k,m,G) misses C & left_cell(F.k,m,G) meets C; A101: len(F.k) = k by A92; A102: len(F.(k+1)) = k+1 by A92; per cases by CQC_THE1:2; suppose A103: k = 0; then A104: F.(k+1) = <*G*(X-SpanStart(C,n),Y-SpanStart(C,n))*> by A78; A105: now let l; assume l in dom(F.(k+1)); then 1 <= l & l <= 1 by A102,A103,FINSEQ_3:27; then l = 1 by AXIOMS:21; then (F.(k+1))/.l = G*(X-SpanStart(C,n),Y-SpanStart(C,n)) by A104,FINSEQ_4:25; hence ex i,j st [i,j] in Indices G & (F.(k+1))/.l = G*(i,j) by A96; end; now let l; assume l in dom(F.(k+1)) & l+1 in dom(F.(k+1)); then 1 <= l & l <= 1 & 1 <= l+1 & l+1 <= 1 by A102,A103,FINSEQ_3:27; then l = 1 & 1 = l+1 by AXIOMS:21; hence for i1,j1,i2,j2 st [i1,j1] in Indices G & [i2,j2] in Indices G & (F.(k+1))/.l = G*(i1,j1) & (F.(k+1))/.(l+1) = G*(i2,j2) holds abs(i1-i2)+abs(j1-j2) = 1; end; hence F.(k+1) is_sequence_on G by A105,GOBOARD1:def 11; let m; assume A106: 1 <= m & m+1 <= len(F.(k+1)); 1 <= m+1 by NAT_1:37; then m+1 = 0+1 by A102,A103,A106,AXIOMS:21; then m = 0 by XCMPLX_1:2; hence right_cell(F.(k+1),m,G) misses C & left_cell(F.(k+1),m,G) meets C by A106; suppose A107: k = 1; then F.(k+1) = <*G*(X-SpanStart(C,n),Y-SpanStart(C,n)), G*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n))*> by A78; then A108: (F.(k+1))/.1 = G*(X-SpanStart(C,n),Y-SpanStart(C,n)) & (F.(k+1))/.2 = G*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) by FINSEQ_4:26; A109: [X-SpanStart(C,n),Y-SpanStart(C,n)] in Indices G & [X-SpanStart(C,n)-'1,Y-SpanStart(C,n)] in Indices G by A1,JORDAN11:8,9; A110: now let l; assume A111: l in dom(F.(k+1)); then 1 <= l & l <= 2 by A102,A107,FINSEQ_3:27; then l = 0 or l = 1 or l = 2 by CQC_THE1:3; hence ex i,j st [i,j] in Indices G & (F.(k+1))/.l = G*(i,j) by A108,A109,A111,FINSEQ_3:27; end; now let l; assume A112: l in dom(F.(k+1)) & l+1 in dom(F.(k+1)); then 1 <= l & l <= 2 & 1 <= l+1 & l+1 <= 2 by A102,A107,FINSEQ_3:27; then A113: l = 0 or l = 1 or l = 2 by CQC_THE1:3; let i1,j1,i2,j2 be Nat such that A114: [i1,j1] in Indices G & [i2,j2]in Indices G & (F.(k+1))/.l = G*(i1,j1) & (F.(k+1))/.(l+1) = G*(i2,j2); A115: i1 = XS & j1 = YS & i2 = XS-'1 & j2 = YS by A102,A107,A108,A109,A112,A113,A114,FINSEQ_3:27,GOBOARD1:21; then i2+1 = i1 by A97,JORDAN3:6; then i1-i2 = 1 & j1-j2 = 0 by A115,XCMPLX_1:14,26; then abs(i1-i2) = 1 & abs(j1-j2) = 0 by ABSVALUE:def 1; hence abs(i1-i2)+abs(j1-j2) = 1; end; hence A116: F.(k+1) is_sequence_on G by A110,GOBOARD1:def 11; let m; assume A117: 1 <= m & m+1 <= len(F.(k+1)); then 1+1 <= m+1 by AXIOMS:24; then m+1 = 1+1 by A102,A107,A117,AXIOMS:21; then A118: m = 1 by XCMPLX_1:2; A119: XS-'1 < XS & XS-'1 < XS-'1+1 by A93,JORDAN5B:1,NAT_1:38; A120: XS <= XS+1 by NAT_1:29; then A121: right_cell(F.(k+1),m,G) = cell(G,XS-'1,YS) by A108,A109,A116,A117,A118,A119,GOBRD13:def 2; A122: left_cell(F.(k+1),m,G) = cell(G,XS-'1,YS-'1) by A108,A109,A116,A117,A118,A119,A120,GOBRD13:def 3; thus right_cell(F.(k+1),m,G) misses C by A1,A121,JORDAN11:11; thus left_cell(F.(k+1),m,G) meets C by A1,A122,JORDAN11:10; suppose A123: k > 1; then k > 0 by AXIOMS:22; then A124: F.k is non empty by A101,FINSEQ_1:25; A125: 1 <= (len(F.k))-'1 by A101,A123,JORDAN3:12; A126: (len(F.k)) -'1 +1 = len(F.k) by A101,A123,AMI_5:4; then consider i1,j1,i2,j2 being Nat such that A127: [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) and A128: [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2) and i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A99,A125,JORDAN8:6; A129: 1 <= i2 & i2 <= len G & 1 <= j2 & j2 <= width G by A128,GOBOARD5:1; (len(F.k))-'1 <= len(F.k) by GOBOARD9:2; then A130: (len(F.k))-'1 in dom(F.k) & len(F.k) in dom(F.k) by A101,A123,A125,FINSEQ_3:27; A131: (len(F.k))-'1+(1+1) = (len(F.k))+1 by A126,XCMPLX_1:1; A132: right_cell(F.k,(len(F.k))-'1,G) misses C & left_cell(F.k,(len(F.k))-'1,G) meets C by A100,A125,A126; then A133: i1 = i2 & j1+1 = j2 implies [i1-'1,j1+1] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:61; A134: i1+1 = i2 & j1 = j2 implies [i1+1,j1+1] in Indices G by A99,A101,A123,A127,A128,A132,JORDAN1H:62; A135: i1 = i2+1 & j1 = j2 implies [i2,j1-'1] in Indices G by A99,A101,A123,A127,A128,A132,JORDAN1H:63; A136: i1 = i2 & j1 = j2+1 implies [i1+1,j2] in Indices G by A99,A101,A123,A127,A128,A132,JORDAN1H:64; j1+1+1 = j1+(1+1) by XCMPLX_1:1 .= j1+2; then A137: front_left_cell(F.k,(len(F.k))-'1,G) meets C & i1 = i2 & j1+1 = j2 implies [i1,j2+1] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:65; i1+1+1 = i1+(1+1) by XCMPLX_1:1 .= i1+2; then A138: front_left_cell(F.k,(len(F.k))-'1,G) meets C & i1+1 = i2 & j1 = j2 implies [i2+1,j2] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:66; A139: front_left_cell(F.k,(len(F.k))-'1,G) meets C & i1 = i2+1 & j1 = j2 implies [i2-'1,j2] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:67; A140: front_left_cell(F.k,(len(F.k))-'1,G) meets C & i1 = i2 & j1 = j2+1 implies [i2,j2-'1] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:68; A141: front_right_cell(F.k,(len(F.k))-'1,G) meets C & i1 = i2 & j1+1 = j2 implies [i2+1,j2] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:69; A142: front_right_cell(F.k,(len(F.k))-'1,G) meets C & i1+1 = i2 & j1 = j2 implies [i2,j2-'1] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:70; A143: front_right_cell(F.k,(len(F.k))-'1,G) meets C & i1 = i2+1 & j1 = j2 implies [i2,j2+1] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:71; A144: front_right_cell(F.k,(len(F.k))-'1,G) meets C & i1 = i2 & j1 = j2+1 implies [i2-'1,j2] in Indices G by A99,A101,A123,A127,A128,JORDAN1H:72; thus A145: F.(k+1) is_sequence_on G proof per cases; suppose front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C; then consider i,j such that A146: (F.k)^<*G*(i,j)*> turns_left (len(F.k))-'1,G and A147: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; set f = (F.k)^<*G*(i,j)*>; A148: f/.(len(F.k)-'1) = G*(i1,j1) & f/.len(F.k) = G*(i2,j2) by A127,A128,A130,GROUP_5:95; A149: f/.(len(F.k)+1) = G*(i,j) by TOPREAL4:1; thus thesis proof per cases by A126,A127,A128,A131,A146,A148,GOBRD13:def 7; suppose that A150: i1 = i2 & j1+1 = j2 and A151: f/.(len(F.k)+1) = G*(i2-'1,j2); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2-'1,j2) = G*(i2',j2'); then A152: i2 = i1' & j2 = j1' & i2-'1 = i2' & j2 = j2' by A128,A133,A150,GOBOARD1:21; then i1'-i2' = i2-(i2-1) by A129,SCMFSA_7:3; then j2'-j1' = 0 & i1'-i2' = 1 by A152,XCMPLX_1:14,18; then abs(j2'-j1') = 0 & abs(i1'-i2') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1 by UNIFORM1:13; end; hence F.(k+1) is_sequence_on G by A99,A124,A133,A147,A149,A150,A151,JORDAN8:9; suppose that A153: i1+1 = i2 & j1 = j2 and A154: f/.(len(F.k)+1) = G*(i2,j2+1); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2,j2+1) = G*(i2',j2'); then i2 = i1' & j2 = j1' & i2 = i2' & j2+1 = j2' by A128,A134,A153,GOBOARD1:21; then i2'-i1' = 0 & j2'-j1' = 1 by XCMPLX_1:14,26; then abs(i2'-i1') = 0 & abs(j2'-j1') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1; end; hence F.(k+1) is_sequence_on G by A99,A124,A134,A147,A149,A153,A154,JORDAN8:9; suppose that A155: i1 = i2+1 & j1 = j2 and A156: f/.(len(F.k)+1) = G*(i2,j2-'1); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2,j2-'1) = G*(i2',j2'); then A157: i2 = i1' & j2 = j1' & i2 = i2' & j2-'1 = j2' by A128,A135,A155,GOBOARD1:21; then j1'-j2' = j2-(j2-1) by A129,SCMFSA_7:3; then i2'-i1' = 0 & j1'-j2' = 1 by A157,XCMPLX_1:14,18; then abs(i2'-i1') = 0 & abs(j1'-j2') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1 by UNIFORM1:13; end; hence F.(k+1) is_sequence_on G by A99,A124,A135,A147,A149,A155,A156,JORDAN8:9; suppose that A158: i1 = i2 & j1 = j2+1 and A159: f/.(len(F.k)+1) = G*(i2+1,j2); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2+1,j2) = G*(i2',j2'); then i2 = i1' & j2 = j1' & i2+1 = i2' & j2 = j2' by A128,A136,A158,GOBOARD1:21; then i2'-i1' = 1 & j2'-j1' = 0 by XCMPLX_1:14,26; then abs(i2'-i1') = 1 & abs(j2'-j1') = 0 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1; end; hence F.(k+1) is_sequence_on G by A99,A124,A136,A147,A149,A158,A159,JORDAN8:9; end; suppose A160: front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that A161: (F.k)^<*G*(i,j)*> goes_straight (len(F.k))-'1,G and A162: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; set f = (F.k)^<*G*(i,j)*>; A163: f/.(len(F.k)-'1) = G*(i1,j1) & f/.len(F.k) = G*(i2,j2) by A127,A128,A130,GROUP_5:95; A164: f/.(len(F.k)+1) = G*(i,j) by TOPREAL4:1; thus thesis proof per cases by A126,A127,A128,A131,A161,A163,GOBRD13:def 8; suppose that A165: i1 = i2 & j1+1 = j2 and A166: f/.(len(F.k)+1) = G*(i2,j2+1); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2,j2+1) = G*(i2',j2'); then i2 = i1' & j2 = j1' & i2 = i2' & j2+1 = j2' by A128,A137,A160,A165,GOBOARD1:21; then i2'-i1' = 0 & j2'-j1' = 1 by XCMPLX_1:14,26; then abs(i2'-i1') = 0 & abs(j2'-j1') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1; end; hence F.(k+1) is_sequence_on G by A99,A124,A137,A160,A162,A164,A165,A166,JORDAN8:9; suppose that A167: i1+1 = i2 & j1 = j2 and A168: f/.(len(F.k)+1) = G*(i2+1,j2); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2+1,j2) = G*(i2',j2'); then i2 = i1' & j2 = j1' & i2+1 = i2' & j2 = j2' by A128,A138,A160,A167,GOBOARD1:21; then i2'-i1' = 1 & j2'-j1' = 0 by XCMPLX_1:14,26; then abs(i2'-i1') = 1 & abs(j2'-j1') = 0 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1; end; hence F.(k+1) is_sequence_on G by A99,A124,A138,A160,A162,A164,A167,A168,JORDAN8:9; suppose that A169: i1 = i2+1 & j1 = j2 and A170: f/.(len(F.k)+1) = G*(i2-'1,j2); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2-'1,j2) = G*(i2',j2'); then A171: i2 = i1' & j2 = j1' & i2-'1 = i2' & j2 = j2' by A128,A139,A160,A169,GOBOARD1:21; then i1'-i2' = i2-(i2-1) by A129,SCMFSA_7:3; then j2'-j1' = 0 & i1'-i2' = 1 by A171,XCMPLX_1:14,18; then abs(j2'-j1') = 0 & abs(i1'-i2') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1 by UNIFORM1:13; end; hence F.(k+1) is_sequence_on G by A99,A124,A139,A160,A162,A164,A169,A170,JORDAN8:9; suppose that A172: i1 = i2 & j1 = j2+1 and A173: f/.(len(F.k)+1) = G*(i2,j2-'1); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2,j2-'1) = G*(i2',j2'); then A174: i2 = i1' & j2 = j1' & i2 = i2' & j2-'1 = j2' by A128,A140,A160,A172,GOBOARD1:21; then j1'-j2' = j2-(j2-1) by A129,SCMFSA_7:3; then i2'-i1' = 0 & j1'-j2' = 1 by A174,XCMPLX_1:14,18; then abs(i2'-i1') = 0 & abs(j1'-j2') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1 by UNIFORM1:13; end; hence F.(k+1) is_sequence_on G by A99,A124,A140,A160,A162,A164,A172,A173,JORDAN8:9; end; suppose A175: front_right_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that A176: (F.k)^<*G*(i,j)*> turns_right (len(F.k))-'1,G and A177: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; set f = (F.k)^<*G*(i,j)*>; A178: f/.(len(F.k)-'1) = G*(i1,j1) & f/.len(F.k) = G*(i2,j2) by A127,A128,A130,GROUP_5:95; A179: f/.(len(F.k)+1) = G*(i,j) by TOPREAL4:1; thus thesis proof per cases by A126,A127,A128,A131,A176,A178,GOBRD13:def 6; suppose that A180: i1 = i2 & j1+1 = j2 and A181: f/.(len(F.k)+1) = G*(i2+1,j2); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2+1,j2) = G*(i2',j2'); then i2 = i1' & j2 = j1' & i2+1 = i2' & j2 = j2' by A128,A141,A175,A180,GOBOARD1:21; then i2'-i1' = 1 & j2'-j1' = 0 by XCMPLX_1:14,26; then abs(i2'-i1') = 1 & abs(j2'-j1') = 0 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1; end; hence F.(k+1) is_sequence_on G by A99,A124,A141,A175,A177,A179,A180,A181,JORDAN8:9; suppose that A182: i1+1 = i2 & j1 = j2 and A183: f/.(len(F.k)+1) = G*(i2,j2-'1); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2,j2-'1) = G*(i2',j2'); then A184: i2 = i1' & j2 = j1' & i2 = i2' & j2-'1 = j2' by A128,A142,A175,A182,GOBOARD1:21; then j1'-j2' = j2-(j2-1) by A129,SCMFSA_7:3; then i2'-i1' = 0 & j1'-j2' = 1 by A184,XCMPLX_1:14,18; then abs(i2'-i1') = 0 & abs(j1'-j2') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1 by UNIFORM1:13; end; hence F.(k+1) is_sequence_on G by A99,A124,A142,A175,A177,A179,A182, A183,JORDAN8:9; suppose that A185: i1 = i2+1 & j1 = j2 and A186: f/.(len(F.k)+1) = G*(i2,j2+1); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2,j2+1) = G*(i2',j2'); then i2 = i1' & j2 = j1' & i2 = i2' & j2+1 = j2' by A128,A143,A175,A185,GOBOARD1:21; then i2'-i1' = 0 & j2'-j1' = 1 by XCMPLX_1:14,26; then abs(i2'-i1') = 0 & abs(j2'-j1') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1; end; hence F.(k+1) is_sequence_on G by A99,A124,A143,A175,A177,A179,A185,A186,JORDAN8:9; suppose that A187: i1 = i2 & j1 = j2+1 and A188: f/.(len(F.k)+1) = G*(i2-'1,j2); now let i1',j1',i2',j2' be Nat; assume [i1',j1'] in Indices G & [i2',j2'] in Indices G & (F.k)/.len(F.k) = G*(i1',j1') & G*(i2-'1,j2) = G*(i2',j2'); then A189: i2 = i1' & j2 = j1' & i2-'1 = i2' & j2 = j2' by A128,A144,A175,A187,GOBOARD1:21; then i1'-i2' = i2-(i2-1) by A129,SCMFSA_7:3; then j2'-j1' = 0 & i1'-i2' = 1 by A189,XCMPLX_1:14,18; then abs(j2'-j1') = 0 & abs(i1'-i2') = 1 by ABSVALUE:def 1; hence abs(i2'-i1')+abs(j2'-j1') = 1 by UNIFORM1:13; end; hence F.(k+1) is_sequence_on G by A99,A124,A144,A175,A177,A179,A187,A188,JORDAN8:9; end; end; let m such that A190: 1 <= m & m+1 <= len(F.(k+1)); now per cases; suppose m+1 = len(F.(k+1)); then A191: m = len(F.k) by A101,A102,XCMPLX_1:2; A192: (i2-'1)+1 = i2 by A129,AMI_5:4; A193: (j2-'1)+1 = j2 by A129,AMI_5:4; thus thesis proof per cases; suppose A194: front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C; then consider i,j such that A195: (F.k)^<*G*(i,j)*> turns_left (len(F.k))-'1,G and A196: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; A197: (F.(k+1))/.(len(F.k)-'1) = G*(i1,j1) & (F.(k+1))/.len(F.k) = G*(i2,j2) by A127,A128,A130,A196,GROUP_5:95; now per cases by A126,A127,A128,A131,A195,A196,A197,GOBRD13:def 7; suppose that A198: i1 = i2 & j1+1 = j2 and A199: (F.(k+1))/.(len(F.k)+1) = G*(i2-'1,j2); front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i1-'1,j2) by A99,A125,A126,A127,A128,A198,GOBRD13:35; hence right_cell(F.(k+1),m,G) misses C by A128,A133,A145,A190,A191,A192,A194,A197,A198,A199,GOBRD13:27; j2-'1 = j1 & cell(G,i1-'1,j1) meets C by A99,A125,A126,A127,A128,A132,A198,BINARITH:39,GOBRD13:22; hence left_cell(F.(k+1),m,G) meets C by A128,A133,A145,A190,A191,A192,A197,A198,A199,GOBRD13:26; suppose that A200: i1+1 = i2 & j1 = j2 and A201: (F.(k+1))/.(len(F.k)+1) = G*(i2,j2+1); front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i2,j2) by A99,A125,A126,A127,A128,A200,GOBRD13:37; hence right_cell(F.(k+1),m,G) misses C by A128,A134,A145,A190,A191,A194,A197,A200,A201,GOBRD13:23; i1+1-'1 = i1 & cell(G,i1,j1) meets C by A99,A125,A126,A127,A128,A132,A200,BINARITH:39,GOBRD13:24; hence left_cell(F.(k+1),m,G) meets C by A128,A134,A145,A190,A191,A197,A200,A201,GOBRD13:22; suppose that A202: i1 = i2+1 & j1 = j2 and A203: (F.(k+1))/.(len(F.k)+1) = G*(i2,j2-'1); front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i2-'1,j2-'1) by A99,A125,A126,A127,A128,A202,GOBRD13:39; hence right_cell(F.(k+1),m,G) misses C by A128,A135,A145,A190,A191,A193,A194,A197,A202,A203,GOBRD13:29; cell(G,i2,j2-'1) meets C by A99,A125,A126,A127,A128,A132,A202, GOBRD13:26; hence left_cell(F.(k+1),m,G) meets C by A128,A135,A145,A190,A191,A193,A197,A202,A203,GOBRD13:28; suppose that A204: i1 = i2 & j1 = j2+1 and A205: (F.(k+1))/.(len(F.k)+1) = G*(i2+1,j2); front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i2,j2-'1) by A99,A125,A126,A127,A128,A204,GOBRD13:41; hence right_cell(F.(k+1),m,G) misses C by A128,A136,A145,A190,A191,A194,A197,A204,A205,GOBRD13:25; cell(G,i2,j2) meets C by A99,A125,A126,A127,A128,A132,A204, GOBRD13:28; hence left_cell(F.(k+1),m,G) meets C by A128,A136,A145,A190,A191,A197,A204,A205,GOBRD13:24; end; hence thesis; suppose A206: front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that A207: (F.k)^<*G*(i,j)*> goes_straight (len(F.k))-'1,G and A208: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; A209: (F.(k+1))/.(len(F.k)-'1) = G*(i1,j1) & (F.(k+1))/.len(F.k) = G*(i2,j2) by A127,A128,A130,A208,GROUP_5:95; now per cases by A126,A127,A128,A131,A207,A208,A209,GOBRD13:def 8; suppose that A210: i1 = i2 & j1+1 = j2 and A211: (F.(k+1))/.(len(F.k)+1) = G*(i2,j2+1); front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i1,j2) by A99,A125,A126,A127,A128,A210,GOBRD13:36; hence right_cell(F.(k+1),m,G) misses C by A128,A137,A145,A190,A191,A206,A209,A210,A211,GOBRD13:23; front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i1-'1,j2) by A99,A125,A126,A127,A128,A210,GOBRD13:35; hence left_cell(F.(k+1),m,G) meets C by A128,A137,A145,A190,A191,A206,A209,A210,A211,GOBRD13:22; suppose that A212: i1+1 = i2 & j1 = j2 and A213: (F.(k+1))/.(len(F.k)+1) = G*(i2+1,j2); front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i2,j2-'1) by A99,A125,A126,A127,A128,A212,GOBRD13:38; hence right_cell(F.(k+1),m,G) misses C by A128,A138,A145,A190,A191,A206,A209,A212,A213,GOBRD13:25; front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i2,j2) by A99,A125,A126,A127,A128,A212,GOBRD13:37; hence left_cell(F.(k+1),m,G) meets C by A128,A138,A145,A190,A191,A206,A209,A212,A213,GOBRD13:24; suppose that A214: i1 = i2+1 & j1 = j2 and A215: (F.(k+1))/.(len(F.k)+1) = G*(i2-'1,j2); front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i2-'1,j2) by A99,A125,A126,A127,A128,A214,GOBRD13:40; hence right_cell(F.(k+1),m,G) misses C by A128,A139,A145,A190,A191,A192,A206,A209,A214,A215,GOBRD13:27; front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i2-'1,j2-'1) by A99,A125,A126,A127,A128,A214,GOBRD13:39; hence left_cell(F.(k+1),m,G) meets C by A128,A139,A145,A190,A191,A192,A206,A209,A214,A215,GOBRD13:26; suppose that A216: i1 = i2 & j1 = j2+1 and A217: (F.(k+1))/.(len(F.k)+1) = G*(i2,j2-'1); front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i2-'1,j2-'1) by A99,A125,A126,A127,A128,A216,GOBRD13:42; hence right_cell(F.(k+1),m,G) misses C by A128,A140,A145,A190,A191,A193,A206,A209,A216,A217,GOBRD13:29; front_left_cell(F.k,(len(F.k))-'1,G) = cell(G,i2,j2-'1) by A99,A125,A126,A127,A128,A216,GOBRD13:41; hence left_cell(F.(k+1),m,G) meets C by A128,A140,A145,A190,A191,A193,A206,A209,A216,A217,GOBRD13:28; end; hence thesis; suppose A218: front_right_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that A219: (F.k)^<*G*(i,j)*> turns_right (len(F.k))-'1,G and A220: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; A221: (F.(k+1))/.(len(F.k)-'1) = G*(i1,j1) & (F.(k+1))/.len(F.k) = G*(i2,j2) by A127,A128,A130,A220,GROUP_5:95; now per cases by A126,A127,A128,A131,A219,A220,A221,GOBRD13:def 6; suppose that A222: i1 = i2 & j1+1 = j2 and A223: (F.(k+1))/.(len(F.k)+1) = G*(i2+1,j2); j2 -'1 = j1 & cell(G,i1,j1) misses C by A99,A125,A126,A127,A128,A132,A222,BINARITH:39,GOBRD13:23; hence right_cell(F.(k+1),m,G) misses C by A128,A141,A145,A190,A191,A218,A221,A222,A223,GOBRD13:25; front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i2,j2) by A99,A125,A126,A127,A128,A222,GOBRD13:36; hence left_cell(F.(k+1),m,G) meets C by A128,A141,A145,A190,A191,A218,A221,A222,A223,GOBRD13:24; suppose that A224: i1+1 = i2 & j1 = j2 and A225: (F.(k+1))/.(len(F.k)+1) = G*(i2,j2-'1); i2 -'1 = i1 & cell(G,i1,j1-'1) misses C by A99,A125,A126,A127,A128,A132,A224,BINARITH:39,GOBRD13:25; hence right_cell(F.(k+1),m,G) misses C by A128,A142,A145,A190,A191,A193,A218,A221,A224,A225,GOBRD13:29; front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i2,j2-'1) by A99,A125,A126,A127,A128,A224,GOBRD13:38; hence left_cell(F.(k+1),m,G) meets C by A128,A142,A145,A190,A191,A193,A218,A221,A224,A225,GOBRD13:28; suppose that A226: i1 = i2+1 & j1 = j2 and A227: (F.(k+1))/.(len(F.k)+1) = G*(i2,j2+1); cell(G,i2,j2) misses C by A99,A125,A126,A127,A128,A132,A226, GOBRD13:27; hence right_cell(F.(k+1),m,G) misses C by A128,A143,A145,A190,A191,A218,A221,A226,A227,GOBRD13:23; front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i2-'1,j2) by A99,A125,A126,A127,A128,A226,GOBRD13:40; hence left_cell(F.(k+1),m,G) meets C by A128,A143,A145,A190,A191,A218,A221,A226,A227,GOBRD13:22; suppose that A228: i1 = i2 & j1 = j2+1 and A229: (F.(k+1))/.(len(F.k)+1) = G*(i2-'1,j2); cell(G,i2-'1,j2) misses C by A99,A125,A126,A127,A128,A132,A228, GOBRD13:29; hence right_cell(F.(k+1),m,G) misses C by A128,A144,A145,A190,A191,A192,A218,A221,A228,A229,GOBRD13:27; front_right_cell(F.k,(len(F.k))-'1,G) = cell(G,i2-'1,j2-'1) by A99,A125,A126,A127,A128,A228,GOBRD13:42; hence left_cell(F.(k+1),m,G) meets C by A128,A144,A145,A190,A191,A192,A218,A221,A228,A229,GOBRD13:26; end; hence thesis; end; suppose m+1 <> len(F.(k+1)); then m+1 < len(F.(k+1)) by A190,REAL_1:def 5; then A230: m+1 <= len(F.k)by A101,A102,NAT_1:38; then consider i1,j1,i2,j2 being Nat such that A231: [i1,j1] in Indices G & (F.k)/.m = G*(i1,j1) and A232: [i2,j2] in Indices G & (F.k)/.(m+1) = G*(i2,j2) and A233: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A99,A190,JORDAN8:6; A234: 1 <= m+1 by NAT_1:37; m <= len(F.k) by A230,NAT_1:38; then A235: m in dom(F.k) & m+1 in dom(F.k) by A190,A230,A234,FINSEQ_3:27; A236: right_cell(F.k,m,G) misses C & left_cell(F.k,m,G) meets C by A100,A190,A230; now per cases; suppose front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C; then consider i,j such that (F.k)^<*G*(i,j)*> turns_left (len(F.k))-'1,G and A237: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; take i,j; thus F.(k+1) = (F.k)^<*G*(i,j)*> by A237; suppose front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that (F.k)^<*G*(i,j)*> goes_straight (len(F.k))-'1,G and A238: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; take i,j; thus F.(k+1) = (F.k)^<*G*(i,j)*> by A238; suppose front_right_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that (F.k)^<*G*(i,j)*> turns_right (len(F.k))-'1,G and A239: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A99,A101,A123,A132; take i,j; thus F.(k+1) = (F.k)^<*G*(i,j)*> by A239; end; then consider i,j such that A240: F.(k+1) = (F.k)^<*G*(i,j)*>; A241: (F.(k+1))/.m = G*(i1,j1) & (F.(k+1))/.(m+1) = G*(i2,j2) by A231,A232,A235,A240,GROUP_5:95; now per cases by A233; suppose A242: i1 = i2 & j1+1 = j2; then left_cell(F.k,m,G) = cell(G,i1-'1,j1) & right_cell(F.k,m,G) = cell(G,i1,j1) by A99,A190,A230,A231,A232,GOBRD13:22,23; hence thesis by A145,A190,A231,A232,A236,A241,A242,GOBRD13:22,23; suppose A243: i1+1 = i2 & j1 = j2; then left_cell(F.k,m,G) = cell(G,i1,j1) & right_cell(F.k,m,G) = cell(G,i1,j1-'1) by A99,A190,A230,A231,A232,GOBRD13:24,25; hence thesis by A145,A190,A231,A232,A236,A241,A243,GOBRD13:24,25; suppose A244: i1 = i2+1 & j1 = j2; then left_cell(F.k,m,G) = cell(G,i2,j2-'1) & right_cell(F.k,m,G) = cell(G,i2,j2) by A99,A190,A230,A231,A232,GOBRD13:26,27; hence thesis by A145,A190,A231,A232,A236,A241,A244,GOBRD13:26,27; suppose A245: i1 = i2 & j1 = j2+1; then left_cell(F.k,m,G) = cell(G,i2,j2) & right_cell(F.k,m,G) = cell(G,i1-'1,j2) by A99,A190,A230,A231,A232,GOBRD13:28,29; hence thesis by A145,A190,A231,A232,A236,A241,A245,GOBRD13:28,29; end; hence thesis; end; hence thesis; end; A246: for k holds Q[k] from Ind(A94,A98); A247: P[0,F.0,F.(0+1)] by A78; A248: P[1,F.1,F.(1+1)] by A78; A249: for k,i1,i2,j1,j2 st k > 1 & [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) & [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2) holds (front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C implies F.(k+1) turns_left (len(F.k))-'1,G & (i1 = i2 & j1+1 = j2 implies [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*>) & (i1+1 = i2 & j1 = j2 implies [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*>) & (i1 = i2+1 & j1 = j2 implies [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*>)& (i1 = i2 & j1 = j2+1 implies [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*>)) proof let k,i1,i2,j1,j2 such that A250: k > 1 and A251: [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) and A252: [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2); A253: (len(F.k))-'1 <= len(F.k) by GOBOARD9:2; A254: F.k is_sequence_on G by A246; A255: len(F.k) = k by A92; then A256: 1 <= (len(F.k))-'1 by A250,JORDAN3:12; A257: (len(F.k)) -'1 +1 = len(F.k) by A250,A255,AMI_5:4; then A258: left_cell(F.k,(len(F.k))-'1,G) meets C by A246,A256; A259: (len(F.k))-'1 in dom(F.k) & len(F.k) in dom(F.k) by A250,A253,A255,A256,FINSEQ_3:27; A260: (len(F.k))-'1+(1+1) = (len(F.k))+1 by A257,XCMPLX_1:1; A261: i1+1 > i1 & i2+1 > i2 & j1+1 > j1 & j2+1 > j2 by NAT_1:38; hereby assume front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C; then consider i,j such that A262: (F.k)^<*G*(i,j)*> turns_left (len(F.k))-'1,G and A263: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A250,A254,A255,A258; A264: (F.(k+1))/.(len(F.k)-'1) = G*(i1,j1) & (F.(k+1))/.len(F.k) = G*(i2,j2) by A251,A252,A259,A263,GROUP_5:95; A265: (F.(k+1))/.(len(F.k)+1) = G*(i,j) by A263,TOPREAL4:1; thus F.(k+1) turns_left (len(F.k))-'1,G by A262,A263; thus i1 = i2 & j1+1 = j2 implies [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A251,A252,A257,A260,A261,A262,A263,A264,A265,GOBRD13:def 7; thus i1+1 = i2 & j1 = j2 implies [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A251,A252,A257,A260,A261,A262,A263,A264,A265,GOBRD13:def 7; thus i1 = i2+1 & j1 = j2 implies [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A251,A252,A257,A260,A261,A262,A263,A264,A265,GOBRD13:def 7; thus i1 = i2 & j1 = j2+1 implies [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A251,A252,A257,A260,A261,A262,A263,A264,A265,GOBRD13:def 7; end; end; A266: for k,i1,i2,j1,j2 st k > 1 & [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) & [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2) holds (front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C implies F.(k+1) goes_straight (len(F.k))-'1,G & (i1 = i2 & j1+1 = j2 implies [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*>) & (i1+1 = i2 & j1 = j2 implies [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*>) & (i1 = i2+1 & j1 = j2 implies [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*>)& (i1 = i2 & j1 = j2+1 implies [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*>)) proof let k,i1,i2,j1,j2 such that A267: k > 1 and A268: [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) and A269: [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2); A270: (len(F.k))-'1 <= len(F.k) by GOBOARD9:2; A271: F.k is_sequence_on G by A246; A272: len(F.k) = k by A92; then A273: 1 <= (len(F.k))-'1 by A267,JORDAN3:12; A274: (len(F.k)) -'1 +1 = len(F.k) by A267,A272,AMI_5:4; then A275: left_cell(F.k,(len(F.k))-'1,G) meets C by A246,A273; A276: (len(F.k))-'1 in dom(F.k) & len(F.k) in dom(F.k) by A267,A270,A272,A273,FINSEQ_3:27; A277: (len(F.k))-'1+(1+1) = (len(F.k))+1 by A274,XCMPLX_1:1; A278: i1+1 > i1 & i2+1 > i2 & j1+1 > j1 & j2+1 > j2 by NAT_1:38; hereby assume front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that A279: (F.k)^<*G*(i,j)*> goes_straight (len(F.k))-'1,G and A280: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A267,A271,A272,A275; A281: (F.(k+1))/.(len(F.k)-'1) = G*(i1,j1) & (F.(k+1))/.len(F.k) = G*(i2,j2) by A268,A269,A276,A280,GROUP_5:95; A282: (F.(k+1))/.(len(F.k)+1) = G*(i,j) by A280,TOPREAL4:1; thus F.(k+1) goes_straight (len(F.k))-'1,G by A279,A280; thus i1 = i2 & j1+1 = j2 implies [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A268,A269,A274,A277,A278,A279,A280,A281,A282,GOBRD13:def 8; thus i1+1 = i2 & j1 = j2 implies [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A268,A269,A274,A277,A278,A279,A280,A281,A282,GOBRD13:def 8; thus i1 = i2+1 & j1 = j2 implies [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A268,A269,A274,A277,A278,A279,A280,A281,A282,GOBRD13:def 8; thus i1 = i2 & j1 = j2+1 implies [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A268,A269,A274,A277,A278,A279,A280,A281,A282,GOBRD13:def 8; end; end; A283: for k,i1,i2,j1,j2 st k > 1 & [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) & [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2) holds (front_right_cell(F.k,(len(F.k))-'1,G) meets C implies F.(k+1) turns_right (len(F.k))-'1,G & (i1 = i2 & j1+1 = j2 implies [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*>) & (i1+1 = i2 & j1 = j2 implies [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*>) & (i1 = i2+1 & j1 = j2 implies [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*>)& (i1 = i2 & j1 = j2+1 implies [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*>)) proof let k,i1,i2,j1,j2 such that A284: k > 1 and A285: [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) and A286: [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2); A287: (len(F.k))-'1 <= len(F.k) by GOBOARD9:2; A288: F.k is_sequence_on G by A246; A289: len(F.k) = k by A92; then A290: 1 <= (len(F.k))-'1 by A284,JORDAN3:12; A291: (len(F.k)) -'1 +1 = len(F.k) by A284,A289,AMI_5:4; then A292: left_cell(F.k,(len(F.k))-'1,G) meets C by A246,A290; A293: (len(F.k))-'1 in dom(F.k) & len(F.k) in dom(F.k) by A284,A287,A289,A290,FINSEQ_3:27; A294: (len(F.k))-'1+(1+1) = (len(F.k))+1 by A291,XCMPLX_1:1; A295: i1+1 > i1 & i2+1 > i2 & j1+1 > j1 & j2+1 > j2 by NAT_1:38; assume front_right_cell(F.k,(len(F.k))-'1,G) meets C; then consider i,j such that A296: (F.k)^<*G*(i,j)*> turns_right (len(F.k))-'1,G and A297: F.(k+1) = (F.k)^<*G*(i,j)*> by A78,A284,A288,A289,A292; A298: (F.(k+1))/.(len(F.k)-'1) = G*(i1,j1) & (F.(k+1))/.len(F.k) = G*(i2,j2) by A285,A286,A293,A297,GROUP_5:95; A299: (F.(k+1))/.(len(F.k)+1) = G*(i,j) by A297,TOPREAL4:1; thus F.(k+1) turns_right (len(F.k))-'1,G by A296,A297; thus i1 = i2 & j1+1 = j2 implies [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A285,A286,A291,A294,A295,A296,A297,A298,A299,GOBRD13:def 6; thus i1+1 = i2 & j1 = j2 implies [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A285,A286,A291,A294,A295,A296,A297,A298,A299,GOBRD13:def 6; thus i1 = i2+1 & j1 = j2 implies [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A285,A286,A291,A294,A295,A296,A297,A298,A299,GOBRD13:def 6; thus i1 = i2 & j1 = j2+1 implies [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A285,A286,A291,A294,A295,A296,A297,A298,A299,GOBRD13:def 6; end; A300: for k holds ex i,j st [i,j] in Indices G & F.(k+1) = (F.k)^<*G*(i,j)*> proof let k; A301: F.k is_sequence_on G by A246; A302: len(F.k) = k by A92; per cases by REAL_1:def 5; suppose k < 1; then A303: k = 0 by RLVECT_1:98; take X-SpanStart(C,n),Y-SpanStart(C,n); thus [X-SpanStart(C,n),Y-SpanStart(C,n)] in Indices G by A1,JORDAN11:8; thus thesis by A77,A247,A303,FINSEQ_1:47; suppose A304: k = 1; take X-SpanStart(C,n)-'1,Y-SpanStart(C,n); thus [X-SpanStart(C,n)-'1,Y-SpanStart(C,n)] in Indices G by A1,JORDAN11:9; thus thesis by A247,A248,A304,FINSEQ_1:def 9; suppose A305: k > 1; then A306: 1 <= (len(F.k))-'1 by A302,JORDAN3:12; (len(F.k)) -'1 +1 = len(F.k) by A302,A305,AMI_5:4; then consider i1,j1,i2,j2 being Nat such that A307: [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) and A308: [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2) and A309: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A301,A306,JORDAN8:6; now per cases; suppose A310: front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C; now per cases by A309; suppose i1 = i2 & j1+1 = j2; then [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A249,A305,A307,A308,A310; hence thesis; suppose i1+1 = i2 & j1 = j2; then [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A249,A305,A307,A308,A310; hence thesis; suppose i1 = i2+1 & j1 = j2; then [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A249,A305,A307,A308,A310; hence thesis; suppose i1 = i2 & j1 = j2+1; then [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A249,A305,A307,A308,A310; hence thesis; end; hence thesis; suppose A311: front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C; now per cases by A309; suppose i1 = i2 & j1+1 = j2; then [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A266,A305,A307,A308,A311; hence thesis; suppose i1+1 = i2 & j1 = j2; then [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A266,A305,A307,A308,A311; hence thesis; suppose i1 = i2+1 & j1 = j2; then [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A266,A305,A307,A308,A311; hence thesis; suppose i1 = i2 & j1 = j2+1; then [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A266,A305,A307,A308,A311; hence thesis; end; hence thesis; suppose A312: front_right_cell(F.k,(len(F.k))-'1,G) meets C; now per cases by A309; suppose i1 = i2 & j1+1 = j2; then [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A283,A305,A307,A308,A312; hence thesis; suppose i1+1 = i2 & j1 = j2; then [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A283,A305,A307,A308,A312; hence thesis; suppose i1 = i2+1 & j1 = j2; then [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A283,A305,A307,A308,A312; hence thesis; suppose i1 = i2 & j1 = j2+1; then [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A283,A305,A307,A308,A312; hence thesis; end; hence thesis; end; hence thesis; end; defpred P[Nat] means for m st m <= $1 holds (F.$1)|m = F.m; A313: P[0] proof let m; assume A314: m <= 0; A315: 0 <= m by NAT_1:18; 0 = m by A314,NAT_1:18; then (F.0)|m = (F.m)|Seg 0 by TOPREAL1:def 1; then (F.0)|m = {} by FINSEQ_1:4,RELAT_1:110; hence thesis by A77,A314,A315,AXIOMS:21; end; A316: for k st P[k] holds P[k+1] proof let k such that A317: for m st m <= k holds (F.k)|m = F.m; let m such that A318: m <= k+1; per cases by A318,REAL_1:def 5; suppose m < k+1; then A319: m <= k by NAT_1:38; A320: len(F.k) = k by A92; consider i,j such that [i,j] in Indices G and A321: F.(k+1) = F.k^<*G*(i,j)*> by A300; (F.(k+1))|m = (F.k)|m by A319,A320,A321,FINSEQ_5:25; hence (F.(k+1))|m = F.m by A317,A319; suppose A322: m = k+1; len(F.(k+1)) = k+1 by A92; hence (F.(k+1))|m = F.m by A322,TOPREAL1:2; end; A323: for k holds P[k] from Ind(A313,A316); A324: for k st k > 1 holds (front_right_cell(F.k,k-'1,Gauge(C,n)) misses C & front_left_cell(F.k,k-'1,Gauge(C,n)) misses C implies F.(k+1) turns_left k-'1,Gauge(C,n)) & (front_right_cell(F.k,k-'1,Gauge(C,n)) misses C & front_left_cell(F.k,k-'1,Gauge(C,n)) meets C implies F.(k+1) goes_straight k-'1,Gauge(C,n)) & (front_right_cell(F.k,k-'1,Gauge(C,n)) meets C implies F.(k+1) turns_right k-'1,Gauge(C,n)) proof let k such that A325: k > 1; A326: F.k is_sequence_on G by A246; A327: len(F.k) = k by A92; then A328: 1 <= (len(F.k))-'1 by A325,JORDAN3:12; (len(F.k)) -'1 +1 = len(F.k) by A325,A327,AMI_5:4; then ex i1,j1,i2,j2 being Nat st [i1,j1] in Indices G & (F.k)/.(len(F.k)-'1) = G*(i1,j1) & [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2) & (i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1) by A326,A328,JORDAN8:6; hence thesis by A249,A266,A283,A325,A327; end; defpred P[Nat] means F.$1 is unfolded; len(F.0) = 0 by A77,FINSEQ_1:25; then A329: P[0] by SPPOL_2:27; A330: for k st P[k] holds P[k+1] proof let k such that A331: F.k is unfolded; A332: F.k is_sequence_on G by A246; per cases; suppose k <= 1; then k+1 <= 1+1 by AXIOMS:24; then len(F.(k+1)) <= 2 by A92; hence F.(k+1) is unfolded by SPPOL_2:27; suppose A333: k > 1; set m = k-'1; A334: 1 <= m by A333,JORDAN3:12; A335: m+1 = k by A333,AMI_5:4; A336: len(F.k) = k by A92; then consider i1,j1,i2,j2 being Nat such that A337: [i1,j1] in Indices G & (F.k)/.m = G*(i1,j1) and A338: [i2,j2] in Indices G & (F.k)/.len(F.k) = G*(i2,j2) and A339: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A332,A334,A335,JORDAN8:6; A340: 1 <= i1 & i1 <= len G & 1 <= j1 & j1 <= width G by A337,GOBOARD5:1; A341: 1 <= i2 & i2 <= len G & 1 <= j2 & j2 <= width G by A338,GOBOARD5:1; then A342: (i2-'1)+1 = i2 by AMI_5:4; A343: (j2-'1)+1 = j2 by A341,AMI_5:4; A344: LSeg(F.k,m) = LSeg(G*(i1,j1),G*(i2,j2)) by A334,A335,A336,A337,A338, TOPREAL1:def 5; now per cases; suppose A345: front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) misses C; now per cases by A339; suppose A346: i1 = i2 & j1+1 = j2; then A347: [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A249,A333,A336,A337,A338,A345; then 1 <= i2-'1 by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2-'1,j2)) = {(F.k)/.len(F.k)} by A338,A340,A341,A342,A344,A346,GOBOARD7:18; hence F.(k+1) is unfolded by A331,A335,A336,A347,SPPOL_2:31; suppose A348: i1+1 = i2 & j1 = j2; then A349: [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A249,A333,A336,A337,A338,A345; then j2+1 <= width G & LSeg((F.k)/.len(F.k),G*(i2,j2+1))=LSeg(G*(i2,j2+1),(F.k)/.len(F.k)) by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2,j2+1)) = {(F.k)/.len(F .k)} by A338,A340,A341,A344,A348,GOBOARD7:20; hence F.(k+1) is unfolded by A331,A335,A336,A349,SPPOL_2:31; suppose A350: i1 = i2+1 & j1 = j2; then A351: [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A249,A333,A336,A337,A338,A345; then 1 <= j2-'1 by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2,j2-'1)) = {(F.k)/.len(F.k)} by A338,A340,A341,A343,A344,A350,GOBOARD7:17; hence F.(k+1) is unfolded by A331,A335,A336,A351,SPPOL_2:31; suppose A352: i1 = i2 & j1 = j2+1; then A353: [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A249,A333,A336,A337,A338,A345; then i2+1 <= len G by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2+1,j2)) = {(F.k)/.len(F .k)} by A338,A340,A341,A344,A352,GOBOARD7:19; hence F.(k+1) is unfolded by A331,A335,A336,A353,SPPOL_2:31; end; hence F.(k+1) is unfolded; suppose A354: front_right_cell(F.k,(len(F.k))-'1,G) misses C & front_left_cell(F.k,(len(F.k))-'1,G) meets C; now per cases by A339; suppose A355: i1 = i2 & j1+1 = j2; then A356: [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A266,A333,A336,A337,A338,A354; then 1 <= j2+1 & j2+1 <= width G & j2+1 = j1+(1+1) by A355,GOBOARD5:1,XCMPLX_1:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2,j2+1)) = {(F.k)/.len(F .k)} by A338,A340,A344,A355,GOBOARD7:15; hence F.(k+1) is unfolded by A331,A335,A336,A356,SPPOL_2:31; suppose A357: i1+1 = i2 & j1 = j2; then A358: [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A266,A333,A336,A337,A338,A354; then 1 <= i2+1 & i2+1 <= len G & i2+1 = i1+(1+1) by A357,GOBOARD5:1,XCMPLX_1:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2+1,j2)) = {(F.k)/.len(F .k)} by A338,A340,A344,A357,GOBOARD7:16; hence F.(k+1) is unfolded by A331,A335,A336,A358,SPPOL_2:31; suppose A359: i1 = i2+1 & j1 = j2; then A360: [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A266,A333,A336,A337,A338,A354; then 1 <= i2-'1 & i2-'1+1+1 = i2-'1+(1+1) by GOBOARD5:1,XCMPLX_1:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2-'1,j2)) = {(F.k)/.len(F.k)} by A338,A340,A342,A344,A359,GOBOARD7:16; hence F.(k+1) is unfolded by A331,A335,A336,A360,SPPOL_2:31; suppose A361: i1 = i2 & j1 = j2+1; then A362: [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A266,A333,A336,A337,A338,A354; then 1 <= j2-'1 & j2-'1+1+1 = j2-'1+(1+1) by GOBOARD5:1,XCMPLX_1:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2,j2-'1)) = {(F.k)/.len(F.k)} by A338,A340,A343,A344,A361,GOBOARD7:15; hence F.(k+1) is unfolded by A331,A335,A336,A362,SPPOL_2:31; end; hence F.(k+1) is unfolded; suppose A363: front_right_cell(F.k,(len(F.k))-'1,G) meets C; now per cases by A339; suppose A364: i1 = i2 & j1+1 = j2; then A365: [i2+1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2+1,j2)*> by A283,A333,A336,A337,A338,A363; then i2+1 <= len G by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2+1,j2)) = {(F.k)/.len(F .k)} by A338,A340,A341,A344,A364,GOBOARD7:17; hence F.(k+1) is unfolded by A331,A335,A336,A365,SPPOL_2:31; suppose A366: i1+1 = i2 & j1 = j2; then A367: [i2,j2-'1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2-'1)*> by A283,A333,A336,A337,A338,A363; then 1 <= j2-'1 by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2,j2-'1)) = {(F.k)/.len(F.k)} by A338,A340,A341,A343,A344,A366,GOBOARD7:18; hence F.(k+1) is unfolded by A331,A335,A336,A367,SPPOL_2:31; suppose A368: i1 = i2+1 & j1 = j2; then A369: [i2,j2+1] in Indices G & F.(k+1) = (F.k)^<*G*(i2,j2+1)*> by A283,A333,A336,A337,A338,A363; then j2+1 <= width G by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2,j2+1)) = {(F.k)/.len(F .k)} by A338,A340,A341,A344,A368,GOBOARD7:19; hence F.(k+1) is unfolded by A331,A335,A336,A369,SPPOL_2:31; suppose A370: i1 = i2 & j1 = j2+1; then A371: [i2-'1,j2] in Indices G & F.(k+1) = (F.k)^<*G*(i2-'1,j2)*> by A283,A333,A336,A337,A338,A363; then 1 <= i2-'1 by GOBOARD5:1; then LSeg(F.k,m) /\ LSeg((F.k)/.len(F.k),G*(i2-'1,j2)) = {(F.k)/.len(F.k)} by A338,A340,A341,A342,A344,A370,GOBOARD7:20; hence F.(k+1) is unfolded by A331,A335,A336,A371,SPPOL_2:31; end; hence F.(k+1) is unfolded; end; hence F.(k+1) is unfolded; end; A372: for k holds P[k] from Ind(A329,A330); defpred K[Nat] means $1 >= 1 & ex m st m in dom(F.$1) & m <> len(F.$1) & (F.$1)/.m = (F.$1)/.len(F.$1); now assume A373: for k st k >= 1 holds for m st m in dom(F.k) & m <> len(F.k) holds (F.k)/.m <> (F.k)/.len(F.k); defpred P[Nat] means F.$1 is one-to-one; A374: P[0] by A77; A375: for k st P[k] holds P[k+1] proof let k; assume A376: F.k is one-to-one; now let n,m such that A377: n in dom(F.(k+1)) & m in dom(F.(k+1)) and A378: (F.(k+1))/.n = (F.(k+1))/.m; consider i,j such that [i,j] in Indices G and A379: F.(k+1) = (F.k)^<*G*(i,j)*> by A300; A380: 1 <= n & n <= len(F.(k+1)) & 1 <= m & m <= len(F.(k+1)) by A377,FINSEQ_3:27; A381: len(F.k) = k & len(F.(k+1)) = k+1 by A92; A382: 1 <= k+1 by NAT_1:37; per cases by A380,A381,NAT_1:26; suppose n <= k & m <= k; then A383: n in dom(F.k) & m in dom(F.k) by A380,A381,FINSEQ_3:27; then (F.(k+1))/.n = (F.k)/.n & (F.(k+1))/.m = (F.k)/.m by A379,GROUP_5:95; hence n = m by A376,A378,A383,PARTFUN2:17; suppose n = k+1 & m <= k; hence n = m by A373,A377,A378,A381,A382; suppose n <= k & m = k+1; hence n = m by A373,A377,A378,A381,A382; suppose n = k+1 & m = k+1; hence n = m; end; hence F.(k+1) is one-to-one by PARTFUN2:16; end; A384: for k holds P[k] from Ind(A374,A375); A385: for k holds card rng(F.k) = k proof let k; F.k is one-to-one by A384; hence card rng(F.k) = len(F.k) by FINSEQ_4:77 .= k by A92; end; set k = (len G)*(width G)+1; A386: k > (len G)*(width G) by NAT_1:38; A387: card Values G <= (len G)*(width G) by GOBRD13:8; F.k is_sequence_on G by A246; then rng(F.k) c= Values G by GOBRD13:9; then card rng(F.k) <= card Values G by CARD_1:80; then card rng(F.k) <= (len G)*(width G) by A387,AXIOMS:22; hence contradiction by A385,A386; end; then A388: ex k st K[k]; consider k such that A389: K[k] and A390: for l st K[l] holds k <= l from Min(A388); consider m such that A391: m in dom(F.k) and A392: m <> len(F.k) and A393: (F.k)/.m = (F.k)/.len(F.k) by A389; A394: len(F.k) = k by A92; 0<k by A389,AXIOMS:22; then reconsider f = F.k as non empty FinSequence of TOP-REAL 2 by A394, FINSEQ_1:25; A395: f is_sequence_on G by A246; A396: 1 <= m & m <= len f by A391,FINSEQ_3:27; then A397: m < len f by A392,REAL_1:def 5; then 1 < len f by A396,AXIOMS:22; then A398: len f >= 1+1 by NAT_1:38; then A399: k >= 2 by A92; reconsider f as non constant special unfolded non empty FinSequence of TOP-REAL 2 by A372,A395,A398,JORDAN8:7,8; set g = f/^(m-'1); A400: m+1 <= len f by A397,NAT_1:38; m-'1 <= m & m < m+1 by JORDAN3:7,NAT_1:38; then m-'1 < m+1 by AXIOMS:22; then A401: m-'1 < len f by A400,AXIOMS:22; then A402: len g = len f - (m-'1) by RFINSEQ:def 2; then (m-'1)-(m-'1) < len g by A401,REAL_1:54; then len g > 0 by XCMPLX_1:14; then reconsider g as non empty FinSequence of TOP-REAL 2 by FINSEQ_1:25; 1 in dom g by FINSEQ_5:6; then A403: g/.1 = f/.(m-'1+1) by FINSEQ_5:30 .= f/.m by A396,AMI_5:4; len g in dom g by FINSEQ_5:6; then A404: g/.len g = f/.(m-'1+len g) by FINSEQ_5:30 .= f/.len f by A402,XCMPLX_1:27; A405: g is_sequence_on G by A395,JORDAN8:5; then A406: g is standard by JORDAN8:7; A407: for i st 1 <= i & i < len g & 1 <= j & j < len g & g/.i = g/.j holds i = j proof let i such that A408: 1 <= i & i < len g and A409: 1 <= j & j < len g and A410: g/.i = g/.j and A411: i <> j; i in dom g by A408,FINSEQ_3:27; then A412: g/.i = f/.(m-'1+i) by FINSEQ_5:30; j in dom g by A409,FINSEQ_3:27; then A413: g/.j = f/.(m-'1+j) by FINSEQ_5:30; A414: 0 <= m-'1 by NAT_1:18; per cases by A411,REAL_1:def 5; suppose A415: i < j; set l = m-'1+j, m'= m-'1+i; A416: m' < l by A415,REAL_1:53; A417: l < k by A394,A402,A409,REAL_1:86; then A418: f|l = F.l by A323; 0+j <= l by A414,AXIOMS:24; then A419: 1 <= l by A409,AXIOMS:22; A420: len(F.l) = l by A92; 0+i <= m' by A414,AXIOMS:24; then 1 <= m' by A408,AXIOMS:22; then A421: m' in dom(F.l) by A416,A420,FINSEQ_3:27; then A422: (F.l)/.m' = f/.m' by A418,TOPREAL1:1; l in dom(F.l) by A419,A420,FINSEQ_3:27; then (F.l)/.l = f/.l by A418,TOPREAL1:1; hence contradiction by A390,A410,A412,A413,A416,A417,A419,A420,A421,A422; suppose A423: j < i; set l = m-'1+i, m'= m-'1+j; A424: m' < l by A423,REAL_1:53; A425: l < k by A394,A402,A408,REAL_1:86; then A426: f|l = F.l by A323; 0+i <= l by A414,AXIOMS:24; then A427: 1 <= l by A408,AXIOMS:22; A428: len(F.l) = l by A92; 0+j <= m' by A414,AXIOMS:24; then 1 <= m' by A409,AXIOMS:22; then A429: m' in dom(F.l) by A424,A428,FINSEQ_3:27; then A430: (F.l)/.m' = f/.m' by A426,TOPREAL1:1; l in dom(F.l) by A427,A428,FINSEQ_3:27; then (F.l)/.l = f/.l by A426,TOPREAL1:1; hence contradiction by A390,A410,A412,A413,A424,A425,A427,A428,A429,A430; end; A431: for i st 1 < i & i < j & j <= len g holds g/.i <> g/.j proof let i such that A432: 1 < i and A433: i < j and A434: j <= len g and A435: g/.i = g/.j; A436: 1 < j by A432,A433,AXIOMS:22; A437: i < len g by A433,A434,AXIOMS:22; then A438: 1 < len g by A432,AXIOMS:22; per cases; suppose j <> len g; then j < len g by A434,REAL_1:def 5; hence contradiction by A407,A432,A433,A435,A436,A437; suppose j = len g; hence contradiction by A393,A403,A404,A407,A432,A433,A435,A438; end; A439: for i st 1 <= i & i < j & j < len g holds g/.i <> g/.j proof let i such that A440: 1 <= i and A441: i < j and A442: j < len g and A443: g/.i = g/.j; A444: 1 < j by A440,A441,AXIOMS:22; i < len g by A441,A442,AXIOMS:22; hence contradiction by A407,A440,A441,A442,A443,A444; end; A445: for i st 1 <= i & i+1 <= len f holds left_cell(f,i,G) = Cl Int left_cell(f,i,G) proof let i such that A446: 1 <= i & i+1 <= len f; consider i1,j1,i2,j2 such that A447: [i1,j1] in Indices G and A448: f/.i = G*(i1,j1) and A449: [i2,j2] in Indices G and A450: f/.(i+1) = G*(i2,j2) and A451: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A395,A446,JORDAN8:6; A452: 1 <= i1 & i1 <= len G & 1 <= j1 & j1 <= width G by A447,GOBOARD5:1; A453: 1 <= i2 & i2 <= len G & 1 <= j2 & j2 <= width G by A449,GOBOARD5:1; A454: i1+1 > i1 & j1+1 > j1 & i2+1 > i2 & j2+1 > j2 by NAT_1:38; per cases by A451; suppose A455: i1 = i2 & j1+1 = j2; A456: i1-'1 <= len G by A452,JORDAN3:7; left_cell(f,i,G) = cell(G,i1-'1,j1) by A395,A446,A447,A448,A449,A450,A454,A455,GOBRD13:def 3; hence thesis by A452,A456,GOBRD11:35; suppose i1+1 = i2 & j1 = j2; then left_cell(f,i,G) = cell(G,i1,j1) by A395,A446,A447,A448,A449,A450,A454,GOBRD13:def 3; hence thesis by A452,GOBRD11:35; suppose A457: i1 = i2+1 & j1 = j2; A458: j2-'1 <= width G by A453,JORDAN3:7; left_cell(f,i,G) = cell(G,i2,j2-'1) by A395,A446,A447,A448,A449,A450,A454,A457,GOBRD13:def 3; hence thesis by A453,A458,GOBRD11:35; suppose i1 = i2 & j1 = j2+1; then left_cell(f,i,G) = cell(G,i1,j2) by A395,A446,A447,A448,A449,A450,A454,GOBRD13:def 3; hence thesis by A452,A453,GOBRD11:35; end; A459: g is s.c.c. proof let i,j such that A460: i+1 < j and A461: i > 1 & j < len g or j+1 < len g; A462: j <= j+1 by NAT_1:37; then A463: i+1 < j+1 by A460,AXIOMS:22; A464: 1 <= i+1 by NAT_1:37; A465: 1 < j by A460,NAT_1:37; i < j by A460,NAT_1:38; then A466: i < j+1 by A462,AXIOMS:22; per cases by A461,RLVECT_1:99; suppose A467: i > 1 & j < len g; then A468: i+1 < len g by A460,AXIOMS:22; then A469: LSeg(g,i) = LSeg(g/.i,g/.(i+1)) by A467,TOPREAL1:def 5; A470: 1 < i+1 by A467,NAT_1:38; A471: i < len g by A468,NAT_1:38; consider i1,j1,i2,j2 such that A472: [i1,j1] in Indices G and A473: g/.i = G*(i1,j1) and A474: [i2,j2] in Indices G and A475: g/.(i+1) = G*(i2,j2) and A476: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A405,A467,A468,JORDAN8:6; A477: 1 <= i1 & i1 <= len G & 1 <= j1 & j1 <= width G by A472,GOBOARD5:1; A478: 1 <= i2 & i2 <= len G & 1 <= j2 & j2 <= width G by A474,GOBOARD5:1; A479: j+1 <= len g by A467,NAT_1:38; then A480: LSeg(g,j) = LSeg(g/.j,g/.(j+1)) by A465,TOPREAL1:def 5; consider i1',j1',i2',j2' being Nat such that A481: [i1',j1'] in Indices G and A482: g/.j = G*(i1',j1') and A483: [i2',j2'] in Indices G and A484: g/.(j+1) = G*(i2',j2') and A485: i1' = i2' & j1'+1 = j2' or i1'+1 = i2' & j1' = j2' or i1' = i2'+1 & j1' = j2' or i1' = i2' & j1' = j2'+1 by A405,A465,A479,JORDAN8:6; A486: 1 <= i1' & i1' <= len G & 1 <= j1' & j1' <= width G by A481,GOBOARD5:1 ; A487: 1 <= i2' & i2' <= len G & 1 <= j2' & j2' <= width G by A483,GOBOARD5:1 ; assume LSeg(g,i) /\ LSeg(g,j) <> {}; then A488: LSeg(g,i) meets LSeg(g,j) by XBOOLE_0:def 7; now per cases by A476,A485; suppose A489: i1 = i2 & j1+1 = j2 & i1' = i2' & j1'+1 = j2'; then A490: i1 = i1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:21; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A489,GOBOARD7:24; suppose j1 = j1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A490; suppose j1 = j1'+1; hence contradiction by A431,A466,A467,A473,A479,A484,A489,A490; suppose j1+1 = j1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A489, A490; end; hence contradiction; suppose A491: i1 = i2 & j1+1 = j2 & i1'+1 = i2' & j1' = j2'; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A491,GOBOARD7:23; suppose i1 = i1' & j1 = j1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482; suppose i1 = i1' & j1+1 = j1'; hence contradiction by A431,A460,A467,A470,A475,A482,A491; suppose i1 = i1'+1 & j1 = j1'; hence contradiction by A431,A466,A467,A473,A479,A484,A491; suppose i1 = i1'+1 & j1+1 = j1'; hence contradiction by A431,A463,A470,A475,A479,A484,A491; end; hence contradiction; suppose A492: i1 = i2 & j1+1 = j2 & i1' = i2'+1 & j1' = j2'; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A492,GOBOARD7:23; suppose i1 = i2' & j1' = j1; hence contradiction by A431,A466,A467,A473,A479,A484,A492; suppose i1 = i2' & j1+1 = j1'; hence contradiction by A431,A463,A470,A475,A479,A484,A492; suppose i1 = i2'+1 & j1' = j1; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A492; suppose i1 = i2'+1 & j1+1 = j1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A492; end; hence contradiction; suppose A493: i1 = i2 & j1+1 = j2 & i1' = i2' & j1' = j2'+1; then A494: i1 = i1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:21; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A493,GOBOARD7:24; suppose j1 = j2'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A493, A494; suppose j1 = j2'+1; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A493, A494; suppose j1+1 = j2'; hence contradiction by A431,A463,A470,A475,A479,A484,A493,A494; end; hence contradiction; suppose A495: i1+1 = i2 & j1 = j2 & i1' = i2' & j1'+1 = j2'; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A495,GOBOARD7:23; suppose i1' = i1 & j1 = j1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482; suppose i1' = i1 & j1'+1 = j1; hence contradiction by A431,A466,A467,A473,A479,A484,A495; suppose i1' = i1+1 & j1 = j1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A495; suppose i1' = i1+1 & j1'+1 = j1; hence contradiction by A431,A463,A470,A475,A479,A484,A495; end; hence contradiction; suppose A496: i1+1 = i2 & j1 = j2 & i1'+1 = i2' & j1' = j2'; then A497: j1 = j1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:22; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A496,GOBOARD7:25; suppose i1 = i1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A497; suppose i1 = i1'+1; hence contradiction by A431,A466,A467,A473,A479,A484,A496,A497; suppose i1+1 = i1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A496, A497; end; hence contradiction; suppose A498: i1+1 = i2 & j1 = j2 & i1' = i2'+1 & j1' = j2'; then A499: j1 = j1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:22; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A498,GOBOARD7:25; suppose i1 = i2'; hence contradiction by A431,A466,A467,A473,A479,A484,A498,A499; suppose i1 = i2'+1; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A498, A499; suppose i1+1 = i2'; hence contradiction by A431,A463,A470,A475,A479,A484,A498,A499; end; hence contradiction; suppose A500: i1+1 = i2 & j1 = j2 & i1' = i2' & j1' = j2'+1; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A500,GOBOARD7:23; suppose i1' = i1 & j1 = j2'; hence contradiction by A431,A466,A467,A473,A479,A484,A500; suppose i1' = i1 & j2'+1 = j1; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A500; suppose i1' = i1+1 & j1 = j2'; hence contradiction by A431,A463,A470,A475,A479,A484,A500; suppose i1' = i1+1 & j2'+1 = j1; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A500; end; hence contradiction; suppose A501: i1 = i2+1 & j1 = j2 & i1' = i2' & j1'+1 = j2'; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A501,GOBOARD7:23; suppose i1' = i2 & j1' = j1; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A501; suppose i1' = i2 & j1'+1 = j1; hence contradiction by A431,A463,A470,A475,A479,A484,A501; suppose i1' = i2+1 & j1' = j1; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A501; suppose i1' = i2+1 & j1'+1 = j1; hence contradiction by A431,A466,A467,A473,A479,A484,A501; end; hence contradiction; suppose A502: i1 = i2+1 & j1 = j2 & i1'+1 = i2' & j1' = j2'; then A503: j1 = j1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:22; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A502,GOBOARD7:25; suppose i2 = i1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A502, A503; suppose i2 = i1'+1; hence contradiction by A431,A463,A470,A475,A479,A484,A502,A503; suppose i2+1 = i1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A502, A503; end; hence contradiction; suppose A504: i1 = i2+1 & j1 = j2 & i1' = i2'+1 & j1' = j2'; then A505: j1 = j1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:22; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A504,GOBOARD7:25; suppose i2 = i2'; hence contradiction by A431,A463,A470,A475,A479,A484,A504,A505; suppose i2 = i2'+1; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A504, A505; suppose i2+1 = i2'; hence contradiction by A431,A466,A467,A473,A479,A484,A504,A505; end; hence contradiction; suppose A506: i1 = i2+1 & j1 = j2 & i1' = i2' & j1' = j2'+1; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A506,GOBOARD7:23; suppose i1' = i2 & j2' = j1; hence contradiction by A431,A463,A470,A475,A479,A484,A506; suppose i1' = i2 & j2'+1 = j1; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A506; suppose i1' = i2+1 & j2' = j1; hence contradiction by A431,A466,A467,A473,A479,A484,A506; suppose i1' = i2+1 & j2'+1 = j1; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A506; end; hence contradiction; suppose A507: i1 = i2 & j1 = j2+1 & i1' = i2' & j1'+1 = j2'; then A508: i1 = i1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:21; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A507,GOBOARD7:24; suppose j2 = j1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A507, A508; suppose j2 = j1'+1; hence contradiction by A431,A463,A470,A475,A479,A484,A507,A508; suppose j2+1 = j1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A507, A508; end; hence contradiction; suppose A509: i1 = i2 & j1 = j2+1 & i1'+1 = i2' & j1' = j2'; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A509,GOBOARD7:23; suppose i1 = i1' & j2 = j1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A509; suppose i1 = i1' & j2+1 = j1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A509; suppose i1 = i1'+1 & j2 = j1'; hence contradiction by A431,A463,A470,A475,A479,A484,A509; suppose i1 = i1'+1 & j2+1 = j1'; hence contradiction by A431,A466,A467,A473,A479,A484,A509; end; hence contradiction; suppose A510: i1 = i2 & j1 = j2+1 & i1' = i2'+1 & j1' = j2'; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A510,GOBOARD7:23; suppose i1 = i2' & j2 = j1'; hence contradiction by A431,A463,A470,A475,A479,A484,A510; suppose i1 = i2' & j2+1 = j1'; hence contradiction by A431,A466,A467,A473,A479,A484,A510; suppose i1 = i2'+1 & j2 = j1'; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A510; suppose i1 = i2'+1 & j2+1 = j1'; hence contradiction by A407,A460,A462,A465,A467,A471,A473,A482,A510; end; hence contradiction; suppose A511: i1 = i2 & j1 = j2+1 & i1' = i2' & j1' = j2'+1; then A512: i1 = i1' by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,GOBOARD7:21; now per cases by A469,A473,A475,A477,A478,A480,A482,A484,A486,A487, A488,A511,GOBOARD7:24; suppose j2 = j2'; hence contradiction by A431,A463,A470,A475,A479,A484,A511,A512; suppose j2 = j2'+1; hence contradiction by A407,A460,A464,A465,A467,A468,A475,A482,A511, A512; suppose j2+1 = j2'; hence contradiction by A431,A466,A467,A473,A479,A484,A511,A512; end; hence contradiction; end; hence contradiction; suppose i = 0 & j+1 < len g; then LSeg(g,i) = {} by TOPREAL1:def 5; hence LSeg(g,i) /\ LSeg(g,j) = {}; suppose A513: 1 <= i & j+1 < len g; then A514: i+1 < len g by A463,AXIOMS:22; then A515: LSeg(g,i) = LSeg(g/.i,g/.(i+1)) by A513,TOPREAL1:def 5; A516: 1 < i+1 by A513,NAT_1:38; A517: i < len g by A514,NAT_1:38; A518: j < len g by A513,NAT_1:37; consider i1,j1,i2,j2 such that A519: [i1,j1] in Indices G and A520: g/.i = G*(i1,j1) and A521: [i2,j2] in Indices G and A522: g/.(i+1) = G*(i2,j2) and A523: i1 = i2 & j1+1 = j2 or i1+1 = i2 & j1 = j2 or i1 = i2+1 & j1 = j2 or i1 = i2 & j1 = j2+1 by A405,A513,A514,JORDAN8:6; A524: 1 <= i1 & i1 <= len G & 1 <= j1 & j1 <= width G by A519,GOBOARD5:1; A525: 1 <= i2 & i2 <= len G & 1 <= j2 & j2 <= width G by A521,GOBOARD5:1; A526: LSeg(g,j) = LSeg(g/.j,g/.(j+1)) by A465,A513,TOPREAL1:def 5; consider i1',j1',i2',j2' being Nat such that A527: [i1',j1'] in Indices G and A528: g/.j = G*(i1',j1') and A529: [i2',j2'] in Indices G and A530: g/.(j+1) = G*(i2',j2') and A531: i1' = i2' & j1'+1 = j2' or i1'+1 = i2' & j1' = j2' or i1' = i2'+1 & j1' = j2' or i1' = i2' & j1' = j2'+1 by A405,A465,A513,JORDAN8:6; A532: 1 <= i1' & i1' <= len G & 1 <= j1' & j1' <= width G by A527,GOBOARD5:1 ; A533: 1 <= i2' & i2' <= len G & 1 <= j2' & j2' <= width G by A529,GOBOARD5:1 ; assume LSeg(g,i) /\ LSeg(g,j) <> {}; then A534: LSeg(g,i) meets LSeg(g,j) by XBOOLE_0:def 7; now per cases by A523,A531; suppose A535: i1 = i2 & j1+1 = j2 & i1' = i2' & j1'+1 = j2'; then A536: i1 = i1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:21; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A535,GOBOARD7:24; suppose j1 = j1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A536; suppose j1 = j1'+1; hence contradiction by A439,A466,A513,A520,A530,A535,A536; suppose j1+1 = j1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A535, A536; end; hence contradiction; suppose A537: i1 = i2 & j1+1 = j2 & i1'+1 = i2' & j1' = j2'; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A537,GOBOARD7:23; suppose i1 = i1' & j1 = j1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528; suppose i1 = i1' & j1+1 = j1'; hence contradiction by A431,A460,A516,A518,A522,A528,A537; suppose i1 = i1'+1 & j1 = j1'; hence contradiction by A439,A466,A513,A520,A530,A537; suppose i1 = i1'+1 & j1+1 = j1'; hence contradiction by A431,A463,A513,A516,A522,A530,A537; end; hence contradiction; suppose A538: i1 = i2 & j1+1 = j2 & i1' = i2'+1 & j1' = j2'; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A538,GOBOARD7:23; suppose i1 = i2' & j1' = j1; hence contradiction by A439,A466,A513,A520,A530,A538; suppose i1 = i2' & j1+1 = j1'; hence contradiction by A431,A463,A513,A516,A522,A530,A538; suppose i1 = i2'+1 & j1' = j1; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A538; suppose i1 = i2'+1 & j1+1 = j1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A538; end; hence contradiction; suppose A539: i1 = i2 & j1+1 = j2 & i1' = i2' & j1' = j2'+1; then A540: i1 = i1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:21; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A539,GOBOARD7:24; suppose j1 = j2'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A539, A540; suppose j1 = j2'+1; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A539,A540; suppose j1+1 = j2'; hence contradiction by A431,A463,A513,A516,A522,A530,A539,A540; end; hence contradiction; suppose A541: i1+1 = i2 & j1 = j2 & i1' = i2' & j1'+1 = j2'; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A541,GOBOARD7:23; suppose i1' = i1 & j1 = j1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528; suppose i1' = i1 & j1'+1 = j1; hence contradiction by A439,A466,A513,A520,A530,A541; suppose i1' = i1+1 & j1 = j1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A541; suppose i1' = i1+1 & j1'+1 = j1; hence contradiction by A431,A463,A513,A516,A522,A530,A541; end; hence contradiction; suppose A542: i1+1 = i2 & j1 = j2 & i1'+1 = i2' & j1' = j2'; then A543: j1 = j1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:22; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A542,GOBOARD7:25; suppose i1 = i1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A543; suppose i1 = i1'+1; hence contradiction by A439,A466,A513,A520,A530,A542,A543; suppose i1+1 = i1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A542, A543; end; hence contradiction; suppose A544: i1+1 = i2 & j1 = j2 & i1' = i2'+1 & j1' = j2'; then A545: j1 = j1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:22; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A544,GOBOARD7:25; suppose i1 = i2'; hence contradiction by A439,A466,A513,A520,A530,A544,A545; suppose i1 = i2'+1; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A544,A545; suppose i1+1 = i2'; hence contradiction by A431,A463,A513,A516,A522,A530,A544,A545; end; hence contradiction; suppose A546: i1+1 = i2 & j1 = j2 & i1' = i2' & j1' = j2'+1; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A546,GOBOARD7:23; suppose i1' = i1 & j1 = j2'; hence contradiction by A439,A466,A513,A520,A530,A546; suppose i1' = i1 & j2'+1 = j1; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A546; suppose i1' = i1+1 & j1 = j2'; hence contradiction by A431,A463,A513,A516,A522,A530,A546; suppose i1' = i1+1 & j2'+1 = j1; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A546; end; hence contradiction; suppose A547: i1 = i2+1 & j1 = j2 & i1' = i2' & j1'+1 = j2'; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A547,GOBOARD7:23; suppose i1' = i2 & j1' = j1; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A547; suppose i1' = i2 & j1'+1 = j1; hence contradiction by A431,A463,A513,A516,A522,A530,A547; suppose i1' = i2+1 & j1' = j1; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A547; suppose i1' = i2+1 & j1'+1 = j1; hence contradiction by A439,A466,A513,A520,A530,A547; end; hence contradiction; suppose A548: i1 = i2+1 & j1 = j2 & i1'+1 = i2' & j1' = j2'; then A549: j1 = j1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:22; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A548,GOBOARD7:25; suppose i2 = i1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A548, A549; suppose i2 = i1'+1; hence contradiction by A431,A463,A513,A516,A522,A530,A548,A549; suppose i2+1 = i1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A548,A549; end; hence contradiction; suppose A550: i1 = i2+1 & j1 = j2 & i1' = i2'+1 & j1' = j2'; then A551: j1 = j1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:22; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A550,GOBOARD7:25; suppose i2 = i2'; hence contradiction by A431,A463,A513,A516,A522,A530,A550,A551; suppose i2 = i2'+1; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A550, A551; suppose i2+1 = i2'; hence contradiction by A439,A466,A513,A520,A530,A550,A551; end; hence contradiction; suppose A552: i1 = i2+1 & j1 = j2 & i1' = i2' & j1' = j2'+1; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A552,GOBOARD7:23; suppose i1' = i2 & j2' = j1; hence contradiction by A431,A463,A513,A516,A522,A530,A552; suppose i1' = i2 & j2'+1 = j1; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A552; suppose i1' = i2+1 & j2' = j1; hence contradiction by A439,A466,A513,A520,A530,A552; suppose i1' = i2+1 & j2'+1 = j1; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A552; end; hence contradiction; suppose A553: i1 = i2 & j1 = j2+1 & i1' = i2' & j1'+1 = j2'; then A554: i1 = i1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:21; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A553,GOBOARD7:24; suppose j2 = j1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A553, A554; suppose j2 = j1'+1; hence contradiction by A431,A463,A513,A516,A522,A530,A553,A554; suppose j2+1 = j1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A553,A554; end; hence contradiction; suppose A555: i1 = i2 & j1 = j2+1 & i1'+1 = i2' & j1' = j2'; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A555,GOBOARD7:23; suppose i1 = i1' & j2 = j1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A555; suppose i1 = i1' & j2+1 = j1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A555; suppose i1 = i1'+1 & j2 = j1'; hence contradiction by A431,A463,A513,A516,A522,A530,A555; suppose i1 = i1'+1 & j2+1 = j1'; hence contradiction by A439,A466,A513,A520,A530,A555; end; hence contradiction; suppose A556: i1 = i2 & j1 = j2+1 & i1' = i2'+1 & j1' = j2'; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A556,GOBOARD7:23; suppose i1 = i2' & j2 = j1'; hence contradiction by A431,A463,A513,A516,A522,A530,A556; suppose i1 = i2' & j2+1 = j1'; hence contradiction by A439,A466,A513,A520,A530,A556; suppose i1 = i2'+1 & j2 = j1'; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A556; suppose i1 = i2'+1 & j2+1 = j1'; hence contradiction by A407,A460,A462,A465,A513,A517,A518,A520,A528, A556; end; hence contradiction; suppose A557: i1 = i2 & j1 = j2+1 & i1' = i2' & j1' = j2'+1; then A558: i1 = i1' by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,GOBOARD7:21; now per cases by A515,A520,A522,A524,A525,A526,A528,A530,A532,A533, A534,A557,GOBOARD7:24; suppose j2 = j2'; hence contradiction by A431,A463,A513,A516,A522,A530,A557,A558; suppose j2 = j2'+1; hence contradiction by A407,A460,A464,A465,A514,A518,A522,A528,A557, A558; suppose j2+1 = j2'; hence contradiction by A439,A466,A513,A520,A530,A557,A558; end; hence contradiction; end; hence contradiction; end; m+1-(m-'1) <= len g by A400,A402,REAL_1:49; then m+1-(m-1) <= len g by A396,SCMFSA_7:3; then 1+m-m+1 <= len g by XCMPLX_1:37; then A559: 1+1 <= len g by XCMPLX_1:26; g is non constant proof take 1,2; thus A560: 1 in dom g by FINSEQ_5:6; thus A561: 2 in dom g by A559,FINSEQ_3:27; then g/.1 <> g/.(1+1) by A406,A560,GOBOARD7:31; then g.1 <> g/.(1+1) by A560,FINSEQ_4:def 4; hence g.1 <> g.2 by A561,FINSEQ_4:def 4; end; then reconsider g as standard non constant special_circular_sequence by A393,A403,A404,A405,A459,FINSEQ_6:def 1,JORDAN8:7; A562: for j,k st 1 <= j & j <= k holds (F.k)/.j = (F.j)/.j proof let j,k; assume that A563: 1 <= j and A564: j <= k; A565: (F.k)|j = F.j by A323,A564; j <= len(F.k) by A92,A564; then len(F.k|j) = j by TOPREAL1:3; then j in dom((F.k)|j) by A563,FINSEQ_3:27; hence (F.k)/.j = (F.j)/.j by A565,TOPREAL1:1; end; reconsider Lg' = (L~g)` as Subset of TOP-REAL 2; A566: C c= Lg' proof let c be set; assume that A567: c in C and A568: not c in Lg'; reconsider c as Point of TOP-REAL 2 by A567; c in L~g by A568,SUBSET_1:50; then consider i such that A569: 1 <= i & i+1 <= len g and A570: c in LSeg(g/.i,g/.(i+1)) by SPPOL_2:14; i in dom g & i+1 in dom g by A569,GOBOARD2:3; then A571: g/.i = f/.(i+(m-'1)) & g/.(i+1) = f/.(i+1+(m-'1)) by FINSEQ_5:30; A572: 1 <= i+(m-'1) by A569,NAT_1:37; A573: i+1+(m-'1) = i+(m-'1)+1 by XCMPLX_1:1; then i+(m-'1)+1 <= (len g)+(m-'1) by A569,AXIOMS:24; then A574: i+(m-'1)+1 <= len f by A402,XCMPLX_1:27; then c in LSeg(f,i+(m-'1)) by A570,A571,A572,A573,TOPREAL1:def 5; then c in right_cell(f,i+(m-'1),G) /\ left_cell(f,i+(m-'1),G) by A395,A572,A574,GOBRD13:30; then c in right_cell(f,i+(m-'1),G) by XBOOLE_0:def 3; then right_cell(f,i+(m-'1),G) meets C by A567,XBOOLE_0:3; hence contradiction by A246,A572,A574; end; A575: TOP-REAL 2 = TopSpaceMetr (Euclid 2) by EUCLID:def 8; A576: the carrier of TOP-REAL 2 = the carrier of Euclid 2 by TOPREAL3:13; L~g is closed by SPPOL_1:49; then (L~g)` is open by TOPS_1:29; then Lg' is open; then A577: (L~g)` = Int (L~g)` by TOPS_1:55; A578: L~g c= L~f by JORDAN3:75; A579: LeftComp g is_a_component_of (L~g)` & RightComp g is_a_component_of (L~g)` by GOBOARD9:def 1,def 2; A580: for h being standard non constant special_circular_sequence st L~h c= L~f for Comp being Subset of TOP-REAL 2 st Comp is_a_component_of (L~h)` for n st 1 <= n & n+1 <= len f & f/.n in Comp & not f/.n in L~h holds C meets Comp proof let h be standard non constant special_circular_sequence such that A581: L~h c= L~f; let Comp be Subset of TOP-REAL 2 such that A582: Comp is_a_component_of (L~h)`; let n such that A583: 1 <= n & n+1 <= len f and A584: f/.n in Comp and A585: not f/.n in L~h; set rc=left_cell(f,n,G)\L~h; reconsider rc as Subset of TOP-REAL 2; A586: rc c= left_cell(f,n,G) by XBOOLE_1:36; A587: rc = left_cell(f,n,G) /\ (L~h)` by SUBSET_1:32; A588: rc meets C proof left_cell(f,n,G) meets C by A246,A583; then consider p being set such that A589: p in left_cell(f,n,G) & p in C by XBOOLE_0:3; reconsider p as Element of TOP-REAL 2 by A589; now take p; now assume p in L~h; then consider j such that A590: 1 <= j and A591: j+1 <= len f and A592: p in LSeg(f,j) by A581,SPPOL_2:13; p in right_cell(f,j,G) /\ left_cell(f,j,G) by A395,A590,A591,A592, GOBRD13:30; then A593: p in right_cell(f,j,G) by XBOOLE_0:def 3; right_cell(f,j,G) misses C by A246,A590,A591; hence contradiction by A589,A593,XBOOLE_0:3; end; hence p in rc by A589,XBOOLE_0:def 4; thus p in C by A589; end; hence thesis by XBOOLE_0:3; end; A594: Int left_cell(f,n,G) is connected by A395,A583,JORDAN9:12; Int left_cell(f,n,G) misses L~f by A395,A583,JORDAN9:17; then Int left_cell(f,n,G) misses L~h by A581,XBOOLE_1:63; then A595: Int left_cell(f,n,G) c= (L~h)` by SUBSET_1:43; Int left_cell(f,n,G) c= left_cell(f,n,G) by TOPS_1:44; then A596: Int left_cell(f,n,G) c= rc by A587,A595,XBOOLE_1:19; rc c= Cl Int left_cell(f,n,G) by A395,A583,A586,JORDAN9:13; then A597: rc is connected by A594,A596,CONNSP_1:19; f/.n in left_cell(f,n,G) by A395,A583,JORDAN9:10; then f/.n in rc by A585,XBOOLE_0:def 4; then A598: rc meets Comp by A584,XBOOLE_0:3; rc c= (L~h)` by A587,XBOOLE_1:17; then rc c= Comp by A582,A597,A598,GOBOARD9:6; hence C meets Comp by A588,XBOOLE_1:63; end; A599: C meets LeftComp g proof left_cell(f,m,G) meets C by A246,A396,A400; then consider p being set such that A600: p in left_cell(f,m,G) & p in C by XBOOLE_0:3; reconsider p as Element of TOP-REAL 2 by A600; now take p; thus p in C by A600; reconsider u = p as Element of Euclid 2 by A576; consider r being real number such that A601: r > 0 and A602: Ball(u,r) c= (L~g)` by A566,A577,A600,GOBOARD6:8; reconsider r as Real by XREAL_0:def 1; A603: p in Ball(u,r) by A601,TBSP_1:16; Ball(u,r) is Subset of TOP-REAL 2 by A575,TOPMETR:16; then reconsider B = Ball(u,r) as non empty Subset of TOP-REAL 2 by A601,TBSP_1:16; A604: B is connected by SPRECT_3:17; left_cell(g,1,G) c= left_cell(g,1) by A405,A559,GOBRD13:34; then A605: Int left_cell(g,1,G) c= Int left_cell(g,1) by TOPS_1:48; Int left_cell(g,1) c= LeftComp g by A559,GOBOARD9:24; then Int left_cell(g,1,G) c= LeftComp g by A605,XBOOLE_1:1; then Int left_cell(f,m-'1+1,G) c= LeftComp g by A395,A401,A559,GOBRD13:33; then A606: Int left_cell(f,m,G) c= LeftComp g by A396,AMI_5:4; A607: left_cell(f,m,G) = Cl Int left_cell(f,m,G) by A396,A400,A445; B is open by GOBOARD6:6; then A608: Int left_cell(f,m,G) meets B by A600,A603,A607,TOPS_1:39; A609: p in B by A601,TBSP_1:16; B c= LeftComp g by A579,A602,A604,A606,A608,GOBOARD9:6; hence p in LeftComp g by A609; end; hence thesis by XBOOLE_0:3; end; m = 1 proof assume m <> 1; then A610: 1 < m by A396,REAL_1:def 5; A611: for n st 1 <= n & n <= m-'1 holds not f/.n in L~g proof let n such that A612: 1 <= n and A613: n <= m-'1; A614: n <= len f by A401,A613,AXIOMS:22; set p = f/.n; assume p in L~g; then consider j such that A615: m-'1+1 <= j and A616: j+1 <= len f and A617: p in LSeg(f,j) by A401,JORDAN9:9; A618: n < m-'1+1 by A613,NAT_1:38; then A619: n < j by A615,AXIOMS:22; A620: m-'1+1=m by A396,AMI_5:4; then A621: 1 < j by A610,A615,AXIOMS:22; A622: j+1 <= k by A92,A616; A623: j < k by A394,A616,NAT_1:38; A624: 2 <= len G & 2 <= width G by A2,NAT_1:37; A625: p in Values G by A395,A612,A614,JORDAN9:8; per cases by A395,A616,A617,A621,A624,A625,JORDAN9:25; suppose A626: p = f/.j; n <= len(F.j) by A92,A619; then A627: n in dom(F.j) by A612,FINSEQ_3:27; A628: n <> len(F.j) by A92,A615,A618; (F.j)/.n = (F.n)/.n by A562,A612,A619 .= p by A394,A562,A612,A614 .= (F.j)/.j by A562,A621,A623,A626 .= (F.j)/.len(F.j) by A92; hence contradiction by A390,A621,A623,A627,A628; suppose A629: p = f/.(j+1); now per cases by A622,REAL_1:def 5; suppose A630: j+1 = k; n <= len(F.m) by A92,A618,A620; then A631: n in dom(F.m) by A612,FINSEQ_3:27; A632: n <> len(F.m) by A92,A618,A620; (F.m)/.n = (F.n)/.n by A562,A612,A618,A620 .= p by A394,A562,A612,A614 .= (F.m)/.m by A393,A394,A396,A562,A629,A630 .= (F.m)/.len(F.m) by A92; hence contradiction by A390,A394,A396,A397,A631,A632; suppose A633: j+1 < k; set l = j+1; A634: 1 <= l by NAT_1:29; A635: n < n+1 & n+1 < l by A619,REAL_1:53,69; then A636: n < l by AXIOMS:22; then n <= len(F.l) by A92; then A637: n in dom(F.l) by A612,FINSEQ_3:27; A638: n <> len(F.l) by A92,A635; (F.l)/.n = (F.n)/.n by A562,A612,A636 .= p by A394,A562,A612,A614 .= (F.l)/.l by A562,A629,A633,A634 .= (F.l)/.len(F.l) by A92; hence contradiction by A390,A633,A634,A637,A638; end; hence contradiction; end; A639: for n st 1 <= n holds n-'1+2 = n+1 proof let n; assume 1 <= n; hence n-'1+2 = n+2-'1 by JORDAN4:3 .= n+(1+1) - 1 by JORDAN4:2 .= n+1+1 - 1 by XCMPLX_1:1 .= n+1 by XCMPLX_1:26; end; C meets LeftComp Rev g proof set rg = Rev g; A640: rg is_sequence_on G by A405,JORDAN9:7; A641: 1+1 <= len rg by A559,FINSEQ_5:def 3; then 1+1-'1 <= len rg-'1 by JORDAN3:5; then A642: 1 <= len rg -'1 by BINARITH:39; 1 < len rg by A641,NAT_1:38; then A643: len rg -'1+1 = len rg by AMI_5:4; set p = rg/.1, q = rg/.2; set a = f/.(m-'1); set l = (m-'1)+(len g-'1); A644: p = f/.m by A393,A404,FINSEQ_5:68; A645: m-'1+1 = m by A396,AMI_5:4; then A646: 1 <= m-'1 by A610,NAT_1:38; 1+1-'1 <= len g-'1 by A559,JORDAN3:5; then A647: 1 <= len g-'1 by BINARITH:39; 1+1 - 1 <= len g - 1 by A559,REAL_1:49; then A648: 0 <= len g - 1 by AXIOMS:22; A649: 1 - 1 < m - 1 by A610,REAL_1:54; l = m+(len g -'1)-'1 by A396,JORDAN4:3 .= (len g -'1)+m - 1 by A647,JORDAN4:2 .= (len g - 1)+m - 1 by A648,BINARITH:def 3 .= ((k - (m - 1)) - 1)+m - 1 by A394,A402,A649,BINARITH:def 3 .= ((k - m+1) - 1)+m - 1 by XCMPLX_1:37 .= k - m+m - 1 by XCMPLX_1:26 .= (k+-m+m) - 1 by XCMPLX_0:def 8 .= k - 1 by XCMPLX_1:139; then A650: k = l+1 by XCMPLX_1:27; then A651: l < k by REAL_1:69; len g-'1 <= l by NAT_1:29; then A652: 1 <= l by A647,AXIOMS:22; len g-'1 <= len g by JORDAN3:7; then A653: len g-'1 in dom g by A647,FINSEQ_3:27; 1 <= len g by A559,SPPOL_1:5; then A654: len g-'1+2 = len g+1 by A639; then A655: q = g/.(len g -'1) by A653,FINSEQ_5:69 .= f/.l by A653,FINSEQ_5:30; A656: p = f/.(l+1) by A394,A404,A650,FINSEQ_5:68; A657: left_cell(f,m-'1,G) meets C by A246,A396,A645,A646; A658: left_cell(f,l,G) meets C by A246,A394,A650,A652; not a in L~g by A611,A646; then A659: not a in L~rg by SPPOL_2:22; A660: m-'1+2 = m+1 by A396,A639; A661: m-'1 <= l by NAT_1:29; then m-'1 <= len(F.l) by A92; then A662: m-'1 in dom(F.l) by A646,FINSEQ_3:27; (m-'1)+1 <= l by A647,AXIOMS:24; then m-'1 < l by NAT_1:38; then A663: m-'1 <> len(F.l) by A92; consider p1,p2,q1,q2 being Nat such that A664: [p1,p2] in Indices G and A665: p = G*(p1,p2) and A666: [q1,q2] in Indices G and A667: q = G*(q1,q2) and A668: p1 = q1 & p2+1 = q2 or p1+1 = q1 & p2 = q2 or p1 = q1+1 & p2 = q2 or p1 = q1 & p2 = q2+1 by A640,A641,JORDAN8:6; A669: 1 <= p1 & p1 <= len G & 1 <= p2 & p2 <= width G by A664,GOBOARD5:1; per cases by A668; suppose ::A A670: p1 = q1 & p2+1 = q2; consider a1,a2,p'1,p'2 being Nat such that A671: [a1,a2] in Indices G and A672: a = G*(a1,a2) and A673: [p'1,p'2] in Indices G and A674: p = G*(p'1,p'2) and A675: a1 = p'1 & a2+1 = p'2 or a1+1 = p'1 & a2 = p'2 or a1 = p'1+1 & a2 = p'2 or a1 = p'1 & a2 = p'2+1 by A395,A396,A644,A645,A646,JORDAN8:6; A676: 1 <= a1 & a1 <= len G & 1 <= a2 & a2 <= width G by A671,GOBOARD5:1; thus thesis proof per cases by A675; suppose ::I a1 = p'1 & a2+1 = p'2; then A677: a1 = p1 & a2+1 = p2 by A664,A665,A673,A674,GOBOARD1:21; A678: F.m is_sequence_on G by A246; A679: m-'1+1 <= len (F.m) by A92,A645; A680: m-'1 <= m by A645,NAT_1:29; A681: F.k|(m+1)=F.(m+1) by A323,A394,A400; A682: p2+1 > a2+1 & a2+1 > a2 by A677,NAT_1:38; A683: f/.(m-'1) = (F.(m-'1))/.(m-'1) by A394,A401,A562,A646 .= (F.m)/.(m-'1) by A562,A646,A680; A684: f/.(m-'1+1) = (F.m)/.m by A394,A396,A562,A645; left_cell(f,l,G) = cell(G,p1,p2) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A670, GOBRD13:28 .= front_right_cell(F.m,m-'1,G) by A644,A645,A646,A664,A665,A671, A672,A677,A678,A679,A683,A684,GOBRD13:36; then F.(m+1) turns_right m-'1,G by A324,A610,A658; then f turns_right m-'1,G by A400,A646,A660,A681,GOBRD13:44; then A685: f/.(m+1) = G*(p1+1,p2) & [p1+1,p2] in Indices G by A644,A645,A660,A664,A665,A671,A672,A682,GOBRD13:def 6; then A686: 1 <= p1+1 & p1+1 <= len G by GOBOARD5:1; set rc = left_cell(rg,len rg-'1,G)\L~rg; A687: rc c= LeftComp rg by A640,A642,A643,JORDAN9:29; A688: p2-'1 = a2 & p1-'1+1 = p1 by A669,A677,AMI_5:4,BINARITH:39; A689: 2 in dom g by A559,FINSEQ_3:27; len rg-'1+2 = len g +1 by A654,FINSEQ_5:def 3; then A690: rg/.(len rg -' 1) = g/.2 by A689,FINSEQ_5:69 .= f/.(m+1) by A660,A689,FINSEQ_5:30; p = g/.1 by A393,A403,A404,FINSEQ_5:68 .= rg/.len g by FINSEQ_5:68 .= rg/.len rg by FINSEQ_5:def 3; then left_cell(rg,len rg-'1,G) = cell(G,p1,a2) by A640,A642,A643,A664,A665,A685,A688,A690,GOBRD13:26; then a in left_cell(rg,len rg-'1,G) by A669,A672,A676,A677,A686,JORDAN9:22; then A691: a in rc by A659,XBOOLE_0:def 4; A692: L~rg c= L~f by A578,SPPOL_2:22; LeftComp rg is_a_component_of (L~rg)` by GOBOARD9:def 1; hence C meets LeftComp Rev g by A396,A580,A645,A646,A659,A687,A691, A692; suppose ::II A693: a1+1 = p'1 & a2 = p'2; then A694: a1+1 = p1 & a2 = p2 by A664,A665,A673,A674,GOBOARD1:21; then q1-'1 = a1 by A670,BINARITH:39; then right_cell(f,l,G) = cell(G,a1,a2) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A670,A694 ,GOBRD13:29 .= left_cell(f,m-'1,G) by A395,A396,A644,A645,A646,A671,A672,A673,A674,A693,GOBRD13: 24; hence C meets LeftComp Rev g by A246,A394,A650,A652,A657; suppose ::III a1 = p'1+1 & a2 = p'2; then a1 = p1+1 & a2 = p2 by A664,A665,A673,A674,GOBOARD1:21; then right_cell(f,m-'1,G) = cell(G,p1,p2) by A395,A396,A644,A645,A646,A664,A665,A671,A672,GOBRD13:27 .= left_cell(f,l,G) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A670, GOBRD13:28; hence C meets LeftComp Rev g by A246,A396,A645,A646,A658; suppose ::IV a1 = p'1 & a2 = p'2+1; then A695: a1 = q1 & a2 = q2 by A664,A665,A670,A673,A674,GOBOARD1:21; (F.l)/.(m-'1) = (F.(m-'1))/.(m-'1) by A562,A646,A661 .= q by A394,A401,A562,A646,A667,A672,A695 .= (F.l)/.l by A562,A651,A652,A655 .= (F.l)/.len(F.l) by A92; hence C meets LeftComp Rev g by A390,A651,A652,A662,A663; end; suppose ::B A696: p1+1 = q1 & p2 = q2; consider a1,a2,p'1,p'2 being Nat such that A697: [a1,a2] in Indices G and A698: a = G*(a1,a2) and A699: [p'1,p'2] in Indices G and A700: p = G*(p'1,p'2) and A701: a1 = p'1 & a2+1 = p'2 or a1+1 = p'1 & a2 = p'2 or a1 = p'1+1 & a2 = p'2 or a1 = p'1 & a2 = p'2+1 by A395,A396,A644,A645,A646,JORDAN8:6; A702: 1 <= a1 & a1 <= len G & 1 <= a2 & a2 <= width G by A697,GOBOARD5:1; thus thesis proof per cases by A701; suppose ::I A703: a1 = p'1 & a2+1 = p'2; then A704: a1 = p1 & a2+1 = p2 by A664,A665,A699,A700,GOBOARD1:21; then A705: q2-'1 = a2 by A696,BINARITH:39; right_cell(f,m-'1,G) = cell(G,a1,a2) by A395,A396,A644,A645,A646,A697,A698,A699,A700,A703,GOBRD13: 23 .= left_cell(f,l,G) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A696,A704 ,A705,GOBRD13:26; hence C meets LeftComp Rev g by A246,A396,A645,A646,A658; suppose ::II a1+1 = p'1 & a2 = p'2; then A706: a1+1 = p1 & a2 = p2 by A664,A665,A699,A700,GOBOARD1:21; A707: F.m is_sequence_on G by A246; A708: m-'1+1 <= len (F.m) by A92,A645; A709: m-'1 <= m by A645,NAT_1:29; A710: F.k|(m+1)=F.(m+1) by A323,A394,A400; A711: a1 < a1+1 & p1 < p1+1 by REAL_1:69; A712: f/.(m-'1) = (F.(m-'1))/.(m-'1) by A394,A401,A562,A646 .= (F.m)/.(m-'1) by A562,A646,A709; A713: f/.(m-'1+1) = (F.m)/.m by A394,A396,A562,A645; left_cell(f,l,G) = cell(G,p1,p2-'1) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A696, GOBRD13:26 .= front_right_cell(F.m,m-'1,G) by A644,A645,A646,A664,A665,A697, A698,A706,A707,A708,A712,A713,GOBRD13:38; then F.(m+1) turns_right m-'1,G by A324,A610,A658; then f turns_right m-'1,G by A400,A646,A660,A710,GOBRD13:44; then A714: f/.(m+1) = G*(p1,p2-'1) & [p1,p2-'1] in Indices G by A644,A645,A660,A664,A665,A697,A698,A706,A711,GOBRD13:def 6; set rc = left_cell(rg,len rg-'1,G)\L~rg; A715: rc c= LeftComp rg by A640,A642,A643,JORDAN9:29; A716: a1 = p1-'1 by A706,BINARITH:39; A717: 2 in dom g by A559,FINSEQ_3:27; len rg-'1+2 = len g +1 by A654,FINSEQ_5:def 3; then A718: rg/.(len rg -' 1) = g/.2 by A717,FINSEQ_5:69 .= f/.(m+1) by A660,A717,FINSEQ_5:30; A719: a2-'1+1 = a2 by A702,AMI_5:4; A720: 1 <= a2-'1 by A706,A714,GOBOARD5:1; p = g/.1 by A393,A403,A404,FINSEQ_5:68 .= rg/.len g by FINSEQ_5:68 .= rg/.len rg by FINSEQ_5:def 3; then left_cell(rg,len rg-'1,G) = cell(G,a1,a2-'1) by A640,A642,A643,A664,A665,A706,A714,A716,A718,A719,GOBRD13:22 ; then a in left_cell(rg,len rg-'1,G) by A669,A698,A702,A706,A719,A720,JORDAN9:22; then A721: a in rc by A659,XBOOLE_0:def 4; A722: L~rg c= L~f by A578,SPPOL_2:22; LeftComp rg is_a_component_of (L~rg)` by GOBOARD9:def 1; hence C meets LeftComp Rev g by A396,A580,A645,A646,A659,A715,A721, A722; suppose ::III a1 = p'1+1 & a2 = p'2; then A723: a1 = q1 & a2 = q2 by A664,A665,A696,A699,A700,GOBOARD1:21; (F.l)/.(m-'1) = (F.(m-'1))/.(m-'1) by A562,A646,A661 .= q by A394,A401,A562,A646,A667,A698,A723 .= (F.l)/.l by A562,A651,A652,A655 .= (F.l)/.len(F.l) by A92; hence C meets LeftComp Rev g by A390,A651,A652,A662,A663; suppose ::IV a1 = p'1 & a2 = p'2+1; then A724: a1 = p1 & a2 = p2+1 by A664,A665,A699,A700,GOBOARD1:21; right_cell(f,l,G) = cell(G,p1,p2) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A696, GOBRD13:27 .= left_cell(f,m-'1,G) by A395,A396,A644,A645,A646,A664,A665,A697,A698,A724,GOBRD13: 28; hence C meets LeftComp Rev g by A246,A394,A650,A652,A657; end; suppose ::C A725: p1 = q1+1 & p2 = q2; consider a1,a2,p'1,p'2 being Nat such that A726: [a1,a2] in Indices G and A727: a = G*(a1,a2) and A728: [p'1,p'2] in Indices G and A729: p = G*(p'1,p'2) and A730: a1 = p'1 & a2+1 = p'2 or a1+1 = p'1 & a2 = p'2 or a1 = p'1+1 & a2 = p'2 or a1 = p'1 & a2 = p'2+1 by A395,A396,A644,A645,A646,JORDAN8:6; A731: 1 <= a1 & a1 <= len G & 1 <= a2 & a2 <= width G by A726,GOBOARD5:1; thus thesis proof per cases by A730; suppose ::I A732: a1 = p'1 & a2+1 = p'2; then A733: a1 = p1 & a2+1 = p2 by A664,A665,A728,A729,GOBOARD1:21; then A734: q1 = a1-'1 by A725,BINARITH:39; A735: q2-'1 = a2 by A725,A733,BINARITH:39; right_cell(f,l,G) = cell(G,q1,q2-'1) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A725,GOBRD13 :25 .= left_cell(f,m-'1,G) by A395,A396,A644,A645,A646,A726,A727,A728,A729,A732,A734,A735, GOBRD13:22; hence C meets LeftComp Rev g by A246,A394,A650,A652,A657; suppose ::II a1+1 = p'1 & a2 = p'2; then a1+1 = p1 & a2 = p2 by A664,A665,A728,A729,GOBOARD1:21; then A736: a1 = q1 & a2 = q2 by A725,XCMPLX_1:2; (F.l)/.(m-'1) = (F.(m-'1))/.(m-'1) by A562,A646,A661 .= q by A394,A401,A562,A646,A667,A727,A736 .= (F.l)/.l by A562,A651,A652,A655 .= (F.l)/.len(F.l) by A92; hence C meets LeftComp Rev g by A390,A651,A652,A662,A663; suppose ::III a1 = p'1+1 & a2 = p'2; then A737: a1 = p1+1 & a2 = p2 by A664,A665,A728,A729,GOBOARD1:21; A738: p1-'1 = q1 by A725,BINARITH:39; A739: F.m is_sequence_on G by A246; A740: m-'1+1 <= len (F.m) by A92,A645; A741: m-'1 <= m by A645,NAT_1:29; A742: F.k|(m+1)=F.(m+1) by A323,A394,A400; p1+1>p1 by REAL_1:69; then A743: a2+1 > p2 & a1+1 > p1 & a2 < p2+1 by A737,NAT_1:38; A744: f/.(m-'1) = (F.(m-'1))/.(m-'1) by A394,A401,A562,A646 .= (F.m)/.(m-'1) by A562,A646,A741; A745: f/.(m-'1+1) = (F.m)/.m by A394,A396,A562,A645; left_cell(f,l,G) = cell(G,q1,q2) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A725, GOBRD13:24 .= front_right_cell(F.m,m-'1,G) by A644,A645,A646,A664,A665,A725, A726,A727,A737,A738,A739,A740,A744,A745,GOBRD13:40 ; then F.(m+1) turns_right m-'1,G by A324,A610,A658; then f turns_right m-'1,G by A400,A646,A660,A742,GOBRD13:44; then A746: f/.(m+1) = G*(p1,p2+1) & [p1,p2+1] in Indices G by A644,A645,A660,A664,A665,A726,A727,A743,GOBRD13:def 6; then A747: 1 <= p2+1 & p2+1 <= width G by GOBOARD5:1; set rc = left_cell(rg,len rg-'1,G)\L~rg; A748: rc c= LeftComp rg by A640,A642,A643,JORDAN9:29; A749: 2 in dom g by A559,FINSEQ_3:27; len rg-'1+2 = len g +1 by A654,FINSEQ_5:def 3; then A750: rg/.(len rg -' 1) = g/.2 by A749,FINSEQ_5:69 .= f/.(m+1) by A660,A749,FINSEQ_5:30; p = g/.1 by A393,A403,A404,FINSEQ_5:68 .= rg/.len g by FINSEQ_5:68 .= rg/.len rg by FINSEQ_5:def 3; then left_cell(rg,len rg-'1,G) = cell(G,p1,p2) by A640,A642,A643,A664,A665,A746,A750,GOBRD13:28; then a in left_cell(rg,len rg-'1,G) by A669,A727,A731,A737,A747,JORDAN9:22; then A751: a in rc by A659,XBOOLE_0:def 4; A752: L~rg c= L~f by A578,SPPOL_2:22; LeftComp rg is_a_component_of (L~rg)` by GOBOARD9:def 1; hence C meets LeftComp Rev g by A396,A580,A645,A646,A659,A748,A751, A752; suppose ::IV a1 = p'1 & a2 = p'2+1; then A753: a1 = p1 & a2 = p2+1 by A664,A665,A728,A729,GOBOARD1:21; then q1 = a1-'1 by A725,BINARITH:39; then right_cell(f,m-'1,G) = cell(G,q1,q2) by A395,A396,A644,A645,A646,A664,A665,A725,A726,A727,A753, GOBRD13:29 .= left_cell(f,l,G) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A725, GOBRD13:24; hence C meets LeftComp Rev g by A246,A396,A645,A646,A658; end; suppose ::D A754: p1 = q1 & p2 = q2+1; consider a1,a2,p'1,p'2 being Nat such that A755: [a1,a2] in Indices G and A756: a = G*(a1,a2) and A757: [p'1,p'2] in Indices G and A758: p = G*(p'1,p'2) and A759: a1 = p'1 & a2+1 = p'2 or a1+1 = p'1 & a2 = p'2 or a1 = p'1+1 & a2 = p'2 or a1 = p'1 & a2 = p'2+1 by A395,A396,A644,A645,A646,JORDAN8:6; A760: 1 <= a1 & a1 <= len G & 1 <= a2 & a2 <= width G by A755,GOBOARD5:1; thus thesis proof per cases by A759; suppose ::I a1 = p'1 & a2+1 = p'2; then a1 = p1 & a2+1 = p2 by A664,A665,A757,A758,GOBOARD1:21; then A761: a1 = q1 & a2 = q2 by A754,XCMPLX_1:2; (F.l)/.(m-'1) = (F.(m-'1))/.(m-'1) by A562,A646,A661 .= q by A394,A401,A562,A646,A667,A756,A761 .= (F.l)/.l by A562,A651,A652,A655 .= (F.l)/.len(F.l) by A92; hence C meets LeftComp Rev g by A390,A651,A652,A662,A663; suppose ::II A762: a1+1 = p'1 & a2 = p'2; then A763: a1+1 = p1 & a2 = p2 by A664,A665,A757,A758,GOBOARD1:21; then A764: a1 = q1-'1 by A754,BINARITH:39; A765: a2-'1 = q2 by A754,A763,BINARITH:39; right_cell(f,m-'1,G) = cell(G,a1,a2-'1) by A395,A396,A644,A645,A646,A755,A756,A757,A758,A762,GOBRD13: 25 .= left_cell(f,l,G) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A754,A764 ,A765,GOBRD13:22; hence C meets LeftComp Rev g by A246,A396,A645,A646,A658; suppose ::III a1 = p'1+1 & a2 = p'2; then A766: a1 = p1+1 & a2 = p2 by A664,A665,A757,A758,GOBOARD1:21; then A767: a2-'1 = q2 by A754,BINARITH:39; right_cell(f,l,G) = cell(G,q1,q2) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A754, GOBRD13:23 .= left_cell(f,m-'1,G) by A395,A396,A644,A645,A646,A664,A665,A754,A755,A756,A766,A767 ,GOBRD13:26; hence C meets LeftComp Rev g by A246,A394,A650,A652,A657; suppose ::IV a1 = p'1 & a2 = p'2+1; then A768: a1 = p1 & a2 = p2+1 by A664,A665,A757,A758,GOBOARD1:21; A769: p2-'1 = q2 by A754,BINARITH:39; A770: F.m is_sequence_on G by A246; A771: m-'1+1 <= len (F.m) by A92,A645; A772: m-'1 <= m by A645,NAT_1:29; A773: F.k|(m+1)=F.(m+1) by A323,A394,A400; A774: a2+1>p2+1 & p2+1>p2 by A768,NAT_1:38; A775: f/.(m-'1) = (F.(m-'1))/.(m-'1) by A394,A401,A562,A646 .= (F.m)/.(m-'1) by A562,A646,A772; A776: f/.(m-'1+1) = (F.m)/.m by A394,A396,A562,A645; left_cell(f,l,G) = cell(G,q1-'1,q2) by A394,A395,A650,A652,A655,A656,A664,A665,A666,A667,A754, GOBRD13:22 .= front_right_cell(F.m,m-'1,G) by A644,A645,A646,A664,A665,A754, A755,A756,A768,A769,A770,A771,A775,A776,GOBRD13:42 ; then F.(m+1) turns_right m-'1,G by A324,A610,A658; then f turns_right m-'1,G by A400,A646,A660,A773,GOBRD13:44; then A777: f/.(m+1) = G*(p1-'1,p2) & [p1-'1,p2] in Indices G by A644,A645,A660,A664,A665,A755,A756,A774,GOBRD13:def 6; set rc = left_cell(rg,len rg-'1,G)\L~rg; A778: rc c= LeftComp rg by A640,A642,A643,JORDAN9:29; A779: 2 in dom g by A559,FINSEQ_3:27; len rg-'1+2 = len g +1 by A654,FINSEQ_5:def 3; then A780: rg/.(len rg -' 1) = g/.2 by A779,FINSEQ_5:69 .= f/.(m+1) by A660,A779,FINSEQ_5:30; A781: p = g/.1 by A393,A403,A404,FINSEQ_5:68 .= rg/.len g by FINSEQ_5:68 .= rg/.len rg by FINSEQ_5:def 3; A782: 1 <= p1-'1 by A777,GOBOARD5:1; A783: p1-'1+1 = p1 by A669,AMI_5:4; then left_cell(rg,len rg-'1,G) = cell(G,p1-'1,p2) by A640,A642,A643,A664,A665,A777,A780,A781,GOBRD13:24; then a in left_cell(rg,len rg-'1,G) by A669,A756,A760,A768,A782,A783,JORDAN9:22; then A784: a in rc by A659,XBOOLE_0:def 4; A785: L~rg c= L~f by A578,SPPOL_2:22; LeftComp rg is_a_component_of (L~rg)` by GOBOARD9:def 1; hence C meets LeftComp Rev g by A396,A580,A645,A646,A659,A778,A784, A785; end; end; then C meets RightComp g by GOBOARD9:26; then LeftComp g = RightComp g by A566,A579,A599,JORDAN9:3; hence contradiction by SPRECT_4:7; end; then A786: g = f/^0 by GOBOARD9:1 .= f by FINSEQ_5:31; then reconsider f as standard non constant special_circular_sequence; F.(0+1) = <*G*(XS,YS)*> by A78; then A787: G*(XS,YS) = (F.1)/.1 by FINSEQ_4:25 .= f/.1 by A389,A562; F.(1+1) = <*G*(XS,YS),G*(XS-'1,YS)*> by A78; then A788: G*(XS-'1,YS) = (F.2)/.2 by FINSEQ_4:26 .= f/.2 by A399,A562; f is clockwise_oriented proof A789: LeftComp f is_a_component_of (L~f)` by GOBOARD9:def 1; L~f is Bounded by JORDAN2C:73; then ex B being Subset of TOP-REAL 2 st B is_outside_component_of L~f & B=UBD L~f by JORDAN2C:76; then A790: UBD L~f is_a_component_of (L~f)` by JORDAN2C:def 4; A791: Int right_cell(f,1,G) c= right_cell(f,1,G) by TOPS_1:44; A792: cell(G,XS-'1,YS) c= BDD C by A1,JORDAN11:6; A793: XS-'1+1 = XS by A93,AMI_5:4; [XS-'1,YS] in Indices G by A1,JORDAN11:9; then right_cell(f,1,G) c= BDD C by A96,A395,A398,A787,A788,A792,A793, GOBRD13:27; then A794: Int right_cell(f,1,G) c= BDD C by A791,XBOOLE_1:1; A795: Int right_cell(f,1,G) c= RightComp f by A395,A398,JORDAN1H:31; Int right_cell(f,1,G) <> {} by A395,A398,JORDAN9:11; then A796: BDD C meets RightComp f by A794,A795,XBOOLE_1:68; A797: C c= LeftComp f by A566,A599,A786,A789,GOBOARD9:6; set W = {B where B is Subset of TOP-REAL 2: B is_inside_component_of C}; BDD C = union W by JORDAN2C:def 5; then consider e being set such that A798: e in W and A799: RightComp f meets e by A796,ZFMISC_1:98; consider B being Subset of TOP-REAL 2 such that A800: e = B and A801: B is_inside_component_of C by A798; A802: B is_a_component_of C` by A801,JORDAN2C:def 3; LeftComp f misses RightComp f by GOBRD14:24; then RightComp f misses C by A797,XBOOLE_1:63; then RightComp f c= C` by SUBSET_1:43; then A803: RightComp f c= B by A799,A800,A802,GOBOARD9:6; B is Bounded by A801,JORDAN2C:def 3; then A804: RightComp f is Bounded by A803,JORDAN2C:16; A805: UBD L~f = RightComp f or UBD L~f = LeftComp f by A790,JORDAN1H:30; L~f is Bounded by JORDAN2C:73; hence thesis by A804,A805,JORDAN1H:47,49; end; then reconsider f as clockwise_oriented (standard non constant special_circular_sequence); take f; thus f is_sequence_on G by A246; thus f/.1 = G*(XS,YS) by A787; thus f/.2 = G*(XS-'1,YS) by A788; let m such that A806: 1 <= m & m+2 <= len f; m+1 < m+2 by REAL_1:53; then A807: m+1 <= len f by A806,AXIOMS:22; then A808: f|(m+1) = F.(m+1) by A323,A394; A809: m = m+1-'1 by BINARITH:39; A810: m+1 > 1 by A806,NAT_1:38; A811: front_right_cell(F.(m+1),m,G) = front_right_cell(f,m,G) & front_left_cell(F.(m+1),m,G) = front_left_cell(f,m,G) by A395,A806,A807,A808,GOBRD13:43; A812: m+1+1 = m+(1+1) by XCMPLX_1:1; then A813: F.(m+1+1) = f|(m+1+1) by A323,A394,A806; hereby assume front_right_cell(f,m,G) misses C & front_left_cell(f,m,G) misses C; then F.(m+1+1) turns_left m,G by A324,A809,A810,A811; hence f turns_left m,G by A806,A812,A813,GOBRD13:45; end; hereby assume front_right_cell(f,m,G) misses C & front_left_cell(f,m,G) meets C; then F.(m+1+1) goes_straight m,G by A324,A809,A810,A811; hence f goes_straight m,G by A806,A812,A813,GOBRD13:46; end; assume front_right_cell(f,m,G) meets C; then F.(m+1+1) turns_right m,G by A324,A809,A810,A811; hence f turns_right m,G by A806,A812,A813,GOBRD13:44; end; uniqueness proof let f1,f2 be clockwise_oriented (standard non constant special_circular_sequence) such that A814: f1 is_sequence_on Gauge(C,n) and A815: f1/.1 = Gauge(C,n)*(X-SpanStart(C,n),Y-SpanStart(C,n)) and A816: f1/.2 = Gauge(C,n)*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) and A817: for k st 1 <= k & k+2 <= len f1 holds (front_right_cell(f1,k,Gauge(C,n)) misses C & front_left_cell(f1,k,Gauge(C,n)) misses C implies f1 turns_left k,Gauge(C,n)) & (front_right_cell(f1,k,Gauge(C,n)) misses C & front_left_cell(f1,k,Gauge(C,n)) meets C implies f1 goes_straight k,Gauge(C,n)) & (front_right_cell(f1,k,Gauge(C,n)) meets C implies f1 turns_right k,Gauge(C,n)) and A818: f2 is_sequence_on Gauge(C,n) and A819: f2/.1 = Gauge(C,n)*(X-SpanStart(C,n),Y-SpanStart(C,n)) and A820: f2/.2 = Gauge(C,n)*(X-SpanStart(C,n)-'1,Y-SpanStart(C,n)) and A821: for k st 1 <= k & k+2 <= len f2 holds (front_right_cell(f2,k,Gauge(C,n)) misses C & front_left_cell(f2,k,Gauge(C,n)) misses C implies f2 turns_left k,Gauge(C,n)) & (front_right_cell(f2,k,Gauge(C,n)) misses C & front_left_cell(f2,k,Gauge(C,n)) meets C implies f2 goes_straight k,Gauge(C,n)) & (front_right_cell(f2,k,Gauge(C,n)) meets C implies f2 turns_right k,Gauge(C,n)); defpred P[Nat] means f1|$1 = f2|$1; f1|0 = f1|{} by FINSEQ_1:4,TOPREAL1:def 1 .= {} by RELAT_1:110 .= f2|Seg 0 by FINSEQ_1:4,RELAT_1:110 .= f2|0 by TOPREAL1:def 1; then A822: P[0]; A823: for k st P[k] holds P[k+1] proof let k such that A824: f1|k = f2|k; A825: f1|1 = <*f1/.1 *> & f2|1 = <*f2/.1 *> by FINSEQ_5:23; A826: len f1 > 4 & len f2 > 4 by GOBOARD7:36; per cases by CQC_THE1:2; suppose k = 0; hence f1|(k+1) = f2|(k+1) by A815,A819,A825; suppose A827: k = 1; len f1 > 2 & len f2 > 2 by A826,AXIOMS:22; then f1|2 = <*f1/.1,f1/.2*> & f2|2 = <*f2/.1,f2/.2*> by JORDAN8:1; hence f1|(k+1) = f2|(k+1) by A815,A816,A819,A820,A827; suppose A828: k > 1; A829: f1/.1 = f1/.len f1 & f2/.1 = f2/.len f2 by FINSEQ_6:def 1; now per cases; suppose A830: len f1 > k; set m = k-'1; A831: 1 <= m by A828,JORDAN3:12; then A832: m+1 = k by JORDAN3:6; A833: now assume A834: len f2 <= k; then A835: f2 = f2|k by TOPREAL1:2; then 1 in dom(f2|k) by FINSEQ_5:6; then A836: (f1|k)/.1 = f1/.1 by A824,TOPREAL1:1; len f2 in dom(f2|k) by A835,FINSEQ_5:6; then A837: (f1|k)/.len f2 = f1/.len f2 by A824,TOPREAL1:1; 1 < len f2 & len f2 <= len f1 by A824,A826,A835,AXIOMS:22,FINSEQ_5: 18; hence contradiction by A824,A829,A830,A834,A835,A836,A837,GOBOARD7:40 ; end; then A838: k+1 <= len f2 by NAT_1:38; A839: k+1 <= len f1 by A830,NAT_1:38; A840: front_right_cell(f1,m,Gauge(C,n)) = front_right_cell(f1|k,m,Gauge(C,n)) by A814,A830,A831,A832,GOBRD13:43; A841: front_left_cell(f1,m,Gauge(C,n)) = front_left_cell(f1|k,m,Gauge(C,n)) by A814,A830,A831,A832,GOBRD13:43; A842: front_right_cell(f2,m,Gauge(C,n)) = front_right_cell(f2|k,m,Gauge(C,n)) by A818,A831,A832,A833,GOBRD13:43; A843: front_left_cell(f2,m,Gauge(C,n)) = front_left_cell(f2|k,m,Gauge(C,n)) by A818,A831,A832,A833,GOBRD13:43; A844: m+(1+1) = k+1 by A832,XCMPLX_1:1; now per cases; suppose front_right_cell(f1,m,Gauge(C,n)) misses C & front_left_cell(f1,m,Gauge(C,n)) misses C; then f1 turns_left m,Gauge(C,n) & f2 turns_left m,Gauge(C,n) by A817,A821,A824,A831,A838,A839,A840,A841,A842,A843,A844; hence f1|(k+1) = f2|(k+1) by A818,A824,A828,A838,A839,GOBRD13:48; suppose front_right_cell(f1,m,Gauge(C,n)) misses C & front_left_cell(f1,m,Gauge(C,n)) meets C; then f1 goes_straight m,Gauge(C,n) & f2 goes_straight m,Gauge(C,n) by A817,A821,A824,A831,A838,A839,A840,A841,A842,A843,A844; hence f1|(k+1) = f2|(k+1) by A818,A824,A828,A838,A839,GOBRD13:49; suppose front_right_cell(f1,m,Gauge(C,n)) meets C; then f1 turns_right m,Gauge(C,n) & f2 turns_right m,Gauge(C,n) by A817,A821,A824,A831,A838,A839,A840,A842,A844; hence f1|(k+1) = f2|(k+1) by A818,A824,A828,A838,A839,GOBRD13:47; end; hence f1|(k+1) = f2|(k+1); suppose A845: k >= len f1; then A846: f1 = f1|k by TOPREAL1:2; then 1 in dom(f1|k) by FINSEQ_5:6; then A847: (f2|k)/.1 = f2/.1 by A824,TOPREAL1:1; len f1 in dom(f1|k) by A846,FINSEQ_5:6; then A848: (f2|k)/.len f1 = f2/.len f1 by A824,TOPREAL1:1; 1 < len f1 & len f1 <= len f2 by A824,A826,A846,AXIOMS:22,FINSEQ_5: 18 ; then len f2 = len f1 by A824,A829,A846,A847,A848,GOBOARD7:40; hence f1|(k+1) = f2|(k+1) by A824,A845,A846,TOPREAL1:2; end; hence f1|(k+1) = f2|(k+1); end; for k holds P[k] from Ind(A822,A823); hence f1 = f2 by JORDAN9:4; end; end;