environ vocabulary ORDERS_1, RELAT_2, REALSET1, CARD_4, FINSET_1, CAT_1, YELLOW_0, YELLOW_1, WELLORD2, WELLORD1, BOOLE, LATTICES, PRE_TOPC, FUNCT_4, RELAT_1, FUNCT_1, ORDINAL1, CARD_1, FUNCOP_1, ARYTM_1, PBOOLE, ORDERS_4; notation TARSKI, XBOOLE_0, STRUCT_0, XCMPLX_0, XREAL_0, FINSET_1, NAT_1, FUNCOP_1, GROUP_1, PBOOLE, CARD_1, CARD_4, REALSET1, RELAT_2, ORDERS_1, PRE_TOPC, RELAT_1, FUNCT_1, FUNCT_2, YELLOW_0, WAYBEL_0, YELLOW_1, WAYBEL_1, FUNCT_4, WELLORD1, ORDINAL1; constructors CARD_4, WAYBEL_1, NAT_1, REAL_1, ORDERS_3, GROUP_6, WAYBEL_8, WAYBEL19, WAYBEL23, MEMBERED, TOLER_1; clusters FINSET_1, WAYBEL_0, STRUCT_0, YELLOW_0, YELLOW_1, WAYBEL_2, XREAL_0, YELLOW13, RELSET_1, WAYBEL31, FUNCOP_1, YELLOW14, YELLOW_2, NAT_1, MEMBERED; requirements NUMERALS, BOOLE, SUBSET, ARITHM; begin definition mode Chain -> RelStr means :: ORDERS_4:def 1 it is connected (non empty Poset) or it is empty; end; definition cluster empty -> reflexive transitive antisymmetric RelStr; end; definition cluster -> reflexive transitive antisymmetric Chain; end; definition cluster non empty Chain; end; definition cluster -> connected (non empty Chain); end; definition let L be 1-sorted; attr L is countable means :: ORDERS_4:def 2 the carrier of L is countable; end; definition cluster finite non empty Chain; end; definition cluster countable Chain; end; definition let A be connected (non empty RelStr); cluster full -> connected (non empty SubRelStr of A); end; definition let A be finite RelStr; cluster -> finite SubRelStr of A; end; theorem :: ORDERS_4:1 for n,m be Nat holds n <= m implies InclPoset(n) is full SubRelStr of InclPoset(m); definition let L be RelStr; let A,B be set; pred A,B form_upper_lower_partition_of L means :: ORDERS_4:def 3 A \/ B = the carrier of L & for a,b be Element of L st a in A & b in B holds a < b; end; theorem :: ORDERS_4:2 for L be RelStr for A,B be set holds A,B form_upper_lower_partition_of L implies A misses B; theorem :: ORDERS_4:3 for L be upper-bounded antisymmetric non empty RelStr holds ((the carrier of L) \ { Top L }), { Top L } form_upper_lower_partition_of L; theorem :: ORDERS_4:4 for L1,L2 be RelStr for f be map of L1,L2 st f is isomorphic holds (the carrier of L1 <> {} iff the carrier of L2 <> {}) & (the carrier of L2 <> {} or the carrier of L1 = {}) & (the carrier of L1 = {} iff the carrier of L2 = {}); theorem :: ORDERS_4:5 for L1,L2 be antisymmetric RelStr for A1,B1 be Subset of L1 st A1,B1 form_upper_lower_partition_of L1 for A2,B2 be Subset of L2 st A2,B2 form_upper_lower_partition_of L2 for f be map of subrelstr A1, subrelstr A2 st f is isomorphic for g be map of subrelstr B1, subrelstr B2 st g is isomorphic ex h be map of L1,L2 st h = f +* g & h is isomorphic; theorem :: ORDERS_4:6 for A being finite Chain, n being Nat st Card(the carrier of A) = n holds A,InclPoset n are_isomorphic;