Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Shunichi Kobayashi
- Received December 27, 1999
- MML identifier: BVFUNC23
- [
Mizar article,
MML identifier index
]
environ
vocabulary PARTIT1, EQREL_1, BVFUNC_2, BOOLE, SETFAM_1, CAT_1, FUNCT_4,
RELAT_1, FUNCT_1, CANTOR_1, T_1TOPSP;
notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1,
FUNCT_1, CQC_LANG, FUNCT_4, EQREL_1, PARTIT1, CANTOR_1, BVFUNC_1,
BVFUNC_2;
constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1;
clusters SUBSET_1, PARTIT1, CQC_LANG, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Chap. 1 Preliminaries
reserve Y for non empty set,
G for Subset of PARTITIONS(Y),
A, B, C, D, E, F for a_partition of Y;
theorem :: BVFUNC23:1
G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F;
theorem :: BVFUNC23:2
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F;
theorem :: BVFUNC23:3
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F;
theorem :: BVFUNC23:4
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F;
theorem :: BVFUNC23:5
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F;
theorem :: BVFUNC23:6
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E;
theorem :: BVFUNC23:7
for A,B,C,D,E,F being set, h being Function,
A',B',C',D',E',F' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (A .--> A')
holds h.A = A' & h.B = B' & h.C = C' &
h.D = D' & h.E = E' & h.F = F';
theorem :: BVFUNC23:8
for A,B,C,D,E,F being set, h being Function,
A',B',C',D',E',F' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (A .--> A')
holds dom h = {A,B,C,D,E,F};
theorem :: BVFUNC23:9
for A,B,C,D,E,F being set, h being Function,
A',B',C',D',E',F' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
(E .--> E') +* (F .--> F') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F};
theorem :: BVFUNC23:10
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F being a_partition of Y, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F) meets EqClass(z,A);
theorem :: BVFUNC23:11
for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F being a_partition of Y, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
EqClass(z,C '/\' D '/\' E '/\' F)=EqClass(u,C '/\' D '/\' E '/\' F)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G));
Back to top