Copyright (c) 1999 Association of Mizar Users
environ vocabulary PARTIT1, EQREL_1, BVFUNC_2, BOOLE, SETFAM_1, CAT_1, FUNCT_4, RELAT_1, FUNCT_1, CANTOR_1, T_1TOPSP; notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, CQC_LANG, FUNCT_4, EQREL_1, PARTIT1, CANTOR_1, BVFUNC_1, BVFUNC_2; constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1; clusters SUBSET_1, PARTIT1, CQC_LANG, XBOOLE_0; requirements SUBSET, BOOLE; definitions TARSKI; theorems EQREL_1, ZFMISC_1, T_1TOPSP, PARTIT1, BVFUNC_2, BVFUNC11, BVFUNC14, FUNCT_4, CQC_LANG, TARSKI, ENUMSET1, FUNCT_1, CANTOR_1, SETFAM_1, BVFUNC22, XBOOLE_0, XBOOLE_1; begin :: Chap. 1 Preliminaries reserve Y for non empty set, G for Subset of PARTITIONS(Y), A, B, C, D, E, F for a_partition of Y; theorem Th1: G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F implies CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F proof assume A1: G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F; A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7; A3:G \ {A}={A} \/ {B,C,D,E,F} \ {A} by A1,ENUMSET1:51 .= ({A} \ {A}) \/ ({B,C,D,E,F} \ {A}) by XBOOLE_1:42; A4:not B in {A} by A1,TARSKI:def 1; A5:not C in {A} by A1,TARSKI:def 1; A6:not D in {A} by A1,TARSKI:def 1; A7:not E in {A} by A1,TARSKI:def 1; A8:not F in {A} by A1,TARSKI:def 1; A9:{B,C,D,E,F} \ {A} = ({B} \/ {C,D,E,F}) \ {A} by ENUMSET1:47 .= ({B} \ {A}) \/ ({C,D,E,F} \ {A}) by XBOOLE_1:42 .= {B} \/ ({C,D,E,F} \ {A}) by A4,ZFMISC_1:67 .= {B} \/ (({C} \/ {D,E,F}) \ {A}) by ENUMSET1:44 .= {B} \/ (({C} \ {A}) \/ ({D,E,F} \ {A})) by XBOOLE_1:42 .= {B} \/ (({C} \ {A}) \/ (({D,E} \/ {F}) \ {A})) by ENUMSET1:43 .= {B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F} \ {A}))) by XBOOLE_1:42 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F} \ {A}))) by A6,A7,ZFMISC_1:72 .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ {F})) by A8,ZFMISC_1:67 .= {B} \/ ({C} \/ ({D,E} \/ {F})) by A5,ZFMISC_1:67 .= {B} \/ ({C} \/ {D,E,F}) by ENUMSET1:43 .= {B} \/ {C,D,E,F} by ENUMSET1:44 .= {B,C,D,E,F} by ENUMSET1:47; A in {A} by TARSKI:def 1; then A10:{A} \ {A}={} by ZFMISC_1:68; A11:B '/\' C '/\' D '/\' E '/\' F c= '/\' (G \ {A}) proof let x be set; assume A12:x in B '/\' C '/\' D '/\' E '/\' F; then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) & not x in {{}} by XBOOLE_0:def 4; then consider bcde,f being set such that A13: bcde in B '/\' C '/\' D '/\' E & f in F & x = bcde /\ f by SETFAM_1:def 5; bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A13,PARTIT1:def 4; then bcde in INTERSECTION(B '/\' C '/\' D,E) & not bcde in {{}} by XBOOLE_0:def 4; then consider bcd,e being set such that A14: bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5; bcd in INTERSECTION(B '/\' C,D) \ {{}} by A14,PARTIT1:def 4; then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4; then consider bc,d being set such that A15: bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5; bc in INTERSECTION(B,C) \ {{}} by A15,PARTIT1:def 4; then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4; then consider b,c being set such that A16: b in B & c in C & bc = b /\ c by SETFAM_1:def 5; set h = (B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f); A17: dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f)) = {F,B,C,D,E} by BVFUNC22:7 .= {F} \/ {B,C,D,E} by ENUMSET1:47 .= {B,C,D,E,F} by ENUMSET1:50; A18: h.D = d by A1,BVFUNC22:6; A19: h.B = b by A1,BVFUNC22:6; A20: h.C = c by A1,BVFUNC22:6; A21: h.E = e by A1,BVFUNC22:6; A22: h.F = f by A1,BVFUNC22:6; A23: for p being set st p in (G \ {A}) holds h.p in p proof let p be set; assume A24:p in (G \ {A}); now per cases by A3,A9,A10,A24,ENUMSET1:23; case p=D; hence thesis by A1,A15,BVFUNC22:6; case p=B; hence thesis by A1,A16,BVFUNC22:6; case p=C; hence thesis by A1,A16,BVFUNC22:6; case p=E; hence thesis by A1,A14,BVFUNC22:6; case p=F; hence thesis by A1,A13,BVFUNC22:6; end; hence thesis; end; A25: D in dom h by A17,ENUMSET1:24; then A26: h.D in rng h by FUNCT_1:def 5; A27: B in dom h by A17,ENUMSET1:24; A28: C in dom h by A17,ENUMSET1:24; A29: E in dom h by A17,ENUMSET1:24; A30: F in dom h by A17,ENUMSET1:24; A31:rng h c= {h.D,h.B,h.C,h.E,h.F} proof let t be set; assume t in rng h; then consider x1 being set such that A32: x1 in dom h & t = h.x1 by FUNCT_1:def 5; now per cases by A17,A32,ENUMSET1:23; case x1=D; hence thesis by A32,ENUMSET1:24; case x1=B; hence thesis by A32,ENUMSET1:24; case x1=C; hence thesis by A32,ENUMSET1:24; case x1=E; hence thesis by A32,ENUMSET1:24; case x1=F; hence thesis by A32,ENUMSET1:24; end; hence thesis; end; {h.D,h.B,h.C,h.E,h.F} c= rng h proof let t be set; assume A33:t in {h.D,h.B,h.C,h.E,h.F}; now per cases by A33,ENUMSET1:23; case t=h.D; hence thesis by A25,FUNCT_1:def 5; case t=h.B; hence thesis by A27,FUNCT_1:def 5; case t=h.C; hence thesis by A28,FUNCT_1:def 5; case t=h.E; hence thesis by A29,FUNCT_1:def 5; case t=h.F; hence thesis by A30,FUNCT_1:def 5; end; hence thesis; end; then A34:rng h = {h.D,h.B,h.C,h.E,h.F} by A31,XBOOLE_0:def 10; rng h c= bool Y proof let t be set; assume A35:t in rng h; now per cases by A31,A35,ENUMSET1:23; case t=h.D; hence thesis by A15,A18; case t=h.B; hence thesis by A16,A19; case t=h.C; hence thesis by A16,A20; case t=h.E; hence thesis by A14,A21; case t=h.F; hence thesis by A13,A22; end; hence thesis; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A36: Intersect FF = meet (rng h) by A26,CANTOR_1:def 3; A37:x c= Intersect FF proof let u be set; assume A38:u in x; A39:FF<>{} by A34,ENUMSET1:24; for y be set holds y in FF implies u in y proof let y be set; assume A40:y in FF; now per cases by A31,A40,ENUMSET1:23; case y=h.D; then A41:y=d by A1,BVFUNC22:6; u in (d /\ ((b /\ c) /\ e)) /\ f by A13,A14,A15,A16,A38,XBOOLE_1:16; then u in d /\ ((b /\ c) /\ e /\ f) by XBOOLE_1:16; hence thesis by A41,XBOOLE_0:def 3; case y=h.B; then A42:y=b by A1,BVFUNC22:6; u in (c /\ (d /\ b)) /\ e /\ f by A13,A14,A15,A16,A38,XBOOLE_1:16; then u in c /\ ((d /\ b) /\ e) /\ f by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ b) /\ f by XBOOLE_1:16; then u in c /\ (((d /\ e) /\ b) /\ f) by XBOOLE_1:16; then u in c /\ ((d /\ e) /\ (f /\ b)) by XBOOLE_1:16; then u in (c /\ (d /\ e)) /\ (f /\ b) by XBOOLE_1:16; then u in ((c /\ (d /\ e)) /\ f) /\ b by XBOOLE_1:16; hence thesis by A42,XBOOLE_0:def 3; case y=h.C; then A43:y=c by A1,BVFUNC22:6; u in ((c /\ (b /\ d)) /\ e) /\ f by A13,A14,A15,A16,A38,XBOOLE_1:16; then u in (c /\ ((b /\ d) /\ e)) /\ f by XBOOLE_1:16; then u in c /\ (((b /\ d) /\ e) /\ f) by XBOOLE_1:16; hence thesis by A43,XBOOLE_0:def 3; case y=h.E; then A44:y=e by A1,BVFUNC22:6; u in (((b /\ c) /\ d) /\ f) /\ e by A13,A14,A15,A16,A38,XBOOLE_1:16; hence thesis by A44,XBOOLE_0:def 3; case y=h.F; hence thesis by A13,A22,A38,XBOOLE_0:def 3; end; hence thesis; end; then u in meet FF by A39,SETFAM_1:def 1; hence thesis by A39,CANTOR_1:def 3; end; Intersect FF c= x proof let t be set; assume A45: t in Intersect FF; h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng h by A34,ENUMSET1:24; then A46:t in b & t in c & t in d & t in e & t in f by A18,A19,A20,A21,A22,A36,A45,SETFAM_1:def 1; then t in b /\ c by XBOOLE_0:def 3; then t in (b /\ c) /\ d by A46,XBOOLE_0:def 3; then t in (b /\ c) /\ d /\ e by A46,XBOOLE_0:def 3; hence thesis by A13,A14,A15,A16,A46,XBOOLE_0:def 3; end; then A47:x = Intersect FF by A37,XBOOLE_0:def 10; x<>{} by A12,EQREL_1:def 6; hence thesis by A3,A9,A10,A17,A23,A47,BVFUNC_2:def 1; end; '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F proof let x be set; assume x in '/\' (G \ {A}); then consider h being Function, FF being Subset-Family of Y such that A48: dom h=(G \ {A}) & rng h = FF & (for d being set st d in (G \ {A}) holds h.d in d) & x=Intersect FF & x<>{} by BVFUNC_2:def 1; A49:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) & E in (G \ {A}) & F in (G \ {A}) by A3,A9,A10,ENUMSET1:24; then A50:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F by A48; A51:h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng h by A48,A49,FUNCT_1:def 5; A52:rng h <> {} by A48,A49,FUNCT_1:12; A53:Intersect FF = meet (rng h) by A48,A51,CANTOR_1:def 3; A54:not (x in {{}}) by A48,TARSKI:def 1; A55:h.B /\ h.C /\ h.D /\ h.E /\ h.F c= x proof let m be set; assume A56: m in h.B /\ h.C /\ h.D /\ h.E /\ h.F; then A57: m in h.B /\ h.C /\ h.D /\ h.E & m in h.F by XBOOLE_0:def 3; then A58:m in h.B /\ h.C /\ h.D & m in h.E & m in h.F by XBOOLE_0:def 3; then A59: m in h.B /\ h.C & m in h.D by XBOOLE_0:def 3; A60:rng h c= {h.B,h.C,h.D,h.E,h.F} proof let u be set; assume u in rng h; then consider x1 being set such that A61: x1 in dom h & u = h.x1 by FUNCT_1:def 5; now per cases by A3,A9,A10,A48,A61,ENUMSET1:23; case x1=B; hence thesis by A61,ENUMSET1:24; case x1=C; hence thesis by A61,ENUMSET1:24; case x1=D; hence thesis by A61,ENUMSET1:24; case x1=E; hence thesis by A61,ENUMSET1:24; case x1=F; hence thesis by A61,ENUMSET1:24; end; hence thesis; end; for y being set holds y in rng h implies m in y proof let y be set; assume A62: y in rng h; now per cases by A60,A62,ENUMSET1:23; case y=h.B; hence thesis by A59,XBOOLE_0:def 3; case y=h.C; hence thesis by A59,XBOOLE_0:def 3; case y=h.D; hence thesis by A58,XBOOLE_0:def 3; case y=h.E; hence thesis by A57,XBOOLE_0:def 3; case y=h.F; hence thesis by A56,XBOOLE_0:def 3; end; hence thesis; end; hence thesis by A48,A52,A53,SETFAM_1:def 1; end; A63: x c= h.B /\ h.C /\ h.D /\ h.E /\ h.F proof let m be set; assume m in x; then A64:m in h.B & m in h.C & m in h.D & m in h.E & m in h.F by A48,A51,A53,SETFAM_1:def 1; then m in h.B /\ h.C by XBOOLE_0:def 3; then m in h.B /\ h.C /\ h.D by A64,XBOOLE_0:def 3; then m in h.B /\ h.C /\ h.D /\ h.E by A64,XBOOLE_0:def 3; hence thesis by A64,XBOOLE_0:def 3; end; then A65:((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F = x by A55,XBOOLE_0:def 10; set mbc=h.B /\ h.C; set mbcd=(h.B /\ h.C) /\ h.D; set mbcde=(h.B /\ h.C) /\ h.D /\ h.E; mbcde<>{} by A48,A55,A63,XBOOLE_0:def 10; then A66:not (mbcde in {{}}) by TARSKI:def 1; mbcd<>{} by A48,A55,A63,XBOOLE_0:def 10; then A67:not (mbcd in {{}}) by TARSKI:def 1; mbc<>{} by A48,A55,A63,XBOOLE_0:def 10; then A68:not (mbc in {{}}) by TARSKI:def 1; mbc in INTERSECTION(B,C) by A50,SETFAM_1:def 5; then mbc in INTERSECTION(B,C) \ {{}} by A68,XBOOLE_0:def 4; then mbc in B '/\' C by PARTIT1:def 4; then mbcd in INTERSECTION(B '/\' C,D) by A50,SETFAM_1:def 5; then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A67,XBOOLE_0:def 4; then mbcd in B '/\' C '/\' D by PARTIT1:def 4; then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A50,SETFAM_1:def 5; then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A66,XBOOLE_0:def 4 ; then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4; then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A50,A65,SETFAM_1:def 5 ; then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A54,XBOOLE_0:def 4; hence thesis by PARTIT1:def 4; end; hence thesis by A2,A11,XBOOLE_0:def 10; end; theorem Th2: G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F implies CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F proof assume A1:G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F; {A,B,C,D,E,F}={B,A} \/ {C,D,E,F} by ENUMSET1:52; then G={B,A,C,D,E,F} by A1,ENUMSET1:52; hence thesis by A1,Th1; end; theorem Th3: G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F implies CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F proof assume A1:G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F; {A,B,C,D,E,F}={A,B,C} \/ {D,E,F} by ENUMSET1:53 .={A} \/ {B,C} \/ {D,E,F} by ENUMSET1:42 .={A,C,B} \/ {D,E,F} by ENUMSET1:42 .={A,C,B,D,E,F} by ENUMSET1:53; hence thesis by A1,Th2; end; theorem Th4: G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F implies CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F proof assume A1:G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F; {A,B,C,D,E,F} ={A,B} \/ {C,D,E,F} by ENUMSET1:52 .={A,B} \/ ({C,D} \/ {E,F}) by ENUMSET1:45 .={A,B} \/ {D,C,E,F} by ENUMSET1:45 .={A,B,D,C,E,F} by ENUMSET1:52; hence thesis by A1,Th3; end; theorem Th5: G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F implies CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F proof assume A1:G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F; {A,B,C,D,E,F} ={A,B,C} \/ {D,E,F} by ENUMSET1:53 .={A,B,C} \/ ({D,E} \/ {F}) by ENUMSET1:43 .={A,B,C} \/ {E,D,F} by ENUMSET1:43 .={A,B,C,E,D,F} by ENUMSET1:53; hence thesis by A1,Th4; end; theorem G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F implies CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E proof assume A1:G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F; {A,B,C,D,E,F} ={A,B,C,D} \/ {E,F} by ENUMSET1:54 .={A,B,C,D,F,E} by ENUMSET1:54; hence thesis by A1,Th5; end; theorem Th7: for A,B,C,D,E,F being set, h being Function, A',B',C',D',E',F' being set st A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (A .--> A') holds h.A = A' & h.B = B' & h.C = C' & h.D = D' & h.E = E' & h.F = F' proof let A,B,C,D,E,F be set; let h be Function; let A',B',C',D',E',F' be set; assume A1: A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (A .--> A'); A2: dom (A .--> A') = {A} by CQC_LANG:5; A3: h.A = A' proof A in dom (A .--> A') by A2,TARSKI:def 1; then h.A = (A .--> A').A by A1,FUNCT_4:14; hence thesis by CQC_LANG:6; end; A4: h.B = B' proof not B in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.B=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F')).B by A1,FUNCT_4:12 .= B' by A1,BVFUNC22:6; hence thesis; end; A5: h.C = C' proof not C in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.C=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F')).C by A1,FUNCT_4:12; hence thesis by A1,BVFUNC22:6; end; A6: h.D = D' proof not D in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.D=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F')).D by A1,FUNCT_4:12 .= D' by A1,BVFUNC22:6; hence thesis; end; A7: h.E = E' proof not E in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.E=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F')).E by A1,FUNCT_4:12 .= E' by A1,BVFUNC22:6; hence thesis; end; h.F = F' proof not F in dom (A .--> A') by A1,A2,TARSKI:def 1; then h.F=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F')).F by A1,FUNCT_4:12 .= F' by A1,BVFUNC22:6; hence thesis; end; hence thesis by A3,A4,A5,A6,A7; end; theorem Th8: for A,B,C,D,E,F being set, h being Function, A',B',C',D',E',F' being set st h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (A .--> A') holds dom h = {A,B,C,D,E,F} proof let A,B,C,D,E,F be set; let h be Function; let A',B',C',D',E',F' be set; assume A1: h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (A .--> A'); A2: dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F')) = {F,B,C,D,E} by BVFUNC22:7 .= {F} \/ {B,C,D,E} by ENUMSET1:47 .= {B,C,D,E,F} by ENUMSET1:50; dom (A .--> A') = {A} by CQC_LANG:5; then dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +*(A .--> A')) = {B,C,D,E,F} \/ {A} by A2,FUNCT_4:def 1 .= {A,B,C,D,E,F} by ENUMSET1:51; hence thesis by A1; end; theorem Th9: for A,B,C,D,E,F being set, h being Function, A',B',C',D',E',F' being set st A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (A .--> A') holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F} proof let A,B,C,D,E,F be set; let h be Function; let A',B',C',D',E',F' be set; assume A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F & h = (B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +* (F .--> F') +* (A .--> A'); then A1: dom h={A,B,C,D,E,F} by Th8; then A2: A in dom h by ENUMSET1:29; A3: B in dom h by A1,ENUMSET1:29; A4: C in dom h by A1,ENUMSET1:29; A5: D in dom h by A1,ENUMSET1:29; A6: E in dom h by A1,ENUMSET1:29; A7: F in dom h by A1,ENUMSET1:29; A8:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F} proof let t be set; assume t in rng h; then consider x1 being set such that A9: x1 in dom h & t = h.x1 by FUNCT_1:def 5; now per cases by A1,A9,ENUMSET1:28; case x1=A; hence thesis by A9,ENUMSET1:29; case x1=B; hence thesis by A9,ENUMSET1:29; case x1=C; hence thesis by A9,ENUMSET1:29; case x1=D; hence thesis by A9,ENUMSET1:29; case x1=E; hence thesis by A9,ENUMSET1:29; case x1=F; hence thesis by A9,ENUMSET1:29; end; hence thesis; end; {h.A,h.B,h.C,h.D,h.E,h.F} c= rng h proof let t be set; assume A10:t in {h.A,h.B,h.C,h.D,h.E,h.F}; now per cases by A10,ENUMSET1:28; case t=h.A; hence thesis by A2,FUNCT_1:def 5; case t=h.B; hence thesis by A3,FUNCT_1:def 5; case t=h.C; hence thesis by A4,FUNCT_1:def 5; case t=h.D; hence thesis by A5,FUNCT_1:def 5; case t=h.E; hence thesis by A6,FUNCT_1:def 5; case t=h.F; hence thesis by A7,FUNCT_1:def 5; end; hence thesis; end; hence thesis by A8,XBOOLE_0:def 10; end; theorem for G being Subset of PARTITIONS(Y), A,B,C,D,E,F being a_partition of Y, z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F) meets EqClass(z,A) proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F be a_partition of Y; let z,u be Element of Y; let h be Function; assume A1:G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F; set GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F); set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (A .--> EqClass(z,A)); A2: dom h = G by A1,Th8; A3: h.A = EqClass(z,A) by A1,Th7; A4: h.B = EqClass(u,B) by A1,Th7; A5: h.C = EqClass(u,C) by A1,Th7; A6: h.D = EqClass(u,D) by A1,Th7; A7: h.E = EqClass(u,E) by A1,Th7; A8: h.F = EqClass(u,F) by A1,Th7; A9: for d being set st d in G holds h.d in d proof let d be set; assume A10:d in G; now per cases by A1,A10,ENUMSET1:28; case d=A; hence thesis by A3; case d=B; hence thesis by A4; case d=C; hence thesis by A5; case d=D; hence thesis by A6; case d=E; hence thesis by A7; case d=F; hence thesis by A8; end; hence thesis; end; A in dom h by A1,A2,ENUMSET1:29; then A11: h.A in rng h by FUNCT_1:def 5; B in dom h by A1,A2,ENUMSET1:29; then A12: h.B in rng h by FUNCT_1:def 5; C in dom h by A1,A2,ENUMSET1:29; then A13: h.C in rng h by FUNCT_1:def 5; D in dom h by A1,A2,ENUMSET1:29; then A14: h.D in rng h by FUNCT_1:def 5; E in dom h by A1,A2,ENUMSET1:29; then A15: h.E in rng h by FUNCT_1:def 5; F in dom h by A1,A2,ENUMSET1:29; then A16: h.F in rng h by FUNCT_1:def 5; A17:rng h = {h.A,h.B,h.C,h.D,h.E,h.F} by A1,Th9; rng h c= bool Y proof let t be set; assume A18:t in rng h; now per cases by A17,A18,ENUMSET1:28; case t=h.A; hence thesis by A3; case t=h.B; hence thesis by A4; case t=h.C; hence thesis by A5; case t=h.D; hence thesis by A6; case t=h.E; hence thesis by A7; case t=h.F; hence thesis by A8; end; hence thesis; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A19: Intersect FF = meet rng h by A11,CANTOR_1:def 3; Intersect FF <> {} by A1,A2,A9,BVFUNC_2:def 5; then consider m being set such that A20: m in Intersect FF by XBOOLE_0:def 1; A21: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) by A3,A4,A5,A6,A7,A8,A11,A12,A13,A14,A15,A16,A19,A20,SETFAM_1:def 1; GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) by BVFUNC14:1; then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass (u,F) by BVFUNC14:1; then A22: GG /\ EqClass(z,A) = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u, D)) /\ EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A21,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A21,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A21,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A21,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) /\ EqClass(z,A) by A21,XBOOLE_0:def 3; hence thesis by A22,XBOOLE_0:def 7; end; theorem for G being Subset of PARTITIONS(Y), A,B,C,D,E,F being a_partition of Y, z,u being Element of Y, h being Function st G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F & EqClass(z,C '/\' D '/\' E '/\' F)=EqClass(u,C '/\' D '/\' E '/\' F) holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G)) proof let G be Subset of PARTITIONS(Y); let A,B,C,D,E,F be a_partition of Y; let z,u be Element of Y; let h be Function; assume A1:G is independent & G={A,B,C,D,E,F} & A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F & C<>D & C<>E & C<>F & D<>E & D<>F & E<>F & EqClass(z,C '/\' D '/\' E '/\' F)=EqClass(u,C '/\' D '/\' E '/\' F); then A2:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F by Th2; set H=EqClass(z,CompF(B,G)); set I=EqClass(z,A), GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F)); A3: GG=EqClass(u,CompF(A,G)) by A1,Th1; set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +* (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +* (F .--> EqClass(u,F)) +* (A .--> EqClass(z,A)); A4: dom h = G by A1,Th8; A5: h.A = EqClass(z,A) by A1,Th7; A6: h.B = EqClass(u,B) by A1,Th7; A7: h.C = EqClass(u,C) by A1,Th7; A8: h.D = EqClass(u,D) by A1,Th7; A9: h.E = EqClass(u,E) by A1,Th7; A10: h.F = EqClass(u,F) by A1,Th7; A11: for d being set st d in G holds h.d in d proof let d be set; assume A12:d in G; now per cases by A1,A12,ENUMSET1:28; case d=A; hence thesis by A5; case d=B; hence thesis by A6; case d=C; hence thesis by A7; case d=D; hence thesis by A8; case d=E; hence thesis by A9; case d=F; hence thesis by A10; end; hence thesis; end; A in dom h by A1,A4,ENUMSET1:29; then A13: h.A in rng h by FUNCT_1:def 5; B in dom h by A1,A4,ENUMSET1:29; then A14: h.B in rng h by FUNCT_1:def 5; C in dom h by A1,A4,ENUMSET1:29; then A15: h.C in rng h by FUNCT_1:def 5; D in dom h by A1,A4,ENUMSET1:29; then A16: h.D in rng h by FUNCT_1:def 5; E in dom h by A1,A4,ENUMSET1:29; then A17: h.E in rng h by FUNCT_1:def 5; F in dom h by A1,A4,ENUMSET1:29; then A18: h.F in rng h by FUNCT_1:def 5; A19:rng h = {h.A,h.B,h.C,h.D,h.E,h.F} by A1,Th9; rng h c= bool Y proof let t be set; assume A20:t in rng h; now per cases by A19,A20,ENUMSET1:28; case t=h.A; hence thesis by A5; case t=h.B; hence thesis by A6; case t=h.C; hence thesis by A7; case t=h.D; hence thesis by A8; case t=h.E; hence thesis by A9; case t=h.F; hence thesis by A10; end; hence thesis; end; then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7; A21: Intersect FF = meet (rng h) by A13,CANTOR_1:def 3; (Intersect FF)<>{} by A1,A4,A11,BVFUNC_2:def 5; then consider m being set such that A22: m in Intersect FF by XBOOLE_0:def 1; m in h.A & m in h.B & m in h.C & m in h.D & m in h.E & m in h.F by A13,A14,A15,A16,A17,A18,A21,A22,SETFAM_1:def 1; then A23: m in EqClass(z,A) & m in EqClass(u,B) & m in EqClass(u,C) & m in EqClass(u,D) & m in EqClass(u,E) & m in EqClass(u,F) by A1,Th7; GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) by BVFUNC14:1; then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F) by BVFUNC14:1; then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass (u,F) by BVFUNC14:1; then A24: GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\ EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(z,A) by BVFUNC14:1; m in EqClass(u,B) /\ EqClass(u,C) by A23,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A23,XBOOLE_0: def 3 ; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) by A23,XBOOLE_0:def 3; then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass(u,F) by A23,XBOOLE_0:def 3; then GG /\ I <> {} by A23,A24,XBOOLE_0:def 3; then consider p being set such that A25: p in GG /\ I by XBOOLE_0:def 1; reconsider p as Element of Y by A25; set K=EqClass(p,C '/\' D '/\' E '/\' F); A26:p in K & K in C '/\' D '/\' E '/\' F by T_1TOPSP:def 1; p in GG & p in I by A25,XBOOLE_0:def 3; then A27:p in I /\ K by A26,XBOOLE_0:def 3; then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F) & not (I /\ K in {{}}) by SETFAM_1:def 5,TARSKI:def 1; then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F) \ {{}} by XBOOLE_0:def 4; then A28: I /\ K in A '/\' (C '/\' D '/\' E '/\' F) by PARTIT1:def 4; set L=EqClass(z,C '/\' D '/\' E '/\' F); GG = EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F)) by PARTIT1:16; then GG = EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F)) by PARTIT1:16 ; then GG = EqClass(u,B '/\' (C '/\' D '/\' E '/\' F)) by PARTIT1:16; then A29: GG c= L by A1,BVFUNC11:3; A30: p in GG by A25,XBOOLE_0:def 3; p in EqClass(p,C '/\' D '/\' E '/\' F) by T_1TOPSP:def 1; then K meets L by A29,A30,XBOOLE_0:3; then K=L by T_1TOPSP:9; then A31:z in K by T_1TOPSP:def 1; z in I by T_1TOPSP:def 1; then A32:z in I /\ K by A31,XBOOLE_0:def 3; A33: z in H by T_1TOPSP:def 1; A '/\' (C '/\' D '/\' E '/\' F) = A '/\' (C '/\' D '/\' E) '/\' F by PARTIT1:16 .= A '/\' (C '/\' D) '/\' E '/\' F by PARTIT1:16 .= A '/\' C '/\' D '/\' E '/\' F by PARTIT1:16; then I /\ K = H or I /\ K misses H by A2,A28,EQREL_1:def 6; hence thesis by A3,A27,A30,A32,A33,XBOOLE_0:3; end;