The Mizar article:

Six Variable Predicate Calculus for Boolean Valued Functions. Part I

by
Shunichi Kobayashi

Received December 27, 1999

Copyright (c) 1999 Association of Mizar Users

MML identifier: BVFUNC23
[ MML identifier index ]


environ

 vocabulary PARTIT1, EQREL_1, BVFUNC_2, BOOLE, SETFAM_1, CAT_1, FUNCT_4,
      RELAT_1, FUNCT_1, CANTOR_1, T_1TOPSP;
 notation TARSKI, XBOOLE_0, ENUMSET1, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1,
      FUNCT_1, CQC_LANG, FUNCT_4, EQREL_1, PARTIT1, CANTOR_1, BVFUNC_1,
      BVFUNC_2;
 constructors BVFUNC_2, SETWISEO, CANTOR_1, FUNCT_7, BVFUNC_1;
 clusters SUBSET_1, PARTIT1, CQC_LANG, XBOOLE_0;
 requirements SUBSET, BOOLE;
 definitions TARSKI;
 theorems EQREL_1, ZFMISC_1, T_1TOPSP, PARTIT1, BVFUNC_2, BVFUNC11, BVFUNC14,
      FUNCT_4, CQC_LANG, TARSKI, ENUMSET1, FUNCT_1, CANTOR_1, SETFAM_1,
      BVFUNC22, XBOOLE_0, XBOOLE_1;

begin :: Chap. 1  Preliminaries

reserve Y for non empty set,

        G for Subset of PARTITIONS(Y),
        A, B, C, D, E, F for a_partition of Y;

theorem Th1:
 G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(A,G) = B '/\' C '/\' D '/\' E '/\' F
proof
  assume A1: G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F;
  A2:CompF(A,G)='/\' (G \ {A}) by BVFUNC_2:def 7;
A3:G \ {A}={A} \/ {B,C,D,E,F} \ {A} by A1,ENUMSET1:51
   .= ({A} \ {A}) \/ ({B,C,D,E,F} \ {A}) by XBOOLE_1:42;
  A4:not B in {A} by A1,TARSKI:def 1;
  A5:not C in {A} by A1,TARSKI:def 1;
  A6:not D in {A} by A1,TARSKI:def 1;
  A7:not E in {A} by A1,TARSKI:def 1;
  A8:not F in {A} by A1,TARSKI:def 1;
A9:{B,C,D,E,F} \ {A} = ({B} \/ {C,D,E,F}) \ {A} by ENUMSET1:47
  .= ({B} \ {A}) \/ ({C,D,E,F} \ {A}) by XBOOLE_1:42
  .= {B} \/ ({C,D,E,F} \ {A}) by A4,ZFMISC_1:67
  .= {B} \/ (({C} \/ {D,E,F}) \ {A}) by ENUMSET1:44
  .= {B} \/ (({C} \ {A}) \/ ({D,E,F} \ {A})) by XBOOLE_1:42
  .= {B} \/ (({C} \ {A}) \/ (({D,E} \/ {F}) \ {A})) by ENUMSET1:43
  .= {B} \/ (({C} \ {A}) \/ (({D,E} \ {A}) \/ ({F} \ {A}))) by XBOOLE_1:42
  .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ ({F} \ {A}))) by A6,A7,ZFMISC_1:72
  .= {B} \/ (({C} \ {A}) \/ ({D,E} \/ {F})) by A8,ZFMISC_1:67
  .= {B} \/ ({C} \/ ({D,E} \/ {F})) by A5,ZFMISC_1:67
  .= {B} \/ ({C} \/ {D,E,F}) by ENUMSET1:43
  .= {B} \/ {C,D,E,F} by ENUMSET1:44
  .= {B,C,D,E,F} by ENUMSET1:47;
    A in {A} by TARSKI:def 1;
then A10:{A} \ {A}={} by ZFMISC_1:68;
  A11:B '/\' C '/\' D '/\' E '/\' F c= '/\' (G \ {A})
  proof
    let x be set;
    assume A12:x in B '/\' C '/\' D '/\' E '/\' F;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}}
    by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) &
    not x in {{}} by XBOOLE_0:def 4;
    then consider bcde,f being set such that
A13:  bcde in B '/\' C '/\' D '/\' E & f in F & x = bcde /\
 f by SETFAM_1:def 5;
      bcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A13,PARTIT1:def 4;
    then bcde in INTERSECTION(B '/\' C '/\' D,E) &
    not bcde in {{}} by XBOOLE_0:def 4;
    then consider bcd,e being set such that
A14:  bcd in B '/\' C '/\' D & e in E & bcde = bcd /\ e by SETFAM_1:def 5;
      bcd in INTERSECTION(B '/\' C,D) \ {{}} by A14,PARTIT1:def 4;
    then bcd in INTERSECTION(B '/\' C,D) & not bcd in {{}} by XBOOLE_0:def 4;
    then consider bc,d being set such that
A15:  bc in B '/\' C & d in D & bcd = bc /\ d by SETFAM_1:def 5;
      bc in INTERSECTION(B,C) \ {{}} by A15,PARTIT1:def 4;
    then bc in INTERSECTION(B,C) & not bc in {{}} by XBOOLE_0:def 4;
    then consider b,c being set such that
A16:  b in B & c in C & bc = b /\ c by SETFAM_1:def 5;
    set h = (B .--> b) +* (C .--> c) +* (D .--> d) +*
            (E .--> e) +* (F .--> f);
A17:  dom ((B .--> b) +* (C .--> c) +* (D .--> d) +* (E .--> e) +* (F .--> f))
      = {F,B,C,D,E} by BVFUNC22:7
     .= {F} \/ {B,C,D,E} by ENUMSET1:47
     .= {B,C,D,E,F} by ENUMSET1:50;
A18:  h.D = d by A1,BVFUNC22:6;
A19:  h.B = b by A1,BVFUNC22:6;
A20:  h.C = c by A1,BVFUNC22:6;
A21:  h.E = e by A1,BVFUNC22:6;
A22:  h.F = f by A1,BVFUNC22:6;
A23:  for p being set st p in (G \ {A}) holds h.p in p
      proof
        let p be set;
        assume A24:p in (G \ {A});
          now per cases by A3,A9,A10,A24,ENUMSET1:23;
        case p=D; hence thesis by A1,A15,BVFUNC22:6;
        case p=B; hence thesis by A1,A16,BVFUNC22:6;
        case p=C; hence thesis by A1,A16,BVFUNC22:6;
        case p=E; hence thesis by A1,A14,BVFUNC22:6;
        case p=F; hence thesis by A1,A13,BVFUNC22:6;
        end;
        hence thesis;
      end;
A25:    D in dom h by A17,ENUMSET1:24;
then A26:  h.D in rng h by FUNCT_1:def 5;
A27:   B in dom h by A17,ENUMSET1:24;
A28:   C in dom h by A17,ENUMSET1:24;
A29:   E in dom h by A17,ENUMSET1:24;
A30:   F in dom h by A17,ENUMSET1:24;
      A31:rng h c= {h.D,h.B,h.C,h.E,h.F}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A32:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
          now per cases by A17,A32,ENUMSET1:23;
        case x1=D; hence thesis by A32,ENUMSET1:24;
        case x1=B; hence thesis by A32,ENUMSET1:24;
        case x1=C; hence thesis by A32,ENUMSET1:24;
        case x1=E; hence thesis by A32,ENUMSET1:24;
        case x1=F; hence thesis by A32,ENUMSET1:24;
        end;
        hence thesis;
      end;
        {h.D,h.B,h.C,h.E,h.F} c= rng h
      proof
        let t be set;
        assume A33:t in {h.D,h.B,h.C,h.E,h.F};
          now per cases by A33,ENUMSET1:23;
        case t=h.D; hence thesis by A25,FUNCT_1:def 5;
        case t=h.B; hence thesis by A27,FUNCT_1:def 5;
        case t=h.C; hence thesis by A28,FUNCT_1:def 5;
        case t=h.E; hence thesis by A29,FUNCT_1:def 5;
        case t=h.F; hence thesis by A30,FUNCT_1:def 5;
        end;
        hence thesis;
      end;
      then A34:rng h = {h.D,h.B,h.C,h.E,h.F} by A31,XBOOLE_0:def 10;
        rng h c= bool Y
      proof
        let t be set;
        assume A35:t in rng h;
          now per cases by A31,A35,ENUMSET1:23;
        case t=h.D; hence thesis by A15,A18;
        case t=h.B; hence thesis by A16,A19;
        case t=h.C; hence thesis by A16,A20;
        case t=h.E; hence thesis by A14,A21;
        case t=h.F; hence thesis by A13,A22;
        end;
        hence thesis;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A36:  Intersect FF = meet (rng h) by A26,CANTOR_1:def 3;
    A37:x c= Intersect FF
    proof
      let u be set;
      assume A38:u in x;
      A39:FF<>{} by A34,ENUMSET1:24;
        for y be set holds y in FF implies u in y
      proof
        let y be set;
        assume A40:y in FF;
          now per cases by A31,A40,ENUMSET1:23;
        case y=h.D;
        then A41:y=d by A1,BVFUNC22:6;
          u in (d /\ ((b /\ c) /\ e)) /\ f by A13,A14,A15,A16,A38,XBOOLE_1:16;
        then u in d /\ ((b /\ c) /\ e /\ f) by XBOOLE_1:16;
        hence thesis by A41,XBOOLE_0:def 3;
        case y=h.B;
        then A42:y=b by A1,BVFUNC22:6;
          u in (c /\ (d /\ b)) /\ e /\ f by A13,A14,A15,A16,A38,XBOOLE_1:16;
        then u in c /\ ((d /\ b) /\ e) /\ f by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ b) /\ f by XBOOLE_1:16;
        then u in c /\ (((d /\ e) /\ b) /\ f) by XBOOLE_1:16;
        then u in c /\ ((d /\ e) /\ (f /\ b)) by XBOOLE_1:16;
        then u in (c /\ (d /\ e)) /\ (f /\ b) by XBOOLE_1:16;
        then u in ((c /\ (d /\ e)) /\ f) /\ b by XBOOLE_1:16;
        hence thesis by A42,XBOOLE_0:def 3;
        case y=h.C;
        then A43:y=c by A1,BVFUNC22:6;
          u in ((c /\ (b /\ d)) /\ e) /\ f by A13,A14,A15,A16,A38,XBOOLE_1:16;
        then u in (c /\ ((b /\ d) /\ e)) /\ f by XBOOLE_1:16;
        then u in c /\ (((b /\ d) /\ e) /\ f) by XBOOLE_1:16;
        hence thesis by A43,XBOOLE_0:def 3;
        case y=h.E;
        then A44:y=e by A1,BVFUNC22:6;
          u in (((b /\ c) /\ d) /\ f) /\ e by A13,A14,A15,A16,A38,XBOOLE_1:16;
        hence thesis by A44,XBOOLE_0:def 3;
        case y=h.F;
        hence thesis by A13,A22,A38,XBOOLE_0:def 3;
        end;
        hence thesis;
      end;
      then u in meet FF by A39,SETFAM_1:def 1;
      hence thesis by A39,CANTOR_1:def 3;
    end;
      Intersect FF c= x
    proof
      let t be set;
      assume A45: t in Intersect FF;
        h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h & h.F in rng
h
        by A34,ENUMSET1:24;
      then A46:t in b & t in c & t in d & t in e & t in f
      by A18,A19,A20,A21,A22,A36,A45,SETFAM_1:def 1;
      then t in b /\ c by XBOOLE_0:def 3;
      then t in (b /\ c) /\ d by A46,XBOOLE_0:def 3;
      then t in (b /\ c) /\ d /\ e by A46,XBOOLE_0:def 3;
      hence thesis by A13,A14,A15,A16,A46,XBOOLE_0:def 3;
    end;
    then A47:x = Intersect FF by A37,XBOOLE_0:def 10;
      x<>{} by A12,EQREL_1:def 6;
    hence thesis by A3,A9,A10,A17,A23,A47,BVFUNC_2:def 1;
  end;
    '/\' (G \ {A}) c= B '/\' C '/\' D '/\' E '/\' F
  proof
    let x be set;
    assume x in '/\' (G \ {A});
    then consider h being Function, FF being Subset-Family of Y such that
A48:  dom h=(G \ {A}) & rng h = FF &
      (for d being set st d in (G \ {A}) holds h.d in d) &
      x=Intersect FF & x<>{} by BVFUNC_2:def 1;
    A49:B in (G \ {A}) & C in (G \ {A}) & D in (G \ {A}) &
    E in (G \ {A}) & F in (G \ {A})
      by A3,A9,A10,ENUMSET1:24;
    then A50:h.B in B & h.C in C & h.D in D & h.E in E & h.F in F by A48;
    A51:h.B in rng h & h.C in rng h & h.D in rng h & h.E in rng h &
    h.F in rng h
      by A48,A49,FUNCT_1:def 5;
    A52:rng h <> {} by A48,A49,FUNCT_1:12;
    A53:Intersect FF = meet (rng h) by A48,A51,CANTOR_1:def 3;
    A54:not (x in {{}}) by A48,TARSKI:def 1;
    A55:h.B /\ h.C /\ h.D /\ h.E /\ h.F c= x
    proof
      let m be set;
      assume A56: m in h.B /\ h.C /\ h.D /\ h.E /\ h.F;
      then A57: m in h.B /\ h.C /\ h.D /\ h.E & m in h.F by XBOOLE_0:def 3;
      then A58:m in h.B /\ h.C /\ h.D & m in h.E & m in h.F by XBOOLE_0:def 3;
      then A59: m in h.B /\ h.C & m in h.D by XBOOLE_0:def 3;
      A60:rng h c= {h.B,h.C,h.D,h.E,h.F}
      proof
        let u be set;
        assume u in rng h;
        then consider x1 being set such that
A61:      x1 in dom h & u = h.x1 by FUNCT_1:def 5;
          now per cases by A3,A9,A10,A48,A61,ENUMSET1:23;
        case x1=B; hence thesis by A61,ENUMSET1:24;
        case x1=C; hence thesis by A61,ENUMSET1:24;
        case x1=D; hence thesis by A61,ENUMSET1:24;
        case x1=E; hence thesis by A61,ENUMSET1:24;
        case x1=F; hence thesis by A61,ENUMSET1:24;
        end;
        hence thesis;
      end;
        for y being set holds y in rng h implies m in y
      proof
        let y be set;
        assume A62: y in rng h;
          now per cases by A60,A62,ENUMSET1:23;
         case y=h.B; hence thesis by A59,XBOOLE_0:def 3;
         case y=h.C; hence thesis by A59,XBOOLE_0:def 3;
         case y=h.D; hence thesis by A58,XBOOLE_0:def 3;
         case y=h.E; hence thesis by A57,XBOOLE_0:def 3;
         case y=h.F; hence thesis by A56,XBOOLE_0:def 3;
        end;
        hence thesis;
      end;
      hence thesis by A48,A52,A53,SETFAM_1:def 1;
    end;
    A63: x c= h.B /\ h.C /\ h.D /\ h.E /\ h.F
    proof
      let m be set;
      assume m in x;
      then A64:m in h.B & m in h.C & m in h.D &
      m in h.E & m in h.F by A48,A51,A53,SETFAM_1:def 1;
      then m in h.B /\ h.C by XBOOLE_0:def 3;
      then m in h.B /\ h.C /\ h.D by A64,XBOOLE_0:def 3;
      then m in h.B /\ h.C /\ h.D /\ h.E by A64,XBOOLE_0:def 3;
      hence thesis by A64,XBOOLE_0:def 3;
    end;
    then A65:((h.B /\ h.C) /\ h.D) /\ h.E /\ h.F = x by A55,XBOOLE_0:def 10;
    set mbc=h.B /\ h.C;
    set mbcd=(h.B /\ h.C) /\ h.D;
    set mbcde=(h.B /\ h.C) /\ h.D /\ h.E;
     mbcde<>{} by A48,A55,A63,XBOOLE_0:def 10;
    then A66:not (mbcde in {{}}) by TARSKI:def 1;
     mbcd<>{} by A48,A55,A63,XBOOLE_0:def 10;
    then A67:not (mbcd in {{}}) by TARSKI:def 1;
      mbc<>{} by A48,A55,A63,XBOOLE_0:def 10;
    then A68:not (mbc in {{}}) by TARSKI:def 1;
      mbc in INTERSECTION(B,C) by A50,SETFAM_1:def 5;
    then mbc in INTERSECTION(B,C) \ {{}} by A68,XBOOLE_0:def 4;
    then mbc in B '/\' C by PARTIT1:def 4;
    then mbcd in INTERSECTION(B '/\' C,D) by A50,SETFAM_1:def 5;
    then mbcd in INTERSECTION(B '/\' C,D) \ {{}} by A67,XBOOLE_0:def 4;
    then mbcd in B '/\' C '/\' D by PARTIT1:def 4;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) by A50,SETFAM_1:def 5;
    then mbcde in INTERSECTION(B '/\' C '/\' D,E) \ {{}} by A66,XBOOLE_0:def 4
;
    then mbcde in (B '/\' C '/\' D '/\' E) by PARTIT1:def 4;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) by A50,A65,SETFAM_1:def 5
;
    then x in INTERSECTION(B '/\' C '/\' D '/\' E,F) \ {{}} by A54,XBOOLE_0:def
4;
    hence thesis by PARTIT1:def 4;
  end;
  hence thesis by A2,A11,XBOOLE_0:def 10;
end;

theorem Th2:
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F
proof
  assume A1:G is independent & G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F;
    {A,B,C,D,E,F}={B,A} \/ {C,D,E,F} by ENUMSET1:52;
  then G={B,A,C,D,E,F} by A1,ENUMSET1:52;
  hence thesis by A1,Th1;
end;

theorem Th3:
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(C,G) = A '/\' B '/\' D '/\' E '/\' F
proof
  assume A1:G is independent & G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F;
    {A,B,C,D,E,F}={A,B,C} \/ {D,E,F} by ENUMSET1:53
.={A} \/ {B,C} \/ {D,E,F} by ENUMSET1:42
.={A,C,B} \/ {D,E,F} by ENUMSET1:42
.={A,C,B,D,E,F} by ENUMSET1:53;
  hence thesis by A1,Th2;
end;

theorem Th4:
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(D,G) = A '/\' B '/\' C '/\' E '/\' F
proof
  assume A1:G is independent & G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F;
    {A,B,C,D,E,F}
 ={A,B} \/ {C,D,E,F} by ENUMSET1:52
.={A,B} \/ ({C,D} \/ {E,F}) by ENUMSET1:45
.={A,B} \/ {D,C,E,F} by ENUMSET1:45
.={A,B,D,C,E,F} by ENUMSET1:52;
  hence thesis by A1,Th3;
end;

theorem Th5:
G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(E,G) = A '/\' B '/\' C '/\' D '/\' F
proof
  assume A1:G is independent & G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F;
    {A,B,C,D,E,F}
 ={A,B,C} \/ {D,E,F} by ENUMSET1:53
.={A,B,C} \/ ({D,E} \/ {F}) by ENUMSET1:43
.={A,B,C} \/ {E,D,F} by ENUMSET1:43
.={A,B,C,E,D,F} by ENUMSET1:53;
  hence thesis by A1,Th4;
end;

theorem
  G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
implies
CompF(F,G) = A '/\' B '/\' C '/\' D '/\' E
proof
  assume A1:G is independent & G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F;
    {A,B,C,D,E,F} ={A,B,C,D} \/ {E,F} by ENUMSET1:54
.={A,B,C,D,F,E} by ENUMSET1:54;
  hence thesis by A1,Th5;
end;

theorem Th7:
for A,B,C,D,E,F being set, h being Function,
A',B',C',D',E',F' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (A .--> A')
holds h.A = A' & h.B = B' & h.C = C' &
      h.D = D' & h.E = E' & h.F = F'
proof
  let A,B,C,D,E,F be set;
  let h be Function;
  let A',B',C',D',E',F' be set;
  assume A1:
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (A .--> A');
A2:  dom (A .--> A') = {A} by CQC_LANG:5;
A3:  h.A = A'
      proof
          A in dom (A .--> A') by A2,TARSKI:def 1;
        then h.A = (A .--> A').A by A1,FUNCT_4:14;
        hence thesis by CQC_LANG:6;
      end;
A4:  h.B = B'
      proof
          not B in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.B=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F')).B by A1,FUNCT_4:12
          .= B' by A1,BVFUNC22:6;
        hence thesis;
      end;
A5:  h.C = C'
      proof
          not C in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.C=((B .--> B') +* (C .--> C') +*
                 (D .--> D') +* (E .--> E') +* (F .--> F')).C
         by A1,FUNCT_4:12;
        hence thesis by A1,BVFUNC22:6;
      end;
A6:  h.D = D'
      proof
          not D in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.D=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F')).D by A1,FUNCT_4:12
              .= D' by A1,BVFUNC22:6;
        hence thesis;
      end;
A7:  h.E = E'
      proof
          not E in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.E=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F')).E by A1,FUNCT_4:12
              .= E' by A1,BVFUNC22:6;
        hence thesis;
      end;
        h.F = F'
      proof
          not F in dom (A .--> A') by A1,A2,TARSKI:def 1;
        then h.F=((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
                 (F .--> F')).F by A1,FUNCT_4:12
              .= F' by A1,BVFUNC22:6;
        hence thesis;
      end;
  hence thesis by A3,A4,A5,A6,A7;
end;

theorem Th8:
for A,B,C,D,E,F being set, h being Function,
A',B',C',D',E',F' being set st
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (A .--> A')
holds dom h = {A,B,C,D,E,F}
proof
  let A,B,C,D,E,F be set;
  let h be Function;
  let A',B',C',D',E',F' be set;
  assume A1:
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (A .--> A');
A2:  dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
           (F .--> F'))
       = {F,B,C,D,E} by BVFUNC22:7
      .= {F} \/ {B,C,D,E} by ENUMSET1:47
      .= {B,C,D,E,F} by ENUMSET1:50;
    dom (A .--> A') = {A} by CQC_LANG:5;
  then dom ((B .--> B') +* (C .--> C') +* (D .--> D') +* (E .--> E') +*
       (F .--> F') +*(A .--> A')) = {B,C,D,E,F} \/ {A} by A2,FUNCT_4:def 1
      .= {A,B,C,D,E,F} by ENUMSET1:51;
  hence thesis by A1;
end;

theorem Th9:
for A,B,C,D,E,F being set, h being Function,
A',B',C',D',E',F' being set st
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (A .--> A')
holds rng h = {h.A,h.B,h.C,h.D,h.E,h.F}
proof
  let A,B,C,D,E,F be set;
  let h be Function;
  let A',B',C',D',E',F' be set;
  assume
   A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
h = (B .--> B') +* (C .--> C') +* (D .--> D') +*
    (E .--> E') +* (F .--> F') +* (A .--> A');
then A1:  dom h={A,B,C,D,E,F} by Th8;
      then A2: A in dom h by ENUMSET1:29;
A3:  B in dom h by A1,ENUMSET1:29;
A4:  C in dom h by A1,ENUMSET1:29;
A5:  D in dom h by A1,ENUMSET1:29;
A6:  E in dom h by A1,ENUMSET1:29;
A7:  F in dom h by A1,ENUMSET1:29;
      A8:rng h c= {h.A,h.B,h.C,h.D,h.E,h.F}
      proof
        let t be set;
        assume t in rng h;
        then consider x1 being set such that
A9:      x1 in dom h & t = h.x1 by FUNCT_1:def 5;
          now per cases by A1,A9,ENUMSET1:28;
        case x1=A; hence thesis by A9,ENUMSET1:29;
        case x1=B; hence thesis by A9,ENUMSET1:29;
        case x1=C; hence thesis by A9,ENUMSET1:29;
        case x1=D; hence thesis by A9,ENUMSET1:29;
        case x1=E; hence thesis by A9,ENUMSET1:29;
        case x1=F; hence thesis by A9,ENUMSET1:29;
        end;
        hence thesis;
      end;
        {h.A,h.B,h.C,h.D,h.E,h.F} c= rng h
      proof
        let t be set;
        assume A10:t in {h.A,h.B,h.C,h.D,h.E,h.F};
          now per cases by A10,ENUMSET1:28;
        case t=h.A; hence thesis by A2,FUNCT_1:def 5;
        case t=h.B; hence thesis by A3,FUNCT_1:def 5;
        case t=h.C; hence thesis by A4,FUNCT_1:def 5;
        case t=h.D; hence thesis by A5,FUNCT_1:def 5;
        case t=h.E; hence thesis by A6,FUNCT_1:def 5;
        case t=h.F; hence thesis by A7,FUNCT_1:def 5;
        end;
        hence thesis;
      end;
  hence thesis by A8,XBOOLE_0:def 10;
end;

theorem
  for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F being a_partition of Y, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F
holds EqClass(u,B '/\' C '/\' D '/\' E '/\' F) meets EqClass(z,A)
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F be a_partition of Y;
  let z,u be Element of Y;
  let h be Function;
  assume A1:G is independent & G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F;
      set GG=EqClass(u,B '/\' C '/\' D '/\' E '/\' F);
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (A .--> EqClass(z,A));
A2:  dom h = G by A1,Th8;
A3:  h.A = EqClass(z,A) by A1,Th7;
A4:  h.B = EqClass(u,B) by A1,Th7;
A5:  h.C = EqClass(u,C) by A1,Th7;
A6:  h.D = EqClass(u,D) by A1,Th7;
A7:  h.E = EqClass(u,E) by A1,Th7;
A8:  h.F = EqClass(u,F) by A1,Th7;
A9:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume A10:d in G;
          now per cases by A1,A10,ENUMSET1:28;
        case d=A; hence thesis by A3;
        case d=B; hence thesis by A4;
        case d=C; hence thesis by A5;
        case d=D; hence thesis by A6;
        case d=E; hence thesis by A7;
        case d=F; hence thesis by A8;
        end;
        hence thesis;
      end;
        A in dom h by A1,A2,ENUMSET1:29;
then A11:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A1,A2,ENUMSET1:29;
then A12:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A1,A2,ENUMSET1:29;
then A13:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A1,A2,ENUMSET1:29;
then A14:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A1,A2,ENUMSET1:29;
then A15:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A1,A2,ENUMSET1:29;
then A16:  h.F in rng h by FUNCT_1:def 5;
      A17:rng h = {h.A,h.B,h.C,h.D,h.E,h.F} by A1,Th9;
        rng h c= bool Y
      proof
        let t be set;
        assume A18:t in rng h;
          now per cases by A17,A18,ENUMSET1:28;
        case t=h.A; hence thesis by A3;
        case t=h.B; hence thesis by A4;
        case t=h.C; hence thesis by A5;
        case t=h.D; hence thesis by A6;
        case t=h.E; hence thesis by A7;
        case t=h.F; hence thesis by A8;
        end;
        hence thesis;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A19:  Intersect FF = meet rng h by A11,CANTOR_1:def 3;
        Intersect FF <> {} by A1,A2,A9,BVFUNC_2:def 5;
      then consider m being set such that
A20:    m in Intersect FF by XBOOLE_0:def 1;
A21:  m in EqClass(z,A) & m in EqClass(u,B) &
      m in EqClass(u,C) & m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F)
      by A3,A4,A5,A6,A7,A8,A11,A12,A13,A14,A15,A16,A19,A20,SETFAM_1:def 1;
        GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass
(u,F)
        by BVFUNC14:1;
then A22:  GG /\ EqClass(z,A) = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,
D))
               /\ EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(z,A) by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A21,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A21,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A21,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F) by A21,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F) /\ EqClass(z,A) by A21,XBOOLE_0:def 3;
  hence thesis by A22,XBOOLE_0:def 7;
end;

theorem for G being Subset of PARTITIONS(Y),
A,B,C,D,E,F being a_partition of Y, z,u being Element of Y, h being Function
st G is independent & G={A,B,C,D,E,F} &
A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
EqClass(z,C '/\' D '/\' E '/\' F)=EqClass(u,C '/\' D '/\' E '/\' F)
holds EqClass(u,CompF(A,G)) meets EqClass(z,CompF(B,G))
proof
  let G be Subset of PARTITIONS(Y);
  let A,B,C,D,E,F be a_partition of Y;
  let z,u be Element of Y;
  let h be Function;
  assume A1:G is independent & G={A,B,C,D,E,F} &
  A<>B & A<>C & A<>D & A<>E & A<>F & B<>C & B<>D & B<>E & B<>F &
  C<>D & C<>E & C<>F & D<>E & D<>F & E<>F &
    EqClass(z,C '/\' D '/\' E '/\' F)=EqClass(u,C '/\' D '/\' E '/\' F);
      then A2:CompF(B,G) = A '/\' C '/\' D '/\' E '/\' F by Th2;
      set H=EqClass(z,CompF(B,G));
      set I=EqClass(z,A), GG=EqClass(u,(((B '/\' C) '/\' D) '/\' E '/\' F));
A3:  GG=EqClass(u,CompF(A,G)) by A1,Th1;
      set h = (B .--> EqClass(u,B)) +* (C .--> EqClass(u,C)) +*
              (D .--> EqClass(u,D)) +* (E .--> EqClass(u,E)) +*
              (F .--> EqClass(u,F)) +* (A .--> EqClass(z,A));
A4:  dom h = G by A1,Th8;
A5:  h.A = EqClass(z,A) by A1,Th7;
A6:  h.B = EqClass(u,B) by A1,Th7;
A7:  h.C = EqClass(u,C) by A1,Th7;
A8:  h.D = EqClass(u,D) by A1,Th7;
A9:  h.E = EqClass(u,E) by A1,Th7;
A10:  h.F = EqClass(u,F) by A1,Th7;
A11:  for d being set st d in G holds h.d in d
      proof
        let d be set;
        assume A12:d in G;
          now per cases by A1,A12,ENUMSET1:28;
        case d=A; hence thesis by A5;
        case d=B; hence thesis by A6;
        case d=C; hence thesis by A7;
        case d=D; hence thesis by A8;
        case d=E; hence thesis by A9;
        case d=F; hence thesis by A10;
        end;
        hence thesis;
      end;
        A in dom h by A1,A4,ENUMSET1:29;
then A13:  h.A in rng h by FUNCT_1:def 5;
        B in dom h by A1,A4,ENUMSET1:29;
then A14:  h.B in rng h by FUNCT_1:def 5;
        C in dom h by A1,A4,ENUMSET1:29;
then A15:  h.C in rng h by FUNCT_1:def 5;
        D in dom h by A1,A4,ENUMSET1:29;
then A16:  h.D in rng h by FUNCT_1:def 5;
        E in dom h by A1,A4,ENUMSET1:29;
then A17:  h.E in rng h by FUNCT_1:def 5;
        F in dom h by A1,A4,ENUMSET1:29;
then A18:  h.F in rng h by FUNCT_1:def 5;
      A19:rng h = {h.A,h.B,h.C,h.D,h.E,h.F} by A1,Th9;
        rng h c= bool Y
      proof
        let t be set;
        assume A20:t in rng h;
          now per cases by A19,A20,ENUMSET1:28;
        case t=h.A; hence thesis by A5;
        case t=h.B; hence thesis by A6;
        case t=h.C; hence thesis by A7;
        case t=h.D; hence thesis by A8;
        case t=h.E; hence thesis by A9;
        case t=h.F; hence thesis by A10;
        end;
        hence thesis;
      end;
      then reconsider FF=rng h as Subset-Family of Y by SETFAM_1:def 7;
A21:  Intersect FF = meet (rng h) by A13,CANTOR_1:def 3;
        (Intersect FF)<>{} by A1,A4,A11,BVFUNC_2:def 5;
      then consider m being set such that
A22:    m in Intersect FF by XBOOLE_0:def 1;
        m in h.A & m in h.B & m in h.C & m in h.D & m in h.E & m in h.F
        by A13,A14,A15,A16,A17,A18,A21,A22,SETFAM_1:def 1;
then A23:  m in EqClass(z,A) & m in EqClass(u,B) &
      m in EqClass(u,C) & m in EqClass(u,D)
    & m in EqClass(u,E) & m in EqClass(u,F) by A1,Th7;
        GG = EqClass(u,B '/\' C '/\' D '/\' E) /\ EqClass(u,F) by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C '/\' D) /\ EqClass(u,E) /\ EqClass(u,F)
        by BVFUNC14:1;
      then GG = EqClass(u,B '/\' C) /\ EqClass(u,D) /\ EqClass(u,E) /\ EqClass
(u,F)
        by BVFUNC14:1;
then A24:  GG /\ I = ((((EqClass(u,B) /\ EqClass(u,C)) /\ EqClass(u,D)) /\
               EqClass(u,E)) /\ EqClass(u,F)) /\ EqClass(z,A) by BVFUNC14:1;
        m in EqClass(u,B) /\ EqClass(u,C) by A23,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) by A23,XBOOLE_0:
def 3
;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
        by A23,XBOOLE_0:def 3;
      then m in EqClass(u,B) /\ EqClass(u,C) /\ EqClass(u,D) /\ EqClass(u,E)
/\
          EqClass(u,F) by A23,XBOOLE_0:def 3;
      then GG /\ I <> {} by A23,A24,XBOOLE_0:def 3;
      then consider p being set such that
A25:   p in GG /\ I by XBOOLE_0:def 1;
      reconsider p as Element of Y by A25;
      set K=EqClass(p,C '/\' D '/\' E '/\' F);
      A26:p in K & K in C '/\' D '/\' E '/\' F by T_1TOPSP:def 1;
        p in GG & p in I by A25,XBOOLE_0:def 3;
      then A27:p in I /\ K by A26,XBOOLE_0:def 3;
      then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F) &
      not (I /\ K in {{}})
        by SETFAM_1:def 5,TARSKI:def 1;
      then I /\ K in INTERSECTION(A,C '/\' D '/\' E '/\' F) \ {{}}
      by XBOOLE_0:def 4;
then A28: I /\ K in A '/\' (C '/\' D '/\' E '/\' F) by PARTIT1:def 4;
      set L=EqClass(z,C '/\' D '/\' E '/\' F);
        GG = EqClass(u,(((B '/\' (C '/\' D)) '/\' E) '/\' F)) by PARTIT1:16;
      then GG = EqClass(u,((B '/\' ((C '/\' D) '/\' E)) '/\' F)) by PARTIT1:16
;
      then GG = EqClass(u,B '/\' (C '/\' D '/\' E '/\' F)) by PARTIT1:16;
then A29: GG c= L by A1,BVFUNC11:3;
A30: p in GG by A25,XBOOLE_0:def 3;
        p in EqClass(p,C '/\' D '/\' E '/\' F) by T_1TOPSP:def 1;
      then K meets L by A29,A30,XBOOLE_0:3;
      then K=L by T_1TOPSP:9;
      then A31:z in K by T_1TOPSP:def 1;
        z in I by T_1TOPSP:def 1;
      then A32:z in I /\ K by A31,XBOOLE_0:def 3;
A33:   z in H by T_1TOPSP:def 1;
      A '/\' (C '/\' D '/\' E '/\' F)
    = A '/\' (C '/\' D '/\' E) '/\' F by PARTIT1:16
   .= A '/\' (C '/\' D) '/\' E '/\' F by PARTIT1:16
   .= A '/\' C '/\' D '/\' E '/\' F by PARTIT1:16;
      then I /\ K = H or I /\ K misses H by A2,A28,EQREL_1:def 6;
  hence thesis by A3,A27,A30,A32,A33,XBOOLE_0:3;
end;


Back to top