Journal of Formalized Mathematics
Volume 5, 1993
University of Bialystok
Copyright (c) 1993
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Agnieszka Banachowicz,
and
- Anna Winnicka
- Received November 5, 1993
- MML identifier: COMSEQ_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary FUNCT_1, COMPLEX1, RELAT_1, ANPROJ_1, BOOLE, PARTFUN1, FINSEQ_4,
SEQ_1, ARYTM_1, ARYTM_3, COMSEQ_1;
notation TARSKI, XBOOLE_0, SUBSET_1, NUMBERS, NAT_1, REAL_1, COMPLEX1,
RELAT_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, FINSEQ_4, SEQ_1;
constructors REAL_1, COMPLEX1, SEQ_1, PARTFUN1, FINSEQ_4, MEMBERED, XBOOLE_0;
clusters COMPLEX1, RELSET_1, SEQ_1, FUNCT_2, MEMBERED, ZFMISC_1, XBOOLE_0,
ORDINAL2;
requirements NUMERALS, SUBSET, BOOLE, ARITHM;
begin
reserve f for Function;
reserve n,k,n1 for Nat;
reserve r,p for Element of COMPLEX;
reserve x,y,z for set;
definition
mode Complex_Sequence is Function of NAT,COMPLEX;
end;
reserve seq,seq1,seq2,seq3,seq',seq1' for Complex_Sequence;
theorem :: COMSEQ_1:1
f is Complex_Sequence
iff (dom f=NAT & for x st x in NAT holds f.x is Element of COMPLEX);
theorem :: COMSEQ_1:2
f is Complex_Sequence iff (dom f=NAT & for n holds f.n is Element
of COMPLEX);
definition
let seq,n;
redefine func seq.n ->Element of COMPLEX;
end;
scheme ExComplexSeq{F(Nat)->Element of COMPLEX}:
ex seq st for n holds seq.n=F(n);
definition let IT be Complex_Sequence;
attr IT is non-zero means
:: COMSEQ_1:def 1
rng IT c= COMPLEX \ {0c};
end;
theorem :: COMSEQ_1:3
seq is non-zero iff for x st x in NAT holds seq.x<>0c;
definition
cluster non-zero Complex_Sequence;
end;
theorem :: COMSEQ_1:4
seq is non-zero iff for n holds seq.n<>0c;
canceled;
theorem :: COMSEQ_1:6
for seq,seq1 st (for n holds seq.n=seq1.n) holds seq=seq1;
theorem :: COMSEQ_1:7
for r ex seq st rng seq={r};
definition let C be non empty set; let f1,f2 be PartFunc of C,COMPLEX;
func f1+f2 -> PartFunc of C,COMPLEX means
:: COMSEQ_1:def 2
dom it = dom f1 /\ dom f2 &
for c being Element of C st c in dom it holds it.c = f1/.c + f2/.c;
commutativity;
func f1(#)f2 -> PartFunc of C,COMPLEX means
:: COMSEQ_1:def 3
dom it = dom f1 /\ dom f2 &
for c being Element of C st c in dom it holds it.c = f1/.c * f2/.c;
commutativity;
end;
definition let C be non empty set; let f1,f2 be Function of C,COMPLEX;
redefine
func f1+f2 means
:: COMSEQ_1:def 4
dom it = C & for c being Element of C holds it.c = f1.c + f2.c;
func f1(#)f2 means
:: COMSEQ_1:def 5
dom it = C &
for c being Element of C holds it.c = f1.c * f2.c;
end;
definition let C be non empty set; let seq1,seq2 be Function of C,COMPLEX;
cluster seq1+seq2 -> total;
cluster seq1(#)seq2 -> total;
end;
definition let C be non empty set; let f be PartFunc of C,COMPLEX, r;
func r(#)f -> PartFunc of C,COMPLEX means
:: COMSEQ_1:def 6
dom it = dom f & for c being Element of C st c in dom it holds it.c = r*f/.c;
end;
definition let C be non empty set; let f be Function of C,COMPLEX, r;
redefine func r(#)f means
:: COMSEQ_1:def 7
dom it = C & for n being Element of C holds it.n=r*f.n;
end;
definition let C be non empty set; let seq be Function of C,COMPLEX, r;
cluster r(#)seq -> total;
end;
definition let C be non empty set; let f be PartFunc of C,COMPLEX;
func -f ->PartFunc of C,COMPLEX means
:: COMSEQ_1:def 8
dom it = dom f & for c being Element of C st c in dom it holds it.c = -(f/.c);
end;
definition let C be non empty set; let f be Function of C,COMPLEX;
redefine func - f means
:: COMSEQ_1:def 9
dom it = C & for n being Element of C holds it.n=-f.n;
end;
definition let C be non empty set; let seq be Function of C,COMPLEX;
cluster - seq -> total;
end;
definition let C be non empty set; let f1,f2 be PartFunc of C,COMPLEX;
func f1-f2 -> PartFunc of C,COMPLEX equals
:: COMSEQ_1:def 10
f1 +- f2;
end;
definition let C be non empty set; let f1,f2 be Function of C,COMPLEX;
cluster f1-f2 -> total;
end;
definition
let seq;
func seq" -> Complex_Sequence means
:: COMSEQ_1:def 11
for n holds it.n=(seq.n)";
end;
definition
let seq1,seq;
func seq1 /" seq ->Complex_Sequence equals
:: COMSEQ_1:def 12
seq1(#)(seq");
end;
definition let C be non empty set; let f be PartFunc of C,COMPLEX;
func |.f.| -> PartFunc of C,REAL means
:: COMSEQ_1:def 13
dom it = dom f &
for c being Element of C st c in dom it holds it.c = |.f/.c.|;
end;
definition let C be non empty set; let seq be Function of C,COMPLEX;
redefine func |.seq.| means
:: COMSEQ_1:def 14
dom it = C & for n being Element of C holds it.n=|.seq.n.|;
end;
definition let C be non empty set; let seq be Function of C,COMPLEX;
cluster |.seq.|-> total;
end;
canceled;
theorem :: COMSEQ_1:9
(seq1+seq2)+seq3=seq1+(seq2+seq3);
canceled;
theorem :: COMSEQ_1:11
(seq1(#)seq2)(#)seq3=seq1(#)(seq2(#)seq3);
theorem :: COMSEQ_1:12
(seq1+seq2)(#)seq3=seq1(#)seq3+seq2(#)seq3;
theorem :: COMSEQ_1:13
seq3(#)(seq1+seq2)=seq3(#)seq1+seq3(#)seq2;
theorem :: COMSEQ_1:14
-seq=(-1r)(#)seq;
theorem :: COMSEQ_1:15
r(#)(seq1(#)seq2)=r(#)seq1(#)seq2;
theorem :: COMSEQ_1:16
r(#)(seq1(#)seq2)=seq1(#)(r(#)seq2);
theorem :: COMSEQ_1:17
(seq1-seq2)(#)seq3=seq1(#)seq3-seq2(#)seq3;
theorem :: COMSEQ_1:18
seq3(#)seq1-seq3(#)seq2=seq3(#)(seq1-seq2);
theorem :: COMSEQ_1:19
r(#)(seq1+seq2)=r(#)seq1+r(#)seq2;
theorem :: COMSEQ_1:20
(r*p)(#)seq=r(#)(p(#)seq);
theorem :: COMSEQ_1:21
r(#)(seq1-seq2)=r(#)seq1-r(#)seq2;
theorem :: COMSEQ_1:22
r(#)(seq1/"seq)=(r(#)seq1)/"seq;
theorem :: COMSEQ_1:23
seq1-(seq2+seq3)=seq1-seq2-seq3;
theorem :: COMSEQ_1:24
1r(#)seq=seq;
theorem :: COMSEQ_1:25
-(-seq)=seq;
theorem :: COMSEQ_1:26
seq1-(-seq2)=seq1+seq2;
theorem :: COMSEQ_1:27
seq1-(seq2-seq3)=seq1-seq2+seq3;
theorem :: COMSEQ_1:28
seq1+(seq2-seq3)=seq1+seq2-seq3;
theorem :: COMSEQ_1:29
(-seq1)(#)seq2=-(seq1(#)seq2) & seq1(#)(-seq2)=-(seq1(#)seq2);
theorem :: COMSEQ_1:30
seq is non-zero implies seq" is non-zero;
theorem :: COMSEQ_1:31
seq""=seq;
theorem :: COMSEQ_1:32
seq is non-zero & seq1 is non-zero iff seq(#)seq1 is non-zero;
theorem :: COMSEQ_1:33
seq is non-zero & seq1 is non-zero implies seq"(#)seq1"=(seq(#)seq1)";
theorem :: COMSEQ_1:34
seq is non-zero implies (seq1/"seq)(#)seq=seq1;
theorem :: COMSEQ_1:35
seq is non-zero & seq1 is non-zero implies
(seq'/"seq)(#)(seq1'/"seq1)=(seq'(#)seq1')/"(seq(#)seq1);
theorem :: COMSEQ_1:36
seq is non-zero & seq1 is non-zero implies seq/"seq1 is non-zero;
theorem :: COMSEQ_1:37
seq is non-zero & seq1 is non-zero implies (seq/"seq1)"=seq1/"seq;
theorem :: COMSEQ_1:38
seq2(#)(seq1/"seq)=(seq2(#)seq1)/"seq;
theorem :: COMSEQ_1:39
seq is non-zero & seq1 is non-zero implies
seq2/"(seq/"seq1)=(seq2(#)seq1)/"seq;
theorem :: COMSEQ_1:40
seq is non-zero & seq1 is non-zero implies
seq2/"seq=(seq2(#)seq1)/"(seq(#)seq1);
theorem :: COMSEQ_1:41
r<>0c & seq is non-zero implies r(#)seq is non-zero;
theorem :: COMSEQ_1:42
seq is non-zero implies -seq is non-zero;
theorem :: COMSEQ_1:43
r<>0c & seq is non-zero implies (r(#)seq)"=r"(#)seq";
theorem :: COMSEQ_1:44
seq is non-zero implies (-seq)"=(-1r)(#)seq";
theorem :: COMSEQ_1:45
seq is non-zero implies -seq1/"seq=(-seq1)/"seq &
seq1/"(-seq)=-seq1/"seq;
theorem :: COMSEQ_1:46
seq1/"seq + seq1'/"seq=(seq1+seq1')/"seq &
seq1/"seq - seq1'/"seq=(seq1-seq1')/"seq;
theorem :: COMSEQ_1:47
seq is non-zero & seq' is non-zero implies
(seq1/"seq + seq1'/"seq'=(seq1(#)seq'+seq1'(#)seq)/"(seq(#)seq')) &
(seq1/"seq - seq1'/"seq'=(seq1(#)seq'-seq1'(#)seq)/"(seq(#)seq'));
theorem :: COMSEQ_1:48
seq is non-zero & seq' is non-zero & seq1 is non-zero implies
(seq1'/"seq)/"(seq'/"seq1)=(seq1'(#)seq1)/"(seq(#)seq');
theorem :: COMSEQ_1:49
|.seq(#)seq'.|=|.seq.|(#)|.seq'.|;
theorem :: COMSEQ_1:50
seq is non-zero implies |.seq.| is_not_0;
theorem :: COMSEQ_1:51
seq is non-zero implies |.seq.|"=|.seq".|;
theorem :: COMSEQ_1:52
seq is non-zero implies |.seq'/"seq.|=|.seq'.|/"|.seq.|;
theorem :: COMSEQ_1:53
|.r(#)seq.|=|.r.|(#)|.seq.|;
Back to top