Journal of Formalized Mathematics
Volume 2, 1990
University of Bialystok
Copyright (c) 1990
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Czeslaw Bylinski
- Received March 1, 1990
- MML identifier: COMPLEX1
- [
Mizar article,
MML identifier index
]
environ
vocabulary ARYTM, ARYTM_3, SQUARE_1, ARYTM_1, RELAT_1, ABSVALUE, COMPLEX1,
FUNCT_2, BOOLE, FUNCT_1, FUNCOP_1, ORDINAL2, XCMPLX_0, OPPCAT_1,
ORDINAL1, XREAL_0;
notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, ARYTM_3, ARYTM_0, NUMBERS,
XCMPLX_0, XREAL_0, REAL_1, ABSVALUE, SQUARE_1, RELAT_1, FUNCT_1, FUNCT_2,
FUNCT_4;
constructors REAL_1, ABSVALUE, SQUARE_1, FRAENKEL, ARYTM_2, FUNCT_4, MEMBERED,
XBOOLE_0, ARYTM_0;
clusters XREAL_0, SQUARE_1, FRAENKEL, RELSET_1, FUNCT_2, XCMPLX_0, MEMBERED,
ZFMISC_1, XBOOLE_0;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin
reserve a,b,c,d for Element of REAL;
canceled;
theorem :: COMPLEX1:2
for a, b being real number holds
a^2 + b^2 = 0 iff a = 0 & b = 0;
:: Complex Numbers
definition
cluster -> complex Element of COMPLEX;
end;
definition let z be complex number;
canceled;
func Re z means
:: COMPLEX1:def 2
it = z if z in REAL
otherwise
ex f being Function of 2,REAL st z = f & it = f.0;
func Im z means
:: COMPLEX1:def 3
it = 0 if z in REAL
otherwise
ex f being Function of 2,REAL st z = f & it = f.1;
end;
definition let z be complex number;
cluster Re z -> real;
cluster Im z -> real;
end;
definition let z be complex number;
redefine func Re z -> Real;
redefine func Im z -> Real;
end;
canceled 2;
theorem :: COMPLEX1:5
for f being Function of 2,REAL
ex a,b st f = (0,1)-->(a,b);
canceled;
theorem :: COMPLEX1:7
Re [*a,b*] = a & Im [*a,b*] = b;
theorem :: COMPLEX1:8
for z being complex number holds [*Re z, Im z*] = z;
theorem :: COMPLEX1:9
for z1, z2 being complex number st
Re z1 = Re z2 & Im z1 = Im z2 holds z1 = z2;
definition let z1,z2 be complex number;
canceled;
redefine pred z1 = z2 means
:: COMPLEX1:def 5
Re z1 = Re z2 & Im z1 = Im z2;
end;
definition
func 0c -> Element of COMPLEX equals
:: COMPLEX1:def 6
0;
func 1r -> Element of COMPLEX equals
:: COMPLEX1:def 7
1;
redefine func <i> -> Element of COMPLEX equals
:: COMPLEX1:def 8
[*0,1*];
end;
definition
cluster 0c -> zero;
end;
canceled 2;
theorem :: COMPLEX1:12
Re(0c) = 0 & Im(0c) = 0;
theorem :: COMPLEX1:13
for z being complex number holds
z = 0c iff (Re z)^2 + (Im z)^2 = 0;
theorem :: COMPLEX1:14
0 = 0c;
theorem :: COMPLEX1:15
Re(1r) = 1 & Im(1r) = 0;
canceled;
theorem :: COMPLEX1:17
Re(<i>) = 0 & Im(<i>) = 1;
reserve z,z1,z2 for Element of COMPLEX;
definition let z1,z2;
redefine func z1 + z2 -> Element of COMPLEX equals
:: COMPLEX1:def 9
[* Re z1 + Re z2, Im z1 + Im z2 *];
end;
canceled;
theorem :: COMPLEX1:19
for z1, z2 being complex number holds
Re(z1 + z2) = Re z1 + Re z2 & Im(z1 + z2) = Im z1 + Im z2;
canceled 2;
theorem :: COMPLEX1:22
0c + z = z;
definition let z1,z2;
redefine func z1 * z2 -> Element of COMPLEX equals
:: COMPLEX1:def 10
[* Re z1 * Re z2 - Im z1 * Im z2, Re z1 * Im z2 + Re z2 * Im z1 *];
end;
canceled;
theorem :: COMPLEX1:24
for z1, z2 being complex number holds
Re(z1 * z2) = Re z1 * Re z2 - Im z1 * Im z2 &
Im(z1 * z2) = Re z1 * Im z2 + Re z2 * Im z1;
canceled 3;
theorem :: COMPLEX1:28
0c*z = 0c;
theorem :: COMPLEX1:29
1r*z = z;
theorem :: COMPLEX1:30
Im z1 = 0 & Im z2 = 0 implies Re(z1*z2) = Re z1 * Re z2 & Im(z1*z2) = 0;
theorem :: COMPLEX1:31
Re z1 = 0 & Re z2 = 0 implies Re(z1*z2) = - Im z1 * Im z2 & Im(z1*z2) = 0;
theorem :: COMPLEX1:32
Re(z*z) = (Re z)^2 - (Im z)^2 & Im(z*z) = 2*(Re z *Im z);
definition let z;
redefine func -z -> Element of COMPLEX equals
:: COMPLEX1:def 11
[* -Re z , -Im z *];
end;
canceled;
theorem :: COMPLEX1:34
for z being complex number holds
Re(-z) = -(Re z) & Im(-z) = -(Im z);
canceled 2;
theorem :: COMPLEX1:37
<i>*<i> = -1r;
canceled 8;
theorem :: COMPLEX1:46
-z = (-1r)*z;
definition let z1,z2;
redefine func z1 - z2 -> Element of COMPLEX equals
:: COMPLEX1:def 12
[* Re z1 - Re z2 , Im z1 - Im z2 *];
end;
canceled;
theorem :: COMPLEX1:48
Re(z1 - z2) = Re z1 - Re z2 & Im(z1 - z2) = Im z1 - Im z2;
canceled 3;
theorem :: COMPLEX1:52
z - 0c = z;
definition let z;
redefine func z" -> Element of COMPLEX equals
:: COMPLEX1:def 13
[* Re z / ((Re z)^2+(Im z)^2) , (- Im z) / ((Re z)^2+(Im z)^2) *];
end;
canceled 11;
theorem :: COMPLEX1:64
for z being complex number holds
Re(z") = Re z / ((Re z)^2+(Im z)^2) &
Im(z") = (- Im z) / ((Re z)^2+(Im z)^2);
theorem :: COMPLEX1:65
z <> 0c implies z*z" = 1r;
canceled 3;
theorem :: COMPLEX1:69
z2 <> 0c & z1*z2 = 1r implies z1 = z2";
canceled;
theorem :: COMPLEX1:71
1r" = 1r;
theorem :: COMPLEX1:72
<i>" = -<i>;
canceled 6;
theorem :: COMPLEX1:79
Re z <> 0 & Im z = 0 implies Re(z") = (Re z)" & Im(z") = 0;
theorem :: COMPLEX1:80
Re z = 0 & Im z <> 0 implies Re(z") = 0 & Im(z") = -(Im z)";
definition let z1,z2;
redefine func z1 / z2 -> Element of COMPLEX equals
:: COMPLEX1:def 14
[* (Re z1 * Re z2 + Im z1 * Im z2) / ((Re z2)^2 + (Im z2)^2),
(Re z2 * Im z1 - Re z1 * Im z2) / ((Re z2)^2 + (Im z2)^2) *];
end;
canceled;
theorem :: COMPLEX1:82
Re(z1 / z2) = (Re z1 * Re z2 + Im z1 * Im z2) / ((Re z2)^2 + (Im z2)^2) &
Im(z1 / z2) = (Re z2 * Im z1 - Re z1 * Im z2) / ((Re z2)^2 + (Im z2)^2);
canceled;
theorem :: COMPLEX1:84
z<>0c implies z" = 1r/z;
theorem :: COMPLEX1:85
z/1r = z;
theorem :: COMPLEX1:86
z<>0c implies z/z = 1r;
theorem :: COMPLEX1:87
0c/z = 0c;
canceled 3;
theorem :: COMPLEX1:91
z2<>0c & z1/z2 = 1r implies z1 = z2;
canceled 17;
theorem :: COMPLEX1:109
Im z1 = 0 & Im z2 = 0 & Re z2 <> 0 implies
Re(z1/z2) = (Re z1)/(Re z2) & Im(z1/z2) = 0;
theorem :: COMPLEX1:110
Re z1 = 0 & Re z2 = 0 & Im z2 <> 0 implies
Re(z1/z2) = (Im z1)/(Im z2) & Im(z1/z2) = 0;
definition let z be complex number;
func z*' -> complex number equals
:: COMPLEX1:def 15
[*Re z,-Im z*];
involutiveness;
end;
definition let z be complex number;
redefine func z*' -> Element of COMPLEX;
end;
canceled;
theorem :: COMPLEX1:112
for z being complex number holds
Re (z*') = Re z & Im (z*') = -Im z;
theorem :: COMPLEX1:113
0c*' = 0c;
theorem :: COMPLEX1:114
z*' = 0c implies z = 0c;
theorem :: COMPLEX1:115
1r*' = 1r;
theorem :: COMPLEX1:116
<i>*' = -<i>;
canceled;
theorem :: COMPLEX1:118
(z1 + z2)*' = z1*' + z2*';
theorem :: COMPLEX1:119
(-z)*' = -(z*');
theorem :: COMPLEX1:120
(z1 - z2)*' = z1*' - z2*';
theorem :: COMPLEX1:121
(z1*z2)*' = z1*'*z2*';
theorem :: COMPLEX1:122
z"*' = z*'";
theorem :: COMPLEX1:123
(z1/z2)*' = (z1*')/(z2*');
theorem :: COMPLEX1:124
Im z = 0 implies z*' = z;
theorem :: COMPLEX1:125
Re z = 0 implies z*' = -z;
theorem :: COMPLEX1:126
Re(z*z*') = (Re z)^2 + (Im z)^2 & Im(z*z*') = 0;
theorem :: COMPLEX1:127
Re(z + z*') = 2*Re z & Im(z + z*') = 0;
theorem :: COMPLEX1:128
Re(z - z*') = 0 & Im(z - z*') = 2*Im z;
definition let z be complex number;
func |.z.| equals
:: COMPLEX1:def 16
sqrt ((Re z)^2 + (Im z)^2);
end;
definition let z be complex number;
cluster |.z.| -> real;
end;
definition let z be complex number;
redefine func |.z.| -> Real;
end;
canceled;
theorem :: COMPLEX1:130
|.0c.| = 0;
theorem :: COMPLEX1:131
for z being complex number st |.z.| = 0 holds z = 0c;
theorem :: COMPLEX1:132
for z being complex number holds 0 <= |.z.|;
theorem :: COMPLEX1:133
for z being complex number holds z <> 0c iff 0 < |.z.|;
theorem :: COMPLEX1:134
|.1r.| = 1;
theorem :: COMPLEX1:135
|.<i>.| = 1;
theorem :: COMPLEX1:136
for z being complex number st Im z = 0 holds |.z.| = abs(Re z);
theorem :: COMPLEX1:137
for z being complex number st Re z = 0 holds |.z.| = abs(Im z);
theorem :: COMPLEX1:138
for z being complex number holds |.-z.| = |.z.|;
reserve z for complex number;
theorem :: COMPLEX1:139
|.z*'.| = |.z.|;
theorem :: COMPLEX1:140
Re z <= |.z.|;
theorem :: COMPLEX1:141
Im z <= |.z.|;
theorem :: COMPLEX1:142
for z1, z2 being complex number holds
|.z1 + z2.| <= |.z1.| + |.z2.|;
theorem :: COMPLEX1:143
|.z1 - z2.| <= |.z1.| + |.z2.|;
theorem :: COMPLEX1:144
|.z1.| - |.z2.| <= |.z1 + z2.|;
theorem :: COMPLEX1:145
|.z1.| - |.z2.| <= |.z1 - z2.|;
theorem :: COMPLEX1:146
|.z1 - z2.| = |.z2 - z1.|;
theorem :: COMPLEX1:147
|.z1 - z2.| = 0 iff z1 = z2;
theorem :: COMPLEX1:148
z1 <> z2 iff 0 < |.z1 - z2.|;
theorem :: COMPLEX1:149
|.z1 - z2.| <= |.z1 - z.| + |.z - z2.|;
theorem :: COMPLEX1:150
abs(|.z1.| - |.z2.|) <= |.z1 - z2.|;
theorem :: COMPLEX1:151
for z1, z2 being complex number holds
|.z1*z2.| = |.z1.|*|.z2.|;
theorem :: COMPLEX1:152
z <> 0c implies |.z".| = |.z.|";
theorem :: COMPLEX1:153
z2 <> 0c implies |.z1.|/|.z2.| = |.z1/z2.|;
theorem :: COMPLEX1:154
|.z*z.| = (Re z)^2 + (Im z)^2;
theorem :: COMPLEX1:155
|.z*z.| = |.z*z*'.|;
Back to top