Journal of Formalized Mathematics
Volume 7, 1995
University of Bialystok
Copyright (c) 1995
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Artur Kornilowicz
- Received March 23, 1995
- MML identifier: EXTENS_1
- [
Mizar article,
MML identifier index
]
environ
vocabulary AMI_1, MSUALG_1, ZF_REFLE, PBOOLE, PRALG_1, MSUALG_3, RELAT_1,
BOOLE, FUNCT_1, FUNCT_6, MSUALG_2, REALSET1, NATTRA_1, MSAFREE, LANG1,
MCART_1, TREES_4, CQC_LANG, ALG_1, GROUP_6, FREEALG, PRELAMB, UNIALG_2,
QC_LANG1, TDGROUP, CARD_3, FINSEQ_4;
notation TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, RELSET_1, FUNCT_1, MCART_1,
STRUCT_0, LANG1, FUNCT_2, CARD_3, FINSEQ_4, FUNCT_6, TREES_4, DTCONSTR,
PBOOLE, CQC_LANG, PRALG_1, MSUALG_1, MSUALG_2, MSUALG_3, AUTALG_1,
MSAFREE;
constructors CQC_LANG, MSUALG_3, AUTALG_1, MSAFREE, FINSEQ_4, MEMBERED,
XBOOLE_0;
clusters FUNCT_1, MSAFREE, MSUALG_1, MSUALG_2, MSUALG_3, PBOOLE, PRALG_1,
RELSET_1, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0;
requirements SUBSET, BOOLE;
begin :: Preliminaries
reserve S for non void non empty ManySortedSign,
U1, U2, U3 for non-empty MSAlgebra over S,
I for set,
A for ManySortedSet of I,
B, C for non-empty ManySortedSet of I;
theorem :: EXTENS_1:1
for R be Relation, X, Y be set st X c= Y holds (R|Y).:X = R.:X;
canceled;
theorem :: EXTENS_1:3
for f be Function-yielding Function holds dom doms f = dom f;
theorem :: EXTENS_1:4
for f be Function-yielding Function holds dom rngs f = dom f;
begin :: Facts about Many Sorted Functions
theorem :: EXTENS_1:5
for F be ManySortedFunction of A, B
for X be ManySortedSubset of A st A c= X
holds F || X = F;
theorem :: EXTENS_1:6
for A, B be ManySortedSet of I
for M be ManySortedSubset of A
for F be ManySortedFunction of A, B
holds F.:.:M c= F.:.:A;
theorem :: EXTENS_1:7
for F be ManySortedFunction of A, B
for M1, M2 be ManySortedSubset of A st M1 c= M2
holds (F||M2).:.:M1 = F.:.:M1;
theorem :: EXTENS_1:8
for F be ManySortedFunction of A, B
for G be ManySortedFunction of B, C
for X be ManySortedSubset of A
holds (G ** F) || X = G ** (F || X);
theorem :: EXTENS_1:9
for A, B be ManySortedSet of I st A is_transformable_to B
for F be ManySortedFunction of A, B
for C be ManySortedSet of I st B is ManySortedSubset of C
holds F is ManySortedFunction of A, C;
theorem :: EXTENS_1:10
for F be ManySortedFunction of A, B
for X be ManySortedSubset of A
holds F is "1-1" implies F || X is "1-1";
begin :: doms & rngs of Many Sorted Function
definition let I; let F be ManySortedFunction of I;
redefine func doms F -> ManySortedSet of I;
redefine func rngs F -> ManySortedSet of I;
end;
theorem :: EXTENS_1:11
for F be ManySortedFunction of A, B
for X be ManySortedSubset of A
holds doms (F || X) c= doms F;
theorem :: EXTENS_1:12
for F be ManySortedFunction of A, B
for X be ManySortedSubset of A
holds rngs (F || X) c= rngs F;
theorem :: EXTENS_1:13
for A, B be ManySortedSet of I
for F be ManySortedFunction of A, B
holds F is "onto" iff rngs F = B;
theorem :: EXTENS_1:14
for X be non-empty ManySortedSet of the carrier of S
holds rngs Reverse X = X;
theorem :: EXTENS_1:15
for F be ManySortedFunction of A, B
for G be ManySortedFunction of B, C
for X be non-empty ManySortedSubset of B st rngs F c= X
holds (G || X) ** F = G ** F;
begin :: Other properties of "onto" & "1-1"
theorem :: EXTENS_1:16
for F be ManySortedFunction of A, B
holds F is "onto" iff
for C for G, H be ManySortedFunction of B, C st G**F = H**F holds G = H;
theorem :: EXTENS_1:17
for F be ManySortedFunction of A, B st A is non-empty & B is non-empty
holds F is "1-1" iff
for C be ManySortedSet of I
for G, H be ManySortedFunction of C, A st F**G = F**H holds G = H;
begin :: Extensions of Mappings on Generator Set
theorem :: EXTENS_1:18
for X be non-empty ManySortedSet of the carrier of S
for h1, h2 be ManySortedFunction of FreeMSA X, U1 st
h1 is_homomorphism FreeMSA X, U1 &
h2 is_homomorphism FreeMSA X, U1 &
h1 || FreeGen (X) = h2 || FreeGen (X)
holds h1 = h2;
theorem :: EXTENS_1:19
for F be ManySortedFunction of U1, U2 st F is_homomorphism U1, U2
holds F is_epimorphism U1, U2 implies
for U3 be non-empty MSAlgebra over S
for h1, h2 be ManySortedFunction of U2, U3 st
h1 is_homomorphism U2, U3 & h2 is_homomorphism U2, U3
holds (h1**F = h2**F implies h1 = h2);
theorem :: EXTENS_1:20
for F be ManySortedFunction of U2, U3 st F is_homomorphism U2, U3
holds F is_monomorphism U2, U3 iff
for U1 be non-empty MSAlgebra over S
for h1, h2 be ManySortedFunction of U1, U2 st
h1 is_homomorphism U1, U2 & h2 is_homomorphism U1, U2
holds (F**h1 = F**h2 implies h1 = h2);
definition let S, U1;
cluster non-empty GeneratorSet of U1;
end;
theorem :: EXTENS_1:21
for U1 being MSAlgebra over S
for A, B being MSSubset of U1 st A is ManySortedSubset of B
holds GenMSAlg A is MSSubAlgebra of GenMSAlg B;
theorem :: EXTENS_1:22
for U1 being MSAlgebra over S, U2 being MSSubAlgebra of U1
for B1 being MSSubset of U1, B2 being MSSubset of U2 st B1 = B2
holds GenMSAlg B1 = GenMSAlg B2;
theorem :: EXTENS_1:23
for U1 being strict non-empty MSAlgebra over S
for U2 being non-empty MSAlgebra over S
for Gen being GeneratorSet of U1
for h1, h2 being ManySortedFunction of U1, U2 st
h1 is_homomorphism U1, U2 & h2 is_homomorphism U1, U2 &
h1 || Gen = h2 || Gen
holds h1 = h2;
Back to top