Journal of Formalized Mathematics
Volume 7, 1995
University of Bialystok
Copyright (c) 1995 Association of Mizar Users

The abstract of the Mizar article:

Extensions of Mappings on Generator Set

by
Artur Kornilowicz

Received March 23, 1995

MML identifier: EXTENS_1
[ Mizar article, MML identifier index ]


environ

 vocabulary AMI_1, MSUALG_1, ZF_REFLE, PBOOLE, PRALG_1, MSUALG_3, RELAT_1,
      BOOLE, FUNCT_1, FUNCT_6, MSUALG_2, REALSET1, NATTRA_1, MSAFREE, LANG1,
      MCART_1, TREES_4, CQC_LANG, ALG_1, GROUP_6, FREEALG, PRELAMB, UNIALG_2,
      QC_LANG1, TDGROUP, CARD_3, FINSEQ_4;
 notation TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, RELSET_1, FUNCT_1, MCART_1,
      STRUCT_0, LANG1, FUNCT_2, CARD_3, FINSEQ_4, FUNCT_6, TREES_4, DTCONSTR,
      PBOOLE, CQC_LANG, PRALG_1, MSUALG_1, MSUALG_2, MSUALG_3, AUTALG_1,
      MSAFREE;
 constructors CQC_LANG, MSUALG_3, AUTALG_1, MSAFREE, FINSEQ_4, MEMBERED,
      XBOOLE_0;
 clusters FUNCT_1, MSAFREE, MSUALG_1, MSUALG_2, MSUALG_3, PBOOLE, PRALG_1,
      RELSET_1, STRUCT_0, MEMBERED, ZFMISC_1, XBOOLE_0;
 requirements SUBSET, BOOLE;


begin :: Preliminaries

reserve S for non void non empty ManySortedSign,
        U1, U2, U3 for non-empty MSAlgebra over S,
        I for set,
        A for ManySortedSet of I,
        B, C for non-empty ManySortedSet of I;

theorem :: EXTENS_1:1
for R be Relation, X, Y be set st X c= Y holds (R|Y).:X = R.:X;

canceled;

theorem :: EXTENS_1:3
for f be Function-yielding Function holds dom doms f = dom f;

theorem :: EXTENS_1:4
for f be Function-yielding Function holds dom rngs f = dom f;

begin :: Facts about Many Sorted Functions

theorem :: EXTENS_1:5
  for F be ManySortedFunction of A, B
 for X be ManySortedSubset of A st A c= X
  holds F || X = F;

theorem :: EXTENS_1:6
  for A, B be ManySortedSet of I
 for M be ManySortedSubset of A
  for F be ManySortedFunction of A, B
 holds F.:.:M c= F.:.:A;

theorem :: EXTENS_1:7
  for F be ManySortedFunction of A, B
 for M1, M2 be ManySortedSubset of A st M1 c= M2
  holds (F||M2).:.:M1 = F.:.:M1;

theorem :: EXTENS_1:8
for F be ManySortedFunction of A, B
 for G be ManySortedFunction of B, C
  for X be ManySortedSubset of A
 holds (G ** F) || X = G ** (F || X);

theorem :: EXTENS_1:9
  for A, B be ManySortedSet of I st A is_transformable_to B
 for F be ManySortedFunction of A, B
  for C be ManySortedSet of I st B is ManySortedSubset of C
 holds F is ManySortedFunction of A, C;

theorem :: EXTENS_1:10
  for F be ManySortedFunction of A, B
 for X be ManySortedSubset of A
  holds F is "1-1" implies F || X is "1-1";

begin :: doms & rngs of Many Sorted Function

definition let I; let F be ManySortedFunction of I;
 redefine func doms F -> ManySortedSet of I;
 redefine func rngs F -> ManySortedSet of I;
end;

theorem :: EXTENS_1:11
  for F be ManySortedFunction of A, B
 for X be ManySortedSubset of A
  holds doms (F || X) c= doms F;

theorem :: EXTENS_1:12
  for F be ManySortedFunction of A, B
 for X be ManySortedSubset of A
  holds rngs (F || X) c= rngs F;

theorem :: EXTENS_1:13
  for A, B be ManySortedSet of I
 for F be ManySortedFunction of A, B
  holds F is "onto" iff rngs F = B;

theorem :: EXTENS_1:14
  for X be non-empty ManySortedSet of the carrier of S
 holds rngs Reverse X = X;

theorem :: EXTENS_1:15
  for F be ManySortedFunction of A, B
 for G be ManySortedFunction of B, C
  for X be non-empty ManySortedSubset of B st rngs F c= X
 holds (G || X) ** F = G ** F;

begin :: Other properties of "onto" & "1-1"

theorem :: EXTENS_1:16
for F be ManySortedFunction of A, B
 holds F is "onto" iff
  for C for G, H be ManySortedFunction of B, C st G**F = H**F holds G = H;

theorem :: EXTENS_1:17
for F be ManySortedFunction of A, B st A is non-empty & B is non-empty
 holds F is "1-1" iff
  for C be ManySortedSet of I
   for G, H be ManySortedFunction of C, A st F**G = F**H holds G = H;

begin :: Extensions of Mappings on Generator Set

theorem :: EXTENS_1:18
for X be non-empty ManySortedSet of the carrier of S
 for h1, h2 be ManySortedFunction of FreeMSA X, U1 st
  h1 is_homomorphism FreeMSA X, U1 &
   h2 is_homomorphism FreeMSA X, U1 &
    h1 || FreeGen (X) = h2 || FreeGen (X)
 holds h1 = h2;

theorem :: EXTENS_1:19
  for F be ManySortedFunction of U1, U2 st F is_homomorphism U1, U2
 holds F is_epimorphism U1, U2 implies
  for U3 be non-empty MSAlgebra over S
   for h1, h2 be ManySortedFunction of U2, U3 st
    h1 is_homomorphism U2, U3 & h2 is_homomorphism U2, U3
     holds (h1**F = h2**F implies h1 = h2);

theorem :: EXTENS_1:20
  for F be ManySortedFunction of U2, U3 st F is_homomorphism U2, U3
 holds F is_monomorphism U2, U3 iff
  for U1 be non-empty MSAlgebra over S
   for h1, h2 be ManySortedFunction of U1, U2 st
    h1 is_homomorphism U1, U2 & h2 is_homomorphism U1, U2
     holds (F**h1 = F**h2 implies h1 = h2);

definition let S, U1;
 cluster non-empty GeneratorSet of U1;
end;

theorem :: EXTENS_1:21
  for U1 being MSAlgebra over S
 for A, B being MSSubset of U1 st A is ManySortedSubset of B
 holds GenMSAlg A is MSSubAlgebra of GenMSAlg B;

theorem :: EXTENS_1:22
  for U1 being MSAlgebra over S, U2 being MSSubAlgebra of U1
  for B1 being MSSubset of U1, B2 being MSSubset of U2 st B1 = B2
 holds GenMSAlg B1 = GenMSAlg B2;

theorem :: EXTENS_1:23
  for U1 being strict non-empty MSAlgebra over S
 for U2 being non-empty MSAlgebra over S
  for Gen being GeneratorSet of U1
   for h1, h2 being ManySortedFunction of U1, U2 st
    h1 is_homomorphism U1, U2 & h2 is_homomorphism U1, U2 &
     h1 || Gen = h2 || Gen
 holds h1 = h2;

Back to top