environ vocabulary INTEGRA1, MEASURE5, FINSEQ_1, ORDINAL2, ARYTM_1, RELAT_1, BOOLE, FUNCT_1, FUNCT_3, RLVECT_1, PARTFUN2, LATTICES, SEQ_2, PARTFUN1, SEQ_1, RFUNCT_1, RCOMP_1, ARYTM_3, INTEGRA2, SQUARE_1, FINSEQ_2, FDIFF_1, SEQM_3, ABSVALUE, INT_1, RFUNCT_3, INTEGRA4, FINSEQ_4, REALSET1, ARYTM; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, INT_1, REALSET1, FUNCT_1, PSCOMP_1, RELSET_1, FINSEQ_1, SEQ_1, PARTFUN2, RFUNCT_1, FINSEQ_2, SEQ_2, SEQM_3, SEQ_4, PRE_CIRC, RCOMP_1, FDIFF_1, ABSVALUE, GOBOARD1, SQUARE_1, FINSEQ_4, RVSUM_1, INTEGRA1, INTEGRA2, RFUNCT_3, PARTFUN1, FUNCT_2; constructors REAL_1, REALSET1, FINSEQOP, PARTFUN2, PRE_CIRC, SFMASTR3, FDIFF_1, FINSEQ_4, INTEGRA2, SEQM_3, RFUNCT_3, ABSVALUE, PSCOMP_1, NAT_1; clusters XREAL_0, RELSET_1, FINSEQ_2, GOBOARD1, INT_1, INTEGRA1, FUNCT_2, SEQ_1, NAT_1, MEMBERED, NUMBERS, ORDINAL2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin :: Basic integrable functions and first mean value theorem reserve i,j,k,n,n1,n2,m for Nat; reserve a,b,d,r,x,y for Real; reserve A for closed-interval Subset of REAL; reserve C for non empty set; reserve c for Element of C; reserve X for set; theorem :: INTEGRA4:1 for D being Element of divs A st vol(A)=0 holds len D=1; theorem :: INTEGRA4:2 chi(A,A) is_integrable_on A & integral(chi(A,A))=vol(A); theorem :: INTEGRA4:3 for f being PartFunc of A,REAL, r holds f is total & rng f = {r} iff f=r(#)chi(A,A); theorem :: INTEGRA4:4 for f being Function of A,REAL, r st rng f = {r} holds f is_integrable_on A & integral(f)=r*vol(A); theorem :: INTEGRA4:5 for r holds ex f being Function of A,REAL st rng f = {r} & f is_bounded_on A; theorem :: INTEGRA4:6 for f being PartFunc of A,REAL, D being Element of divs A st vol(A)=0 holds f is_integrable_on A & integral(f)=0; theorem :: INTEGRA4:7 for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds ex a st inf rng f <= a & a <= sup rng f & integral(f)=a*vol(A); begin :: Integrability of Bounded Total Functions theorem :: INTEGRA4:8 for f being Function of A,REAL, T being DivSequence of A st f is_bounded_on A & delta(T) is convergent & lim delta(T)=0 holds lower_sum(f,T) is convergent & lim lower_sum(f,T) = lower_integral(f); theorem :: INTEGRA4:9 for f being Function of A,REAL, T being DivSequence of A st f is_bounded_on A & delta(T) is convergent & lim delta(T)=0 holds upper_sum(f,T) is convergent & lim upper_sum(f,T) = upper_integral(f); theorem :: INTEGRA4:10 for f being Function of A,REAL st f is_bounded_on A holds f is_upper_integrable_on A & f is_lower_integrable_on A; definition let A be closed-interval Subset of REAL, IT be Element of divs A, n; pred IT divide_into_equal n means :: INTEGRA4:def 1 len IT = n & for i st i in dom IT holds IT.i=inf A + vol(A)/(len IT)*i; end; theorem :: INTEGRA4:11 ex T being DivSequence of A st delta(T) is convergent & lim delta(T)=0; theorem :: INTEGRA4:12 for f being Function of A,REAL st f is_bounded_on A holds f is_integrable_on A iff (for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(f,T)-lim lower_sum(f,T)=0); theorem :: INTEGRA4:13 for f being Function of C,REAL holds max+(f) is total & max-(f) is total; theorem :: INTEGRA4:14 for f being PartFunc of C,REAL st f is_bounded_above_on X holds max+(f) is_bounded_above_on X; theorem :: INTEGRA4:15 for f being PartFunc of C,REAL holds max+(f) is_bounded_below_on X; theorem :: INTEGRA4:16 for f being PartFunc of C,REAL st f is_bounded_below_on X holds max-(f) is_bounded_above_on X; theorem :: INTEGRA4:17 for f being PartFunc of C,REAL holds max-(f) is_bounded_below_on X; theorem :: INTEGRA4:18 for f being PartFunc of A,REAL st f is_bounded_above_on A holds rng (f|X) is bounded_above; theorem :: INTEGRA4:19 for f being PartFunc of A,REAL st f is_bounded_below_on A holds rng (f|X) is bounded_below; theorem :: INTEGRA4:20 for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds max+(f) is_integrable_on A; theorem :: INTEGRA4:21 for f being PartFunc of C,REAL holds max-(f)=max+(-f); theorem :: INTEGRA4:22 for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds max-(f) is_integrable_on A; theorem :: INTEGRA4:23 for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds abs(f) is_integrable_on A & abs(integral(f))<=integral(abs(f)); theorem :: INTEGRA4:24 for f being Function of A,REAL st (for x,y st x in A & y in A holds abs(f.x-f.y)<=a) holds sup rng f - inf rng f <= a; theorem :: INTEGRA4:25 for f,g being Function of A,REAL st f is_bounded_on A & a>=0 & (for x,y st x in A & y in A holds abs(g.x-g.y)<=a*abs(f.x-f.y)) holds sup rng g - inf rng g <= a*(sup rng f - inf rng f); theorem :: INTEGRA4:26 for f,g,h being Function of A,REAL st f is_bounded_on A & g is_bounded_on A & a>=0 & (for x,y st x in A & y in A holds abs(h.x-h.y)<=a*(abs(f.x-f.y)+abs(g.x-g.y))) holds sup rng h - inf rng h <= a*((sup rng f - inf rng f)+(sup rng g - inf rng g)); theorem :: INTEGRA4:27 for f,g being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & a>0 & (for x,y st x in A & y in A holds abs(g.x-g.y)<=a*abs(f.x-f.y)) holds g is_integrable_on A; theorem :: INTEGRA4:28 for f,g,h being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A & h is_bounded_on A & a > 0 & (for x,y st x in A & y in A holds abs(h.x-h.y)<=a*(abs(f.x-f.y)+abs(g.x-g.y))) holds h is_integrable_on A; theorem :: INTEGRA4:29 for f,g being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A holds f(#)g is_integrable_on A; theorem :: INTEGRA4:30 for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & not(0 in rng f) & f^ is_bounded_on A holds f^ is_integrable_on A;