Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Noboru Endou,
and
- Artur Kornilowicz
- Received March 13, 1999
- MML identifier: INTEGRA1
- [
Mizar article,
MML identifier index
]
environ
vocabulary FINSEQ_1, RCOMP_1, COMPTS_1, SEQ_2, LATTICES, ORDINAL2, ARYTM,
ARYTM_1, RELAT_1, FUNCT_1, MEASURE5, PARTFUN1, RLVECT_1, SUBSET_1, BOOLE,
RFUNCT_1, FUNCT_3, PARTFUN2, FINSEQ_4, FINSEQ_2, VECTSP_1, RVSUM_1,
FINSET_1, SQUARE_1, RFINSEQ, JORDAN3, SEQ_4, CARD_1, INTEGRA1, REALSET1;
notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0,
XREAL_0, REAL_1, NAT_1, FUNCT_1, REALSET1, RELSET_1, SEQ_1, SEQ_4,
GOBOARD1, RCOMP_1, PSCOMP_1, FINSET_1, FINSEQ_1, FUNCOP_1, VECTSP_1,
FINSEQ_2, FINSEQ_4, PARTFUN2, RFUNCT_1, PRE_CIRC, RVSUM_1, COMPLSP1,
RFINSEQ, BINARITH, JORDAN3, CARD_1, PARTFUN1, TOPREAL1, FUNCT_2;
constructors REAL_1, FINSEQOP, FINSEQ_4, PARTFUN1, PSCOMP_1, PARTFUN2,
RFUNCT_1, RCOMP_1, PRE_CIRC, COMPLSP1, GOBOARD9, BINARITH, RFINSEQ,
JORDAN3, GOBOARD1, INT_1, REALSET1;
clusters SUBSET_1, XREAL_0, RELSET_1, FINSEQ_1, NAT_2, PSCOMP_1, FINSEQ_2,
GOBOARD1, GROUP_2, FINSEQ_5, FUNCT_2, XBOOLE_0, NAT_1, MEMBERED, NUMBERS,
ORDINAL2;
requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM;
begin :: Definition of closed interval and its properties
reserve a,a1,a2,b,b1,x,y,z for Real,
F,G,H for FinSequence of REAL,
i,j,k,l,n,m for Nat,
I for Subset of REAL,
X for non empty set,
x1,R,s for set;
definition let IT be Subset of REAL;
attr IT is closed-interval means
:: INTEGRA1:def 1
ex a,b being Real st a <= b & IT=[.a,b.];
end;
definition
cluster closed-interval Subset of REAL;
end;
reserve A for closed-interval Subset of REAL;
theorem :: INTEGRA1:1
A is compact;
theorem :: INTEGRA1:2
A is non empty;
definition
cluster closed-interval -> non empty compact Subset of REAL;
end;
theorem :: INTEGRA1:3
A is bounded_below & A is bounded_above;
definition
cluster closed-interval -> bounded Subset of REAL;
end;
definition
cluster closed-interval Subset of REAL;
end;
reserve A for closed-interval Subset of REAL;
theorem :: INTEGRA1:4
ex a,b st a<=b & a=inf A & b=sup A;
theorem :: INTEGRA1:5
A = [. inf A, sup A .];
theorem :: INTEGRA1:6
for a1,a2,b1,b2 being real number holds
A=[.a1,b1.] & A=[.a2,b2.] implies a1=a2 & b1=b2;
begin :: Definition of division of closed interval and its properties
definition let A be non empty compact Subset of REAL;
mode DivisionPoint of A -> non empty increasing FinSequence of REAL means
:: INTEGRA1:def 2
rng it c= A & it.(len it) = sup A;
end;
definition let A be non empty compact Subset of REAL;
func divs A means
:: INTEGRA1:def 3
x1 in it iff x1 is DivisionPoint of A;
end;
definition let A be non empty compact Subset of REAL;
cluster divs A -> non empty;
end;
definition let A be non empty compact Subset of REAL;
mode Division of A -> non empty set means
:: INTEGRA1:def 4
x1 in it iff x1 is DivisionPoint of A;
end;
definition let A be non empty compact Subset of REAL;
cluster non empty Division of A;
end;
definition let A be non empty compact Subset of REAL,
S be non empty Division of A;
redefine mode Element of S -> DivisionPoint of A;
end;
reserve r for Real;
reserve S for non empty Division of A;
reserve D for Element of S;
canceled;
theorem :: INTEGRA1:8
i in dom D implies D.i in A;
theorem :: INTEGRA1:9
i in dom D & i<>1 implies i-1 in dom D & D.(i-1) in A & i-1 in NAT;
definition
let A be closed-interval Subset of REAL;
let S be non empty Division of A;
let D be Element of S;
let i be Nat;
assume i in dom D;
func divset(D,i) -> closed-interval Subset of REAL means
:: INTEGRA1:def 5
inf it = inf A & sup it = D.i if i=1
otherwise inf it = D.(i-1) & sup it = D.i;
end;
theorem :: INTEGRA1:10
i in dom D implies divset(D,i) c= A;
definition let A be Subset of REAL;
func vol(A) -> Real equals
:: INTEGRA1:def 6
sup A - inf A;
end;
theorem :: INTEGRA1:11
for A be bounded non empty Subset of REAL holds 0 <= vol(A);
begin :: Definitions of integrability and related topics
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
let S be non empty Division of A;
let D be Element of S;
func upper_volume(f,D) -> FinSequence of REAL means
:: INTEGRA1:def 7
len it = len D & for i st i in Seg(len D) holds
it.i=(sup (rng (f|divset(D,i))))*vol(divset(D,i));
func lower_volume(f,D) -> FinSequence of REAL means
:: INTEGRA1:def 8
len it = len D & for i st i in Seg(len D) holds
it.i=(inf (rng (f|divset(D,i))))*vol(divset(D,i));
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
let S be non empty Division of A;
let D be Element of S;
func upper_sum(f,D) -> Real equals
:: INTEGRA1:def 9
Sum(upper_volume(f,D));
func lower_sum(f,D) -> Real equals
:: INTEGRA1:def 10
Sum(lower_volume(f,D));
end;
definition let A be closed-interval Subset of REAL;
redefine func divs A -> Division of A;
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
func upper_sum_set(f) -> PartFunc of divs A,REAL means
:: INTEGRA1:def 11
dom it = divs A &
for D be Element of divs A st D in dom it holds it.D=upper_sum(f,D);
func lower_sum_set(f) -> PartFunc of divs A,REAL means
:: INTEGRA1:def 12
dom it = divs A &
for D be Element of divs A st D in dom it holds it.D=lower_sum(f,D);
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
pred f is_upper_integrable_on A means
:: INTEGRA1:def 13
rng upper_sum_set(f) is bounded_below;
pred f is_lower_integrable_on A means
:: INTEGRA1:def 14
rng lower_sum_set(f) is bounded_above;
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
func upper_integral(f) -> Real equals
:: INTEGRA1:def 15
inf rng upper_sum_set(f);
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
func lower_integral(f) -> Real equals
:: INTEGRA1:def 16
sup rng lower_sum_set(f);
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
pred f is_integrable_on A means
:: INTEGRA1:def 17
f is_upper_integrable_on A & f is_lower_integrable_on A &
upper_integral(f) = lower_integral(f);
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
func integral(f) -> Real equals
:: INTEGRA1:def 18
upper_integral(f);
end;
begin :: Real function's properties
theorem :: INTEGRA1:12
for f,g be PartFunc of X,REAL
holds rng(f+g) c= rng f + rng g;
theorem :: INTEGRA1:13
for f be PartFunc of X,REAL holds
f is_bounded_below_on X implies rng f is bounded_below;
theorem :: INTEGRA1:14
for f be PartFunc of X,REAL
st rng f is bounded_below holds f is_bounded_below_on X;
theorem :: INTEGRA1:15
for f be PartFunc of X,REAL
st f is_bounded_above_on X holds rng f is bounded_above;
theorem :: INTEGRA1:16
for f be PartFunc of X,REAL
st rng f is bounded_above holds f is_bounded_above_on X;
theorem :: INTEGRA1:17
for f be PartFunc of X,REAL holds
f is_bounded_on X implies rng f is bounded;
begin :: Characteristic function's properties
theorem :: INTEGRA1:18
for A be non empty set holds
chi(A,A) is_constant_on A;
theorem :: INTEGRA1:19
for A be non empty Subset of X holds
rng chi(A,A) = {1};
theorem :: INTEGRA1:20
for A be non empty Subset of X, B be set holds
B meets dom chi(A,A) implies rng (chi(A,A)|B) = {1};
theorem :: INTEGRA1:21
i in Seg(len D) implies vol(divset(D,i))=lower_volume(chi(A,A),D).i;
theorem :: INTEGRA1:22
i in Seg(len D) implies vol(divset(D,i))=upper_volume(chi(A,A),D).i;
theorem :: INTEGRA1:23
len F = len G & len F = len H &
(for k st k in dom F holds H.k = F/.k + G/.k) implies
Sum(H) = Sum(F) + Sum(G);
theorem :: INTEGRA1:24
len F = len G & len F = len H &
(for k st k in dom F holds H.k = F/.k - G/.k) implies
Sum(H) = Sum(F) - Sum(G);
theorem :: INTEGRA1:25
for A be closed-interval Subset of REAL,
S being non empty Division of A,
D being Element of S holds
Sum(lower_volume(chi(A,A),D))=vol(A);
theorem :: INTEGRA1:26
for A be closed-interval Subset of REAL,
S being non empty Division of A,
D being Element of S holds
Sum(upper_volume(chi(A,A),D))=vol(A);
begin :: Some properties of Darboux sum
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
let S be non empty Division of A;
let D be Element of S;
redefine func upper_volume(f,D) -> non empty FinSequence of REAL;
end;
definition let A be closed-interval Subset of REAL;
let f be PartFunc of A,REAL;
let S be non empty Division of A;
let D be Element of S;
redefine func lower_volume(f,D) -> non empty FinSequence of REAL;
end;
theorem :: INTEGRA1:27
for A being closed-interval Subset of REAL,
f being Function of A,REAL,
S being non empty Division of A,
D being Element of S holds
(f is_bounded_below_on A implies
(inf rng f)*vol(A) <= lower_sum(f,D));
theorem :: INTEGRA1:28
for A being closed-interval Subset of REAL,
f being Function of A,REAL,
S being non empty Division of A,
D being Element of S,
i being Nat
holds
f is_bounded_above_on A & i in Seg(len D)implies
(sup rng f)*vol(divset(D,i)) >= (sup rng (f|divset(D,i)))*vol(divset(D,i));
theorem :: INTEGRA1:29
for A being closed-interval Subset of REAL,
f being Function of A,REAL,
S being non empty Division of A,
D being Element of S
holds
(f is_bounded_above_on A implies
upper_sum(f,D) <= (sup rng f)*vol(A));
theorem :: INTEGRA1:30
for A being closed-interval Subset of REAL,
f being Function of A,REAL,
S being non empty Division of A,
D being Element of S
holds
f is_bounded_on A implies
lower_sum(f,D) <= upper_sum(f,D);
definition let x be non empty FinSequence of REAL;
redefine func rng x -> finite non empty Subset of REAL;
end;
definition let A be closed-interval Subset of REAL;
let D be Element of divs A;
func delta(D) -> Real equals
:: INTEGRA1:def 19
max rng upper_volume(chi(A,A),D);
end;
definition let A be closed-interval Subset of REAL;
let S be non empty Division of A;
let D1,D2 be Element of S;
pred D1 <= D2 means
:: INTEGRA1:def 20
len D1 <= len D2 & rng D1 c= rng D2;
synonym D2 >= D1;
end;
theorem :: INTEGRA1:31
for A be closed-interval Subset of REAL,
S be non empty Division of A,
D1,D2 be Element of S
holds len D1 = 1 implies D1 <= D2;
theorem :: INTEGRA1:32
for A be closed-interval Subset of REAL, f be Function of A,REAL,
S be non empty Division of A, D1,D2 be Element of S
holds f is_bounded_above_on A & len D1 = 1
implies upper_sum(f,D1) >= upper_sum(f,D2);
theorem :: INTEGRA1:33
for A be closed-interval Subset of REAL, f be Function of A,REAL,
S be non empty Division of A, D1,D2 be Element of S
holds f is_bounded_below_on A & len D1 = 1
implies lower_sum(f,D1) <= lower_sum(f,D2);
theorem :: INTEGRA1:34
for A be closed-interval Subset of REAL, S be non empty Division of A,
D be Element of S st i in dom D holds
ex A1,A2 be closed-interval Subset of REAL
st A1=[.inf A,D.i .] & A2=[. D.i,sup A.] & A=A1 \/ A2;
theorem :: INTEGRA1:35
for A be closed-interval Subset of REAL, S be non empty Division of A,
D1,D2 be Element of S st i in dom D1
holds D1 <= D2 implies ex j st j in dom D2 & D1.i=D2.j;
definition let A be closed-interval Subset of REAL;
let S be non empty Division of A;
let D1,D2 be Element of S;
let i be Nat;
assume D1 <= D2;
func indx(D2,D1,i) -> Nat means
:: INTEGRA1:def 21
it in dom D2 & D1.i=D2.it if i in dom D1 otherwise it = 0;
end;
theorem :: INTEGRA1:36
for p be increasing FinSequence of REAL,
n be Nat
holds n <= len p implies p/^n is increasing FinSequence of REAL;
theorem :: INTEGRA1:37
for p be increasing FinSequence of REAL,
i,j be Nat holds j in dom p & i <= j implies
mid(p,i,j) is increasing FinSequence of REAL;
theorem :: INTEGRA1:38
for A be closed-interval Subset of REAL,
S be non empty Division of A, D be Element of S, i,j be Nat holds
i in dom D & j in dom D & i<=j implies ex B be closed-interval Subset of REAL
st inf B=mid(D,i,j).1 & sup B=mid(D,i,j).(len mid(D,i,j))
& len mid(D,i,j)=j-i+1 & mid(D,i,j) is DivisionPoint of B;
theorem :: INTEGRA1:39
for A,B be closed-interval Subset of REAL,
S be non empty Division of A, S1 be non empty Division of B,
D be Element of S,
i,j be Nat
holds i in dom D & j in dom D & i<=j & D.i>=inf B & D.j=sup B
implies mid(D,i,j) is Element of S1;
definition let p be FinSequence of REAL;
func PartSums(p) -> FinSequence of REAL means
:: INTEGRA1:def 22
len it = len p & for i st i in Seg(len p) holds it.i=Sum(p|i);
end;
theorem :: INTEGRA1:40
for A be closed-interval Subset of REAL,
f be Function of A,REAL, S be non empty Division of A,
D1,D2 be Element of S st D1 <= D2 & f is_bounded_above_on A
holds for i be non empty Nat holds (i in dom D1 implies
Sum(upper_volume(f,D1)|i) >= Sum(upper_volume(f,D2)|indx(D2,D1,i)));
theorem :: INTEGRA1:41
for A be closed-interval Subset of REAL,
f be Function of A,REAL, S be non empty Division of A,
D1,D2 be Element of S st D1 <= D2 & f is_bounded_below_on A
holds for i be non empty Nat holds (i in dom D1 implies
Sum(lower_volume(f,D1)|i) <= Sum(lower_volume(f,D2)|indx(D2,D1,i)));
theorem :: INTEGRA1:42
for A be closed-interval Subset of REAL,
f be Function of A,REAL,
S be non empty Division of A, D1,D2 be Element of S, i be Nat
holds D1 <= D2 & i in dom D1 & f is_bounded_above_on A
implies
(PartSums(upper_volume(f,D1))).i >=
(PartSums(upper_volume(f,D2))).indx(D2,D1,i);
theorem :: INTEGRA1:43
for A be closed-interval Subset of REAL,
f be Function of A,REAL,
S be non empty Division of A, D1,D2 be Element of S, i be Nat
holds D1 <= D2 & i in dom D1 & f is_bounded_below_on A
implies
(PartSums(lower_volume(f,D1))).i <=
(PartSums(lower_volume(f,D2))).indx(D2,D1,i);
theorem :: INTEGRA1:44
for A be closed-interval Subset of REAL,
f be PartFunc of A,REAL, S be non empty Division of A,
D be Element of S
holds (PartSums(upper_volume(f,D))).(len D) = upper_sum(f,D);
theorem :: INTEGRA1:45
for A be closed-interval Subset of REAL,
f be PartFunc of A,REAL, S be non empty Division of A,
D be Element of S
holds (PartSums(lower_volume(f,D))).(len D) = lower_sum(f,D);
theorem :: INTEGRA1:46
for A be closed-interval Subset of REAL,
S be non empty Division of A, D1,D2 be Element of S
holds D1 <= D2 implies indx(D2,D1,len D1) = len D2;
theorem :: INTEGRA1:47
for A be closed-interval Subset of REAL,
f be Function of A,REAL,
S be non empty Division of A, D1,D2 be Element of S
holds D1 <= D2 & f is_bounded_above_on A implies
upper_sum(f,D2) <= upper_sum(f,D1);
theorem :: INTEGRA1:48
for A be closed-interval Subset of REAL,
f be Function of A,REAL,
S be non empty Division of A, D1,D2 be Element of S
holds D1 <= D2 & f is_bounded_below_on A implies
lower_sum(f,D2) >= lower_sum(f,D1);
theorem :: INTEGRA1:49
for A be closed-interval Subset of REAL,
S be non empty Division of A, D1,D2 be Element of S
holds ex D be Element of S st D1 <= D & D2 <= D;
theorem :: INTEGRA1:50
for A be closed-interval Subset of REAL,
f be Function of A,REAL,
S be non empty Division of A,
D1,D2 be Element of S st f is_bounded_on A
holds lower_sum(f,D1) <= upper_sum(f,D2);
begin :: Additivity of integral
theorem :: INTEGRA1:51
for A be closed-interval Subset of REAL,
f be Function of A,REAL st
f is_bounded_on A
holds upper_integral(f) >= lower_integral(f);
theorem :: INTEGRA1:52
for X,Y be Subset of REAL
holds (-X)+(-Y)=-(X+Y);
theorem :: INTEGRA1:53
for X,Y being Subset of REAL holds
X is bounded_above & Y is bounded_above
implies X+Y is bounded_above;
theorem :: INTEGRA1:54
for X,Y be non empty Subset of REAL
st X is bounded_above & Y is bounded_above
holds sup(X+Y) = sup X + sup Y;
theorem :: INTEGRA1:55
for A be closed-interval Subset of REAL,
f,g be Function of A,REAL,
S be non empty Division of A,
D be Element of S st i in Seg(len D) & f is_bounded_above_on A &
g is_bounded_above_on A
holds upper_volume(f+g,D).i <= upper_volume(f,D).i + upper_volume(g,D).i;
theorem :: INTEGRA1:56
for A be closed-interval Subset of REAL,
f,g be Function of A,REAL,
S be non empty Division of A,
D be Element of S st i in Seg(len D) & f is_bounded_below_on A
& g is_bounded_below_on A
holds lower_volume(f,D).i + lower_volume(g,D).i <= lower_volume(f+g,D).i;
theorem :: INTEGRA1:57
for A be closed-interval Subset of REAL,
f,g be Function of A,REAL,
S be non empty Division of A,
D be Element of S st f is_bounded_above_on A
& g is_bounded_above_on A
holds upper_sum(f+g,D) <= upper_sum(f,D) + upper_sum(g,D);
theorem :: INTEGRA1:58
for A be closed-interval Subset of REAL,
f,g be Function of A,REAL,
S be non empty Division of A,
D be Element of S st f is_bounded_below_on A
& g is_bounded_below_on A
holds lower_sum(f,D) + lower_sum(g,D) <= lower_sum(f+g,D);
theorem :: INTEGRA1:59
for A be closed-interval Subset of REAL,
f,g be Function of A,REAL st
f is_bounded_on A & g is_bounded_on A &
f is_integrable_on A & g is_integrable_on A
holds f+g is_integrable_on A & integral(f+g)=integral(f)+integral(g);
Back to top