Copyright (c) 1999 Association of Mizar Users
environ vocabulary FINSEQ_1, RCOMP_1, COMPTS_1, SEQ_2, LATTICES, ORDINAL2, ARYTM, ARYTM_1, RELAT_1, FUNCT_1, MEASURE5, PARTFUN1, RLVECT_1, SUBSET_1, BOOLE, RFUNCT_1, FUNCT_3, PARTFUN2, FINSEQ_4, FINSEQ_2, VECTSP_1, RVSUM_1, FINSET_1, SQUARE_1, RFINSEQ, JORDAN3, SEQ_4, CARD_1, INTEGRA1, REALSET1; notation TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, REALSET1, RELSET_1, SEQ_1, SEQ_4, GOBOARD1, RCOMP_1, PSCOMP_1, FINSET_1, FINSEQ_1, FUNCOP_1, VECTSP_1, FINSEQ_2, FINSEQ_4, PARTFUN2, RFUNCT_1, PRE_CIRC, RVSUM_1, COMPLSP1, RFINSEQ, BINARITH, JORDAN3, CARD_1, PARTFUN1, TOPREAL1, FUNCT_2; constructors REAL_1, FINSEQOP, FINSEQ_4, PARTFUN1, PSCOMP_1, PARTFUN2, RFUNCT_1, RCOMP_1, PRE_CIRC, COMPLSP1, GOBOARD9, BINARITH, RFINSEQ, JORDAN3, GOBOARD1, INT_1, REALSET1; clusters SUBSET_1, XREAL_0, RELSET_1, FINSEQ_1, NAT_2, PSCOMP_1, FINSEQ_2, GOBOARD1, GROUP_2, FINSEQ_5, FUNCT_2, XBOOLE_0, NAT_1, MEMBERED, NUMBERS, ORDINAL2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; definitions SEQ_4, XBOOLE_0; theorems AXIOMS, TARSKI, RCOMP_1, REAL_1, FINSEQ_1, FINSEQ_2, SEQ_4, FUNCT_1, NAT_1, NAT_2, SUBSET_1, GOBOARD1, PARTFUN1, RFUNCT_1, PSCOMP_1, RVSUM_1, PARTFUN2, JORDAN3, BINARITH, ZFMISC_1, COMPLSP1, FUNCT_3, FINSEQ_4, TREAL_1, GOBOARD2, RFINSEQ, TOPREAL1, JORDAN7, CARD_1, SEQ_1, RELAT_1, SCMFSA_7, AMI_5, FUNCT_2, XBOOLE_0, XBOOLE_1, SQUARE_1, XCMPLX_0, XCMPLX_1, RLVECT_1, XREAL_0; schemes FINSEQ_2, SEQ_1, BINARITH, XBOOLE_0; begin :: Definition of closed interval and its properties reserve a,a1,a2,b,b1,x,y,z for Real, F,G,H for FinSequence of REAL, i,j,k,l,n,m for Nat, I for Subset of REAL, X for non empty set, x1,R,s for set; definition let IT be Subset of REAL; attr IT is closed-interval means :Def1:ex a,b being Real st a <= b & IT=[.a,b.]; end; definition cluster closed-interval Subset of REAL; existence proof take [. 0,1 .]; thus thesis by Def1; end; end; reserve A for closed-interval Subset of REAL; theorem Th1: A is compact proof consider a,b being Real such that A1:a <= b & A=[.a,b.] by Def1; thus thesis by A1,RCOMP_1:24; end; theorem Th2: A is non empty proof consider a,b being Real such that A1: a <= b & A=[.a,b.] by Def1; [.a,b.]={x:a<=x & x<=b} by RCOMP_1:def 1; then a in A by A1; hence thesis; end; definition cluster closed-interval -> non empty compact Subset of REAL; coherence by Th1,Th2; end; theorem Th3: A is bounded_below & A is bounded_above proof A is compact by Th1; then A is bounded by RCOMP_1:28; hence thesis by SEQ_4:def 3; end; definition cluster closed-interval -> bounded Subset of REAL; coherence proof let A be Subset of REAL; assume A is closed-interval; hence A is bounded_below bounded_above by Th3; end; end; definition cluster closed-interval Subset of REAL; existence proof consider I being closed-interval Subset of REAL; take I; thus thesis; end; end; reserve A for closed-interval Subset of REAL; theorem Th4: ex a,b st a<=b & a=inf A & b=sup A proof consider a,b being Real such that A1: a <= b & A=[.a,b.] by Def1; A2: a=inf A & b=sup A proof a in A by A1,RCOMP_1:15; then A3: (ex x be real number st x in A) & A is bounded_below by Th3; A4: for x be real number st x in A holds a <= x proof let x be real number; assume x in A; then x in {y:a <= y & y <= b} by A1,RCOMP_1:def 1; then ex y st x=y & a <= y & y <= b; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & x<a + y proof let y be real number; assume A5:0<y; take a; thus thesis by A1,A5,RCOMP_1:15,REAL_1:69; end; hence a=inf A by A3,A4,SEQ_4:def 5; b in A by A1,RCOMP_1:15; then A6: (ex x be real number st x in A) & A is bounded_above by Th3; A7: for x be real number st x in A holds x <= b proof let x be real number; assume x in A; then x in {y:a <= y & y <= b} by A1,RCOMP_1:def 1; then ex y st x=y & a <= y & y <= b; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & b-y<x proof let y be real number; assume A8:0<y; take b; b < b+y by A8,REAL_1:69; then b-y < b+y-y by REAL_1:54; hence thesis by A1,RCOMP_1:15,XCMPLX_1:26; end; hence thesis by A6,A7,SEQ_4:def 4; end; take a,b; thus a<=b & a=inf A & b=sup A by A1,A2; end; theorem Th5: A = [. inf A, sup A .] proof consider a,b being Real such that A1: a <= b & A=[.a,b.] by Def1; a=inf A & b=sup A proof a in A by A1,RCOMP_1:15; then A2: (ex x be real number st x in A) & A is bounded_below by Th3; A3: for x be real number st x in A holds a <= x proof let x be real number; assume A4:x in A; A={y:a <= y & y <= b} by A1,RCOMP_1:def 1; then ex y st x=y & a <= y & y <= b by A4; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & x<a + y proof let y be real number; assume A5:0<y; take a; thus thesis by A1,A5,RCOMP_1:15,REAL_1:69; end; hence a=inf A by A2,A3,SEQ_4:def 5; b in A by A1,RCOMP_1:15; then A6: (ex x be real number st x in A) & A is bounded_above by Th3; A7: for x be real number st x in A holds x <= b proof let x be real number; assume A8:x in A; A={y:a <= y & y <= b} by A1,RCOMP_1:def 1; then ex y st x=y & a <= y & y <= b by A8; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & b-y<x proof let y be real number; assume A9:0<y; take b; b < b+y by A9,REAL_1:69; then b-y < b+y-y by REAL_1:54; hence thesis by A1,RCOMP_1:15,XCMPLX_1:26; end; hence thesis by A6,A7,SEQ_4:def 4; end; hence thesis by A1; end; theorem Th6: for a1,a2,b1,b2 being real number holds A=[.a1,b1.] & A=[.a2,b2.] implies a1=a2 & b1=b2 proof let a1,a2,b1,b2 be real number; assume that A1:A=[.a1,b1.] and A2:A=[.a2,b2.]; A3:a1 <= b1 proof consider x such that A4: x in A by SUBSET_1:10; A={y:a1 <= y & y <= b1} by A1,RCOMP_1:def 1; then ex y st x=y & a1 <= y & y <= b1 by A4; then a1 + x <= x + b1 by REAL_1:55; then a1 <= b1 + x - x by REAL_1:84; then a1 <= (b1 + x) + -x by XCMPLX_0:def 8; then a1 <= b1 + (x + -x) by XCMPLX_1:1; then a1 <= b1 + 0 by XCMPLX_0:def 6; hence thesis; end; A5:a2 <= b2 proof consider x such that A6: x in A by SUBSET_1:10; A={y:a2 <= y & y <= b2} by A2,RCOMP_1:def 1; then ex y st x=y & a2 <= y & y <= b2 by A6; then a2 + x <= x + b2 by REAL_1:55; then a2 <= b2 + x - x by REAL_1:84; then a2 <= (b2 + x) + -x by XCMPLX_0:def 8; then a2 <= b2 + (x + -x) by XCMPLX_1:1; then a2 <= b2 + 0 by XCMPLX_0:def 6; hence thesis; end; A7:a1=inf A proof a1 in A by A1,A3,RCOMP_1:15; then A8: (ex x be real number st x in A) & A is bounded_below by Th3; A9: for x be real number st x in A holds a1 <= x proof let x be real number; assume A10:x in A; A={y:a1 <= y & y <= b1} by A1,RCOMP_1:def 1; then ex y st x=y & a1 <= y & y <= b1 by A10; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & x<a1 + y proof let y be real number; assume A11:0<y; take a1; thus thesis by A1,A3,A11,RCOMP_1:15,REAL_1:69; end; hence a1=inf A by A8,A9,SEQ_4:def 5; end; A12:b1=sup A proof b1 in A by A1,A3,RCOMP_1:15; then A13: (ex x be real number st x in A) & A is bounded_above by Th3; A14: for x be real number st x in A holds x <= b1 proof let x be real number; assume A15:x in A; A={y:a1 <= y & y <= b1} by A1,RCOMP_1:def 1; then ex y st x=y & a1 <= y & y <= b1 by A15; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & b1-y<x proof let y be real number; assume A16:0<y; take b1; b1 < b1+y by A16,REAL_1:69; then b1-y <= b1 & b1+-y <> b1+y+-y by REAL_1:86,XCMPLX_1:2; then b1-y <= b1 & b1-y <> (b1+y)+ -y by XCMPLX_0:def 8; then b1-y <= b1 & b1-y <> b1+(y+ -y) by XCMPLX_1:1; then b1-y <= b1 & b1-y <> b1+0 by XCMPLX_0:def 6; hence thesis by A1,A3,RCOMP_1:15,REAL_1:def 5; end; hence b1=sup A by A13,A14,SEQ_4:def 4; end; A17:a2=inf A proof a2 in A by A2,A5,RCOMP_1:15; then A18: (ex x be real number st x in A) & A is bounded_below by Th3; A19: for x be real number st x in A holds a2 <= x proof let x be real number; assume A20:x in A; A={y:a2 <= y & y <= b2} by A2,RCOMP_1:def 1; then ex y st x=y & a2 <= y & y <= b2 by A20; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & x<a2 + y proof let y be real number; assume A21:0<y; take a2; thus thesis by A2,A5,A21,RCOMP_1:15,REAL_1:69; end; hence a2=inf A by A18,A19,SEQ_4:def 5; end; b2=sup A proof b2 in A by A2,A5,RCOMP_1:15; then A22: (ex x be real number st x in A) & A is bounded_above by Th3; A23: for x be real number st x in A holds x <= b2 proof let x be real number; assume A24:x in A; A={y:a2 <= y & y <= b2} by A2,RCOMP_1:def 1; then ex y st x=y & a2 <= y & y <= b2 by A24; hence thesis; end; for y be real number st 0<y ex x be real number st x in A & b2-y<x proof let y be real number; assume A25:0<y; take b2; b2 < b2+y by A25,REAL_1:69; then b2-y <= b2 & b2+-y <> b2+y+-y by REAL_1:86,XCMPLX_1:2; then b2-y <= b2 & b2-y <> (b2+y)+ -y by XCMPLX_0:def 8; then b2-y <= b2 & b2-y <> b2+(y+ -y) by XCMPLX_1:1; then b2-y <= b2 & b2-y <> b2+0 by XCMPLX_0:def 6; hence thesis by A2,A5,RCOMP_1:15,REAL_1:def 5; end; hence b2=sup A by A22,A23,SEQ_4:def 4; end; hence a1=a2 & b1=b2 by A7,A12,A17; end; begin :: Definition of division of closed interval and its properties definition let A be non empty compact Subset of REAL; mode DivisionPoint of A -> non empty increasing FinSequence of REAL means :Def2: rng it c= A & it.(len it) = sup A; existence proof A1:sup A in A by RCOMP_1:32; consider a being Element of REAL such that A2:a = sup A; deffunc F(Nat)=a; consider p being FinSequence of REAL such that A3:len p = 1 and A4:for n st n in Seg 1 holds p.n = F(n) from SeqLambdaD; A5:Seg 1 = dom p by A3,FINSEQ_1:def 3; for n st n in Seg 1 holds p.n in A by A1,A2,A4; then p is FinSequence of A by A5,FINSEQ_2:14; then A6:rng p c= A by FINSEQ_1:def 4; A7:1 in Seg 1 by FINSEQ_1:4,TARSKI:def 1; then A8:p.(len p)=sup A by A2,A3,A4; p is non empty increasing FinSequence of REAL proof dom p = Seg 1 & p.1 = a by A3,A4,A7,FINSEQ_1:def 3; then A9: p=<*a*> by FINSEQ_1:def 8; for n,m st n in dom p & m in dom p & n<m holds p.n < p.m proof let n,m; assume n in dom p & m in dom p; then n = 1 & m = 1 by A5,FINSEQ_1:4,TARSKI:def 1; hence thesis; end; hence thesis by A9,GOBOARD1:def 1; end; hence thesis by A6,A8; end; end; definition let A be non empty compact Subset of REAL; func divs A means :Def3: x1 in it iff x1 is DivisionPoint of A; existence proof defpred P[set] means $1 is DivisionPoint of A; consider R such that A1:x1 in R iff x1 in bool [:NAT,REAL:] & P[x1] from Separation; take R; let x1; thus x1 in R implies x1 is DivisionPoint of A by A1; assume x1 is DivisionPoint of A; then reconsider p = x1 as DivisionPoint of A; p c= [:NAT,REAL:]; hence x1 in R by A1; end; uniqueness proof let D1,D2 be set such that A2: x1 in D1 iff x1 is DivisionPoint of A and A3: x1 in D2 iff x1 is DivisionPoint of A; now let x1; thus x1 in D1 implies x1 in D2 proof assume x1 in D1; then x1 is DivisionPoint of A by A2; hence x1 in D2 by A3; end; assume x1 in D2; then x1 is DivisionPoint of A by A3; hence x1 in D1 by A2; end; hence thesis by TARSKI:2; end; end; definition let A be non empty compact Subset of REAL; cluster divs A -> non empty; coherence proof consider f being DivisionPoint of A; f in divs A by Def3; hence thesis; end; end; definition let A be non empty compact Subset of REAL; mode Division of A -> non empty set means :Def4: x1 in it iff x1 is DivisionPoint of A; existence proof take divs A; thus thesis by Def3; end; end; definition let A be non empty compact Subset of REAL; cluster non empty Division of A; existence proof consider R being Division of A; R is non empty; hence thesis; end; end; definition let A be non empty compact Subset of REAL, S be non empty Division of A; redefine mode Element of S -> DivisionPoint of A; coherence by Def4; end; reserve r for Real; reserve S for non empty Division of A; reserve D for Element of S; canceled; theorem Th8: i in dom D implies D.i in A proof assume i in dom D; then A1:D.i in rng D by FUNCT_1:def 5; rng D c= A by Def2; hence thesis by A1; end; theorem Th9: i in dom D & i<>1 implies i-1 in dom D & D.(i-1) in A & i-1 in NAT proof assume that A1:i in dom D and A2: i<>1; consider j such that A3: dom D = Seg j by FINSEQ_1:def 2; A4: 1<=i & i<=j by A1,A3,FINSEQ_1:3; i<>0 & i<>1 by A1,A2,A3,FINSEQ_1:3; then i is non trivial by NAT_2:def 1; then A5: i >= 2 by NAT_2:31; then A6: 1+1-1 <= i-1 by REAL_1:49; A7: i-1<=j-0 by A4,REAL_1:92; consider l such that A8: i=2+l by A5,NAT_1:28; l=i-2 by A8,XCMPLX_1:26; then A9: l+1=i-(2-1) by XCMPLX_1:37; then i-1 in dom D by A3,A6,A7,FINSEQ_1:3; then A10:D.(i-1) in rng D by FUNCT_1:def 5; rng D c= A by Def2; hence thesis by A3,A6,A7,A9,A10,FINSEQ_1:3; end; definition let A be closed-interval Subset of REAL; let S be non empty Division of A; let D be Element of S; let i be Nat; assume A1:i in dom D; func divset(D,i) -> closed-interval Subset of REAL means :Def5: inf it = inf A & sup it = D.i if i=1 otherwise inf it = D.(i-1) & sup it = D.i; existence proof hereby assume i=1; thus ex IT being closed-interval Subset of REAL st inf IT = inf A & sup IT = D.i proof A2: D.i in A by A1,Th8; consider I such that A3: I=[.inf A,D.i .]; inf A <= D.i proof A is bounded_below by Th3; hence thesis by A2,SEQ_4:def 5; end; then A4: I is closed-interval Subset of REAL by A3,Def1; inf I = inf A & sup I = D.i proof I = [.inf I,sup I.] by A4,Th5; hence thesis by A3,A4,Th6; end; hence thesis by A4; end; end; assume that A5:i<>1; thus ex IT being closed-interval Subset of REAL st inf IT = D.(i-1) & sup IT = D.i proof A6: i-1 in dom D & D.(i-1) in A by A1,A5,Th9; i+-1< i+(1+-1) by REAL_1:53; then A7: i-1 < i by XCMPLX_0:def 8; consider a1,b1 such that A8: a1=D.(i-1) & b1=D.i; reconsider j=i-1 as Nat by A1,A5,Th9; A9: D.j < D.i by A1,A6,A7,GOBOARD1:def 1; consider I such that A10: I=[.a1,b1.]; A11: I is closed-interval Subset of REAL by A8,A9,A10,Def1; then I=[.inf I,sup I.] by Th5; then inf I=D.(i-1) & sup I=D.i by A8,A10,A11,Th6; hence thesis by A11; end; end; uniqueness proof let A1,A2 be closed-interval Subset of REAL; hereby assume that i=1 and A12: inf A1 =inf A & sup A1 = D.i and A13: inf A2 =inf A & sup A2 = D.i; consider b such that A14: b=D.i; A1=[. inf A, b .] by A12,A14,Th5; hence A1=A2 by A13,A14,Th5; end; assume that i<>1 and A15: inf A1 = D.(i-1) & sup A1 = D.i and A16: inf A2 = D.(i-1) & sup A2 = D.i; consider a,b such that A17: a=D.(i-1) and A18: b=D.i; A1=[.a,b.] by A15,A17,A18,Th5; hence thesis by A16,A17,A18,Th5; end; correctness; end; theorem Th10: i in dom D implies divset(D,i) c= A proof assume A1:i in dom D; now per cases; suppose A2:i=1; consider b such that A3:b=D.i; A4: inf divset(D,i) = inf A by A1,A2,Def5; sup divset(D,i) = b by A1,A2,A3,Def5; then A5: divset(D,i)=[. inf A,b .] by A4,Th5; A6: inf A in [.inf A,sup A.] proof inf A in A by RCOMP_1:32; hence thesis by Th5; end; b in [.inf A,sup A.] proof b in A by A1,A3,Th8; hence thesis by Th5; end; then [. inf A,b .] c= [.inf A,sup A.] by A6,RCOMP_1:16; hence divset(D,i) c= A by A5,Th5; suppose A7:i<>1; then A8: D.(i-1) in A by A1,Th9; consider a such that A9:a=D.(i-1); A10: inf divset(D,i) = a by A1,A7,A9,Def5; consider b such that A11:b=D.i; sup divset(D,i) = b by A1,A7,A11,Def5; then A12: divset(D,i)=[.a,b.] by A10,Th5; A13: a in [.inf A,sup A.] by A8,A9,Th5; b in [.inf A,sup A.] proof b in A by A1,A11,Th8; hence thesis by Th5; end; then [.a,b.] c= [.inf A,sup A.] by A13,RCOMP_1:16; hence divset(D,i) c= A by A12,Th5; end; hence thesis; end; definition let A be Subset of REAL; func vol(A) -> Real equals :Def6: sup A - inf A; correctness; end; theorem Th11: for A be bounded non empty Subset of REAL holds 0 <= vol(A) proof let A be bounded non empty Subset of REAL; inf A <= sup A by SEQ_4:24; then sup A - inf A >= 0 by SQUARE_1:12; hence thesis by Def6; end; begin :: Definitions of integrability and related topics definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; let S be non empty Division of A; let D be Element of S; func upper_volume(f,D) -> FinSequence of REAL means :Def7: len it = len D & for i st i in Seg(len D) holds it.i=(sup (rng (f|divset(D,i))))*vol(divset(D,i)); existence proof deffunc F(Nat)=(sup (rng (f|divset(D,$1))))*vol(divset(D,$1)); thus ex IT being FinSequence of REAL st len IT = len D & for i st i in Seg(len D) holds IT.i=F(i) from SeqLambdaD; end; uniqueness proof let s1,s2 be FinSequence of REAL such that A1:len s1 = len D & for i st i in Seg (len D) holds s1.i=(sup (rng (f|divset(D,i))))*vol(divset(D,i)) and A2:len s2 = len D & for i st i in Seg (len D) holds s2.i=(sup (rng (f|divset(D,i))))*vol(divset(D,i)); for i st i in Seg (len D) holds s1.i=s2.i proof let i; assume A3:i in Seg (len D); then s1.i=(sup (rng (f|divset(D,i))))*vol(divset(D,i)) by A1; hence thesis by A2,A3; end; hence s1=s2 by A1,A2,FINSEQ_2:10; end; func lower_volume(f,D) -> FinSequence of REAL means :Def8: len it = len D & for i st i in Seg(len D) holds it.i=(inf (rng (f|divset(D,i))))*vol(divset(D,i)); existence proof deffunc F(Nat)=(inf (rng (f|divset(D,$1))))*vol(divset(D,$1)); thus ex z being FinSequence of REAL st len z = len D & for j st j in Seg len D holds z.j = F(j) from SeqLambdaD; end; uniqueness proof let s1,s2 be FinSequence of REAL such that A4:len s1 = len D & for i st i in Seg (len D) holds s1.i=(inf (rng (f|divset(D,i))))*vol(divset(D,i)) and A5:len s2 = len D & for i st i in Seg (len D) holds s2.i=(inf (rng (f|divset(D,i))))*vol(divset(D,i)); for i st i in Seg (len D) holds s1.i=s2.i proof let i; assume A6:i in Seg (len D); then s1.i=(inf (rng (f|divset(D,i))))*vol(divset(D,i)) by A4; hence thesis by A5,A6; end; hence s1=s2 by A4,A5,FINSEQ_2:10; end; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; let S be non empty Division of A; let D be Element of S; func upper_sum(f,D) -> Real equals :Def9: Sum(upper_volume(f,D)); correctness; func lower_sum(f,D) -> Real equals :Def10: Sum(lower_volume(f,D)); correctness; end; definition let A be closed-interval Subset of REAL; redefine func divs A -> Division of A; coherence proof let x1; thus x1 in divs A iff x1 is DivisionPoint of A by Def3; end; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; func upper_sum_set(f) -> PartFunc of divs A,REAL means :Def11: dom it = divs A & for D be Element of divs A st D in dom it holds it.D=upper_sum(f,D); existence proof set S = divs A; defpred P[set] means $1 in S; deffunc F(Element of S)=upper_sum(f,$1); consider g being PartFunc of S,REAL such that A1:(for D be Element of S holds D in dom g iff P[D]) and A2:(for D be Element of S st D in dom g holds g.D=F(D)) from LambdaPFD'; take g; [#]S = S by SUBSET_1:def 4; hence dom g = S by A1,SUBSET_1:8; now let D be Element of S; assume D in S; D in dom g by A1; hence g.D = upper_sum(f,D) by A2; end; hence thesis; end; uniqueness proof set S = divs A; let g1,g2 be PartFunc of S,REAL such that A3:(dom g1=S & for D be Element of S st D in dom g1 holds g1.D = upper_sum(f,D)) and A4:(dom g2=S & for D be Element of S st D in dom g2 holds g2.D = upper_sum(f,D)); now let D be Element of S; assume D in dom g1; g1.D = upper_sum(f,D) by A3; hence g1.D=g2.D by A4; end; hence thesis by A3,A4,PARTFUN1:34; end; func lower_sum_set(f) -> PartFunc of divs A,REAL means :Def12: dom it = divs A & for D be Element of divs A st D in dom it holds it.D=lower_sum(f,D); existence proof set S = divs A; defpred P[set] means $1 in S; deffunc F(Element of S)=lower_sum(f,$1); consider g being PartFunc of S,REAL such that A5:(for D be Element of S holds D in dom g iff P[D]) and A6:(for D be Element of S st D in dom g holds g.D=F(D)) from LambdaPFD'; take g; [#]S = S by SUBSET_1:def 4; hence dom g = S by A5,SUBSET_1:8; now let D be Element of S; assume D in S; D in dom g by A5; hence g.D = lower_sum(f,D) by A6; end; hence thesis; end; uniqueness proof set S = divs A; let g1,g2 be PartFunc of S,REAL such that A7:(dom g1=S & for D be Element of S st D in dom g1 holds g1.D = lower_sum(f,D)) and A8:(dom g2=S & for D be Element of S st D in dom g2 holds g2.D = lower_sum(f,D)); now let D be Element of S; assume D in dom g1; g1.D = lower_sum(f,D) by A7; hence g1.D=g2.D by A8; end; hence thesis by A7,A8,PARTFUN1:34; end; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; pred f is_upper_integrable_on A means :Def13: rng upper_sum_set(f) is bounded_below; pred f is_lower_integrable_on A means :Def14: rng lower_sum_set(f) is bounded_above; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; func upper_integral(f) -> Real equals :Def15: inf rng upper_sum_set(f); correctness; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; func lower_integral(f) -> Real equals :Def16: sup rng lower_sum_set(f); correctness; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; pred f is_integrable_on A means :Def17: f is_upper_integrable_on A & f is_lower_integrable_on A & upper_integral(f) = lower_integral(f); end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; func integral(f) -> Real equals :Def18: upper_integral(f); correctness; end; begin :: Real function's properties theorem Th12: for f,g be PartFunc of X,REAL holds rng(f+g) c= rng f + rng g proof let f,g be PartFunc of X,REAL; for y st y in rng(f+g) holds y in rng f + rng g proof let y; assume y in rng(f+g); then consider x1 such that A1: x1 in dom(f+g) & y=(f+g).x1 by FUNCT_1:def 5; dom(f+g)=dom f /\ dom g by SEQ_1:def 3; then x1 in dom f & x1 in dom g by A1,XBOOLE_0:def 3; then A2: f.x1 in rng f & g.x1 in rng g by FUNCT_1:def 5; A3: rng f + rng g = { x+z : x in rng f & z in rng g } by COMPLSP1:def 21; (f+g).x1=f.x1+g.x1 by A1,SEQ_1:def 3; hence thesis by A1,A2,A3; end; hence thesis by SUBSET_1:7; end; theorem Th13: for f be PartFunc of X,REAL holds f is_bounded_below_on X implies rng f is bounded_below proof let f be PartFunc of X,REAL; assume that A1:f is_bounded_below_on X; consider a be real number such that A2:for x1 being Element of X st x1 in X /\ dom f holds a <= f.x1 by A1,RFUNCT_1:def 10; A3:X /\ dom f = dom f by XBOOLE_1:28; for y be real number st y in rng f holds a <= y proof let y be real number; assume y in rng f; then consider s such that A4: s in dom f & y = f.s by FUNCT_1:def 5; thus thesis by A2,A3,A4; end; hence thesis by SEQ_4:def 2; end; theorem for f be PartFunc of X,REAL st rng f is bounded_below holds f is_bounded_below_on X proof let f be PartFunc of X,REAL; assume that A1:rng f is bounded_below; consider a be real number such that A2:for y be real number st y in rng f holds a <= y by A1,SEQ_4:def 2; for x1 being Element of X st x1 in X /\ dom f holds a <= f.x1 proof let x1 be Element of X; assume A3:x1 in X /\ dom f; X /\ dom f = dom f by XBOOLE_1:28; then f.x1 in rng f by A3,FUNCT_1:def 5; hence thesis by A2; end; hence thesis by RFUNCT_1:def 10; end; theorem Th15: for f be PartFunc of X,REAL st f is_bounded_above_on X holds rng f is bounded_above proof let f be PartFunc of X,REAL; assume that A1:f is_bounded_above_on X; consider a be real number such that A2:for x1 being Element of X st x1 in X /\ dom f holds f.x1 <= a by A1,RFUNCT_1:def 9; A3:X /\ dom f = dom f by XBOOLE_1:28; for y be real number st y in rng f holds y <= a proof let y be real number; assume y in rng f; then consider s such that A4: s in dom f & y = f.s by FUNCT_1:def 5; thus thesis by A2,A3,A4; end; hence thesis by SEQ_4:def 1; end; theorem for f be PartFunc of X,REAL st rng f is bounded_above holds f is_bounded_above_on X proof let f be PartFunc of X,REAL; assume that A1:rng f is bounded_above; consider a be real number such that A2:for y be real number st y in rng f holds y <= a by A1,SEQ_4:def 1; for x1 being Element of X st x1 in X /\ dom f holds f.x1 <= a proof let x1 be Element of X; assume A3:x1 in X /\ dom f; X /\ dom f = dom f by XBOOLE_1:28; then f.x1 in rng f by A3,FUNCT_1:def 5; hence thesis by A2; end; hence thesis by RFUNCT_1:def 9; end; theorem for f be PartFunc of X,REAL holds f is_bounded_on X implies rng f is bounded proof let f be PartFunc of X,REAL; assume A1:f is_bounded_on X; then A2:f is_bounded_below_on X by RFUNCT_1:def 11; A3:f is_bounded_above_on X by A1,RFUNCT_1:def 11; A4:rng f is bounded_below by A2,Th13; rng f is bounded_above by A3,Th15; hence thesis by A4,SEQ_4:def 3; end; begin :: Characteristic function's properties theorem Th18: for A be non empty set holds chi(A,A) is_constant_on A proof let A be non empty set; for x being Element of A st x in A /\ dom chi(A,A) holds chi(A,A)/.x=1 proof let x be Element of A; assume x in A /\ dom chi(A,A); then A1: x in A & x in dom chi(A,A) by XBOOLE_0:def 3; chi(A,A).x=1 by FUNCT_3:def 3; hence thesis by A1,FINSEQ_4:def 4; end; hence thesis by PARTFUN2:def 3; end; theorem Th19: for A be non empty Subset of X holds rng chi(A,A) = {1} proof let A be non empty Subset of X; A1:A = A /\ dom chi(A,A) proof dom chi(A,A) = A by FUNCT_3:def 3; hence thesis; end; A2:chi(A,A) = chi(A,A)|A proof A3: A=dom chi(A,A) & A = dom (chi(A,A)|A) by A1,FUNCT_3:def 3,RELAT_1:90; for x being Element of A st x in A holds chi(A,A).x = chi(A,A)|A.x proof let x be Element of A; assume x in A; A4: chi(A,A)/.x = (chi(A,A)|A)/.x by A3,PARTFUN2:32; chi(A,A)/.x = chi(A,A).x by A3,FINSEQ_4:def 4; hence thesis by A3,A4,FINSEQ_4:def 4; end; hence thesis by A3,PARTFUN1:34; end; A5: A meets dom chi(A,A) by A1,XBOOLE_0:def 7; chi(A,A) is_constant_on A by Th18; then consider y being Element of REAL such that A6:rng (chi(A,A)|A)={y} by A5,PARTFUN2:56; y=1 proof A7: dom chi(A,A) = A by FUNCT_3:def 3; ex x being Element of X st x in dom chi(A,A) & chi(A,A).x=1 proof consider x being Element of X such that A8: x in dom chi(A,A) by A7,SUBSET_1:10; take x; thus thesis by A8,FUNCT_3:def 3; end; then 1 in rng chi(A,A) by FUNCT_1:def 5; hence thesis by A2,A6,TARSKI:def 1; end; hence thesis by A2,A6; end; theorem Th20: for A be non empty Subset of X, B be set holds B meets dom chi(A,A) implies rng (chi(A,A)|B) = {1} proof let A be non empty Subset of X; let B be set; assume A1:B /\ dom (chi(A,A)) <> {}; rng (chi(A,A)|B) c= rng (chi(A,A)) by FUNCT_1:76; then A2:rng (chi(A,A)|B) c= {1} by Th19; rng (chi(A,A)|B) <> {} proof dom (chi(A,A)|B) = B /\ dom (chi(A,A)) by RELAT_1:90; hence thesis by A1,RELAT_1:65; end; hence thesis by A2,ZFMISC_1:39; end; theorem Th21: i in Seg(len D) implies vol(divset(D,i))=lower_volume(chi(A,A),D).i proof assume A1:i in Seg(len D); then A2: lower_volume(chi(A,A),D).i= (inf (rng (chi(A,A)|divset(D,i))))*vol(divset(D,i)) by Def8; A3: rng chi(A,A) = {1} by Th19; then A4: inf rng (chi(A,A)) = 1 by SEQ_4:22; divset(D,i) /\ dom (chi(A,A)) <> {} proof A5: dom (chi(A,A)) = A by FUNCT_3:def 3; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then A6: divset(D,i) c= divset(D,i) /\ dom (chi(A,A)) by A5,XBOOLE_1:19; divset(D,i) /\ dom (chi(A,A)) c= divset(D,i) by XBOOLE_1:17; hence thesis by A6,XBOOLE_0:def 10; end; then divset(D,i) meets dom (chi(A,A)) by XBOOLE_0:def 7; then rng (chi(A,A)|divset(D,i)) = {1} by Th20; hence thesis by A2,A3,A4; end; theorem Th22: i in Seg(len D) implies vol(divset(D,i))=upper_volume(chi(A,A),D).i proof assume A1:i in Seg(len D); then A2: upper_volume(chi(A,A),D).i= (sup (rng (chi(A,A)|divset(D,i))))*vol(divset(D,i)) by Def7; A3: rng chi(A,A) = {1} by Th19; then A4: sup rng (chi(A,A)) = 1 by SEQ_4:22; divset(D,i) /\ dom (chi(A,A)) <> {} proof A5: dom (chi(A,A)) = A by FUNCT_3:def 3; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then A6: divset(D,i) c= divset(D,i) /\ dom (chi(A,A)) by A5,XBOOLE_1:19; divset(D,i) /\ dom (chi(A,A)) c= divset(D,i) by XBOOLE_1:17; hence thesis by A6,XBOOLE_0:def 10; end; then divset(D,i) meets dom (chi(A,A)) by XBOOLE_0:def 7; then rng (chi(A,A)|divset(D,i)) = {1} by Th20; hence thesis by A2,A3,A4; end; theorem len F = len G & len F = len H & (for k st k in dom F holds H.k = F/.k + G/.k) implies Sum(H) = Sum(F) + Sum(G) proof assume that A1:len F = len G & len F = len H and A2:for k st k in dom F holds H.k = F/.k + G/.k; A3:for k st k in dom F holds H.k = F.k + G.k proof let k; assume A4:k in dom F; then A5: F/.k = F.k by FINSEQ_4:def 4; k in Seg(len G) by A1,A4,FINSEQ_1:def 3; then k in dom G by FINSEQ_1:def 3; then G/.k = G.k by FINSEQ_4:def 4; hence thesis by A2,A4,A5; end; A6:F is Element of (len F)-tuples_on REAL by FINSEQ_2:110; A7:G is Element of (len F)-tuples_on REAL by A1,FINSEQ_2:110; F+G is Element of (len F)-tuples_on REAL proof F+G = addreal.:(F,G) by RVSUM_1:def 4; hence thesis by A6,A7,FINSEQ_2:140; end; then A8:len H = len (F+G) by A1,FINSEQ_2:109; for k st k in Seg(len(F+G)) holds H.k = (F+G).k proof let k; assume A9: k in Seg(len(F+G)); then k in dom F by A1,A8,FINSEQ_1:def 3; then A10: H.k=F.k+G.k by A3; k in dom(F+G) by A9,FINSEQ_1:def 3; hence thesis by A10,RVSUM_1:26; end; then Sum H=Sum(F+G) by A8,FINSEQ_2:10 .=Sum F+Sum G by A6,A7,RVSUM_1:119; hence thesis; end; theorem Th24: len F = len G & len F = len H & (for k st k in dom F holds H.k = F/.k - G/.k) implies Sum(H) = Sum(F) - Sum(G) proof assume that A1:len F = len G & len F = len H and A2:for k st k in dom F holds H.k = F/.k - G/.k; A3:for k st k in dom F holds H.k = F.k - G.k proof let k; assume A4:k in dom F; then A5: F/.k = F.k by FINSEQ_4:def 4; k in Seg(len G) by A1,A4,FINSEQ_1:def 3; then k in dom G by FINSEQ_1:def 3; then G/.k = G.k by FINSEQ_4:def 4; hence thesis by A2,A4,A5; end; A6:F is Element of (len F)-tuples_on REAL by FINSEQ_2:110; A7:G is Element of (len F)-tuples_on REAL by A1,FINSEQ_2:110; A8:F-G is Element of (len F)-tuples_on REAL proof F-G = diffreal.:(F,G) by RVSUM_1:def 6; hence thesis by A6,A7,FINSEQ_2:140; end; then A9:len H = len (F-G) by A1,FINSEQ_2:109; for k st k in Seg(len(F-G)) holds H.k = (F-G).k proof let k; assume A10:k in Seg(len(F-G)); then k in Seg(len F) by A8,FINSEQ_2:109; then k in dom F by FINSEQ_1:def 3; then A11: H.k=F.k-G.k by A3; k in dom(F-G) by A10,FINSEQ_1:def 3; hence thesis by A11,RVSUM_1:47; end; then Sum H=Sum(F-G) by A9,FINSEQ_2:10 .=Sum F-Sum G by A6,A7,RVSUM_1:120; hence thesis; end; theorem Th25: for A be closed-interval Subset of REAL, S being non empty Division of A, D being Element of S holds Sum(lower_volume(chi(A,A),D))=vol(A) proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D be Element of S; deffunc F(Nat)=vol(divset(D,$1)); consider p being FinSequence of REAL such that A1:len p = len D & for i st i in Seg(len D) holds p.i = F(i) from SeqLambdaD; A2: for i st i in Seg(len D) holds p.i = sup divset(D,i) - inf divset(D,i) proof let i; assume A3: i in Seg(len D); vol(divset(D,i))=sup divset(D,i)-inf divset(D,i) by Def6; hence thesis by A1,A3; end; len D - 1 in NAT proof len D <> 0 by FINSEQ_1:25; then len D >= 1 by RLVECT_1:99; then consider j being Nat such that A4: len D = 1 + j by NAT_1:28; j = len D - 1 by A4,XCMPLX_1:26; hence thesis; end; then reconsider k = len D - 1 as Nat; deffunc F(Nat)=sup divset(D,$1); consider s1 being FinSequence of REAL such that A5:len s1 = k & for i st i in Seg k holds s1.i = F(i) from SeqLambdaD; deffunc G(Nat)=inf divset(D,$1+1); consider s2 being FinSequence of REAL such that A6:len s2 = k & for i st i in Seg k holds s2.i = G(i) from SeqLambdaD; A7:for i st i in Seg k holds sup divset(D,i)=inf divset(D,i+1) proof let i; assume A8: i in Seg k; A9: k + 1 = len D by XCMPLX_1:27; then k <= len D by NAT_1:29; then Seg k c= Seg len D by FINSEQ_1:7; then i in Seg (len D) by A8; then A10: i in dom D by FINSEQ_1:def 3; A11: i+1 in dom D proof 1 <= i & i <= k by A8,FINSEQ_1:3; then 1+0 <= i+1 & i+1 <= k+1 by REAL_1:55; then i+1 in Seg(len D) by A9,FINSEQ_1:3; hence thesis by FINSEQ_1:def 3; end; A12: i+1-1=i proof i+1-1=i+(1-1) by XCMPLX_1:29; hence thesis; end; now per cases; suppose A13:i=1; then sup divset(D,i) = D.i by A10,Def5; hence sup divset(D,i) = inf divset(D,i+1) by A11,A12,A13,Def5; suppose A14:i<>1; i >= 1 by A8,FINSEQ_1:3; then i+1>=1+1 by AXIOMS:24; then A15: i+1 <> 1; sup divset(D,i) = D.i by A10,A14,Def5; hence thesis by A11,A12,A15,Def5; end; hence thesis; end; A16:s1=s2 proof for i st i in Seg k holds s1.i = s2.i proof let i; assume A17: i in Seg k; then s1.i=sup divset(D,i) by A5; then s1.i=inf divset(D,i+1) by A7,A17; hence thesis by A6,A17; end; hence thesis by A5,A6,FINSEQ_2:10; end; A18:len (s1^<*sup A*>) = len (<*inf A*>^s2) & len (s1^<*sup A*>) = len p & (for i st i in dom (s1^<*sup A*>) holds p.i=(s1^<*sup A*>)/.i - (<*inf A*>^s2)/.i) proof dom(<*sup A*>)=Seg 1 by FINSEQ_1:def 8; then A19: len(<*sup A*>)=1 by FINSEQ_1:def 3; dom(<*inf A*>)=Seg 1 by FINSEQ_1:def 8; then A20: len(<*inf A*>)=1 by FINSEQ_1:def 3; A21: len(s1^<*sup A*>)=k+1 by A5,A19,FINSEQ_1:35; hence A22: len (s1^<*sup A*>) = len (<*inf A*>^s2) by A6,A20,FINSEQ_1:35; thus len (s1^<*sup A*>) = len p by A1,A21,XCMPLX_1:27; let i; assume A23: i in dom (s1^<*sup A*>); A24: i in dom (<*inf A*>^s2) proof i in Seg(len (s1^<*sup A*>)) by A23,FINSEQ_1:def 3; hence thesis by A22,FINSEQ_1:def 3; end; A25: len D = 1 or len D >= 2 proof len D <> 0 by FINSEQ_1:25; then len D = 1 or len D is non trivial by NAT_2:def 1; hence thesis by NAT_2:31; end; A26: (s1^<*sup A*>)/.i=(s1^<*sup A*>).i by A23,FINSEQ_4:def 4; A27: (<*inf A*>^s2)/.i=(<*inf A*>^s2).i by A24,FINSEQ_4:def 4; now per cases by A25; suppose A28:len D = 1; then A29: i in Seg 1 by A21,A23,FINSEQ_1:def 3; then A30: i = 1 by FINSEQ_1:4,TARSKI:def 1; A31: i in Seg len D & i in dom D by A28,A29,FINSEQ_1:def 3; s1={} by A5,A28,FINSEQ_1:25; then s1^<*sup A*> = <*sup A*> by FINSEQ_1:47; then A32: (s1^<*sup A*>)/.i=sup A by A26,A30,FINSEQ_1:def 8; s2={} by A6,A28,FINSEQ_1:25; then <*inf A*>^s2 = <*inf A*> by FINSEQ_1:47; then A33: (<*inf A*>^s2)/.i=inf A by A27,A30,FINSEQ_1:def 8; D.i=sup A by A28,A30,Def2; then A34: sup divset(D,i)=sup A by A30,A31,Def5; p.i=sup divset(D,i)-inf divset(D,i) by A2,A28,A29; hence thesis by A30,A31,A32,A33,A34,Def5; suppose A35:len D >= 2; A36: k>=1 proof 1 = 2 - 1; hence thesis by A35,REAL_1:49; end; now per cases; suppose A37:i=1; A38: i in Seg len D & i in dom D proof A39: Seg 2 c= Seg len D by A35,FINSEQ_1:7; i in Seg 2 by A37,FINSEQ_1:4,TARSKI:def 2; hence i in Seg(len D) by A39; hence thesis by FINSEQ_1:def 3; end; A40: i in Seg 1 & i in Seg k & i in dom s1 proof A41: Seg 1 c= Seg k by A36,FINSEQ_1:7; thus i in Seg 1 by A37,FINSEQ_1:4,TARSKI:def 1; hence i in Seg k by A41; hence thesis by A5,FINSEQ_1:def 3; end; then (s1^<*sup A*>).i=s1.i by FINSEQ_1:def 7; then A42: (s1^<*sup A*>).i=sup divset(D,i) by A5,A40; A43: (<*inf A*>^s2).i = inf A proof i in dom <*inf A*> by A40,FINSEQ_1:def 8; then (<*inf A*>^s2).i=<*inf A*>.i by FINSEQ_1:def 7; hence thesis by A37,FINSEQ_1:def 8; end; p.i=sup divset(D,i)-inf divset(D,i) by A2,A38; hence thesis by A26,A27,A37,A38,A42,A43,Def5; suppose A44:i=len D; A45: i in Seg(len D) & i in dom D proof i<>0 by A35,A44; hence i in Seg(len D) by A44,FINSEQ_1:5; hence thesis by FINSEQ_1:def 3; end; A46: i-len s1 = 1 & i-len s1 in dom <*sup A*> & i=i-len s1 + len s1 & i<>1 proof i-len s1 = i-i+1 by A5,A44,XCMPLX_1:37; then A47: i-len s1 = 0+1 by XCMPLX_1:14; hence i-len s1 = 1; i-len s1 in Seg 1 by A47,FINSEQ_1:4,TARSKI:def 1; hence i-len s1 in dom <*sup A*> by FINSEQ_1:def 8; i = i - 0; then i = i - (len s1 - len s1) by XCMPLX_1:14; hence i = i - len s1 + len s1 by XCMPLX_1:37; thus thesis by A35,A44; end; then (s1^<*sup A*>).i=<*sup A*>.(i-len s1) by FINSEQ_1:def 7; then A48: (s1^<*sup A*>)/.i=sup A by A26,A46,FINSEQ_1:def 8; A49: i-len <*inf A*>=i-1 & len <*inf A*> + (i - len <*inf A*>) = i & i-1 in Seg k & i-len <*inf A*> in dom s2 & i-1+1=i proof thus A50:i-len <*inf A*> = i-1 by FINSEQ_1:57; then len <*inf A*>+(i-len <*inf A*>)=1+(i-1) by FINSEQ_1:57; then len <*inf A*>+(i-len <*inf A*>)=1+-(1-i) by XCMPLX_1:143; then len <*inf A*>+(i-len <*inf A*>)=1-(1-i) by XCMPLX_0:def 8; then len <*inf A*>+(i-len <*inf A*>)=1-1+i by XCMPLX_1:37; hence len <*inf A*>+(i-len <*inf A*>)=i; i >= 1+1 & i-1 = k by A35,A44; then i-1<>0 & i-1=k by REAL_1:84; hence i-1 in Seg k by FINSEQ_1:5; hence i-len <*inf A*> in dom s2 by A6,A50,FINSEQ_1:def 3; i-(1-1)=i; hence thesis by XCMPLX_1:37; end; A51: (<*inf A*>^s2).i = D.(i-1) proof (<*inf A*>^s2).i = s2.(i-len <*inf A*>) by A49,FINSEQ_1:def 7; then (<*inf A*>^s2).i = inf divset(D,i) by A6,A49; hence thesis by A45,A46,Def5; end; p.i=sup divset(D,i)-inf divset(D,i) by A2,A45; then p.i=sup divset(D,i)-D.(i-1) by A45,A46,Def5; then p.i=D.i-D.(i-1) by A45,A46,Def5; hence thesis by A27,A44,A48,A51,Def2; suppose A52:i<>1 & i<>len D; A53: i in Seg(len D) & i in dom D proof len s1+len <*sup A*> = k+1 by A5,FINSEQ_1:56; then A54: len s1+len <*sup A*> = len D by XCMPLX_1:27; hence i in Seg(len D) by A23,FINSEQ_1:def 7; dom (s1^<*sup A*>) = Seg(len D) by A54,FINSEQ_1:def 7; hence thesis by A23,FINSEQ_1:def 3; end; A55: i in dom s1 & i in Seg k & i-1 in Seg k & i-1+1=i & i-len<*inf A*> in dom s2 proof A56: 1 <= i & i <= len D by A53,FINSEQ_1:3; then 1 <= i & i < len D - (1-1) by A52,REAL_1:def 5; then A57: 1 <= i & i < k + 1 by XCMPLX_1:37; then A58: 1 <= i & i <= k by NAT_1:38; then i in Seg(len s1) by A5,FINSEQ_1:3; hence i in dom s1 by FINSEQ_1:def 3; thus i in Seg k by A58,FINSEQ_1:3; consider j being Nat such that A59: i = 1 + j by A56,NAT_1:28; A60: j = i - 1 by A59,XCMPLX_1:26; i <> 0 & i <> 1 by A52,A53,FINSEQ_1:3; then i is non trivial by NAT_2:def 1; then i >= 2 & i <= k by A57,NAT_1:38,NAT_2:31; then i >= 1+1 & i-1 <= k-1 by REAL_1:49; then i-1 >= 1 & i-1+0 <= k-1+1 by REAL_1:55,84; then i-1 >= 1 & i-1 <= k-(1-1) by XCMPLX_1:37; hence i-1 in Seg k by A60,FINSEQ_1:3; then A61: i-len<*inf A*> in Seg(len s2) by A6,FINSEQ_1:56; i-(1-1)=i; hence i-1+1=i by XCMPLX_1:37; thus thesis by A61,FINSEQ_1:def 3; end; A62: (s1^<*sup A*>).i=D.i proof (s1^<*sup A*>).i = s1.i by A55,FINSEQ_1:def 7; then (s1^<*sup A*>).i = sup divset(D,i) by A5,A55; hence thesis by A52,A53,Def5; end; A63: (<*inf A*>^s2).i = D.(i-1) proof A64: i-len<*inf A*> in Seg(len s2) by A55,FINSEQ_1:def 3; i-len<*inf A*> is Nat by A55; then 1 <= i-len<*inf A*> & i-len<*inf A*> <= len s2 by A64,FINSEQ_1: 3; then len<*inf A*>+1 <= i & i <= len<*inf A*>+len s2 by REAL_1:84,86 ; then (<*inf A*>^s2).i = s2.(i-len<*inf A*>) by FINSEQ_1:36; then (<*inf A*>^s2).i=s2.(i-1) by FINSEQ_1:56; then (<*inf A*>^s2).i= inf divset(D,i) by A6,A55; hence thesis by A52,A53,Def5; end; p.i=sup divset(D,i)-inf divset(D,i) by A2,A53; then p.i=sup divset(D,i)-D.(i-1) by A52,A53,Def5; hence thesis by A26,A27,A52,A53,A62,A63,Def5; end; hence thesis; end; hence thesis; end; A65:Sum p=Sum s1 + sup A - inf A - Sum s2 proof Sum p = Sum(s1^<*sup A*>)-Sum(<*inf A*>^s2) by A18,Th24; then Sum p=Sum s1 + sup A -Sum(<*inf A*>^s2) by RVSUM_1:104; then Sum p=Sum s1 + sup A - (inf A + Sum s2) by RVSUM_1:106; hence thesis by XCMPLX_1:36; end; A66:Sum p=sup A - inf A proof Sum p=sup A + Sum s1 - (Sum s2 + inf A) by A65,XCMPLX_1:36; then Sum p=sup A + Sum s1 - Sum s2 - inf A by XCMPLX_1:36; then Sum p=sup A + (Sum s1-Sum s2) - inf A by XCMPLX_1:29; then Sum p=0 + sup A - inf A by A16,XCMPLX_1:14; hence thesis; end; Sum(lower_volume(chi(A,A),D)) = Sum p proof lower_volume(chi(A,A),D)=p proof A67: len lower_volume(chi(A,A),D) = len D & len p = len D by A1,Def8; for i st i in Seg (len D) holds lower_volume(chi(A,A),D).i = p.i proof let i; assume A68: i in Seg (len D); then lower_volume(chi(A,A),D).i=vol(divset(D,i)) by Th21; hence thesis by A1,A68; end; hence thesis by A67,FINSEQ_2:10; end; hence thesis; end; hence thesis by A66,Def6; end; theorem Th26: for A be closed-interval Subset of REAL, S being non empty Division of A, D being Element of S holds Sum(upper_volume(chi(A,A),D))=vol(A) proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D be Element of S; lower_volume(chi(A,A),D)=upper_volume(chi(A,A),D) proof A1: len (lower_volume(chi(A,A),D)) = len D by Def8 .= len (upper_volume(chi(A,A),D)) by Def7; for i st 1 <= i & i <= len(lower_volume(chi(A,A),D)) holds lower_volume(chi(A,A),D).i=upper_volume(chi(A,A),D).i proof let i; assume 1 <= i & i <= len(lower_volume(chi(A,A),D)); then 1 <= i & i <= len D by Def8; then A2: i in Seg(len D) by FINSEQ_1:3; then lower_volume(chi(A,A),D).i=vol(divset(D,i)) by Th21 .=upper_volume(chi(A,A),D).i by A2,Th22; hence thesis; end; hence thesis by A1,FINSEQ_1:18; end; hence thesis by Th25; end; begin :: Some properties of Darboux sum definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; let S be non empty Division of A; let D be Element of S; redefine func upper_volume(f,D) -> non empty FinSequence of REAL; coherence proof len upper_volume(f,D) = len D by Def7; then len upper_volume(f,D) <> 0 by FINSEQ_1:25; hence upper_volume(f,D) is non empty FinSequence of REAL by FINSEQ_1:25; end; end; definition let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; let S be non empty Division of A; let D be Element of S; redefine func lower_volume(f,D) -> non empty FinSequence of REAL; coherence proof len lower_volume(f,D) = len D by Def8; then len lower_volume(f,D) <> 0 by FINSEQ_1:25; hence lower_volume(f,D) is non empty FinSequence of REAL by FINSEQ_1:25; end; end; theorem Th27: for A being closed-interval Subset of REAL, f being Function of A,REAL, S being non empty Division of A, D being Element of S holds (f is_bounded_below_on A implies (inf rng f)*vol(A) <= lower_sum(f,D)) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume A1:f is_bounded_below_on A; A2:for i st i in Seg(len D) holds (inf rng f)*vol(divset(D,i)) <= (inf rng (f|divset(D,i)))*vol(divset(D,i)) proof let i; assume A3:i in Seg(len D); A4: rng(f|divset(D,i)) c= rng f by FUNCT_1:76; A5: rng(f|divset(D,i)) is non empty Subset of REAL proof A6: dom f = A by FUNCT_2:def 1; i in dom D by A3,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (f|divset(D,i)) = divset(D,i) by A6,RELAT_1:91; hence thesis by RELAT_1:65; end; rng f is bounded_below by A1,Th13; then A7: inf rng f<=inf rng (f|divset(D,i)) by A4,A5,PSCOMP_1:12; 0 <= vol(divset(D,i)) by Th11; hence thesis by A7,AXIOMS:25; end; A8: for i st i in Seg(len D) holds (inf rng f)*(lower_volume(chi(A,A),D).i) <= (inf rng (f|divset(D,i)))*vol(divset(D,i)) proof let i; assume A9:i in Seg(len D); then (inf rng f)*vol(divset(D,i)) <= (inf rng (f|divset(D,i)))*vol(divset(D,i)) by A2; hence thesis by A9,Th21; end; Sum((inf rng f)*lower_volume(chi(A,A),D)) <=Sum(lower_volume(f,D)) proof deffunc F(set)=(inf rng f)*(lower_volume(chi(A,A),D).$1); consider p being FinSequence of REAL such that A10: len p = len D & for i st i in Seg(len D) holds p.i=F(i) from SeqLambdaD; deffunc G(Nat)=(inf rng (f|divset(D,$1)))*vol(divset(D,$1)); consider q being FinSequence of REAL such that A11: len q = len D & for i st i in Seg(len D) holds q.i=G(i) from SeqLambdaD; A12: q=lower_volume(f,D) by A11,Def8; (inf rng f)*lower_volume(chi(A,A),D) =((inf rng f) multreal)*lower_volume(chi(A,A),D) by RVSUM_1:def 7; then len (lower_volume(chi(A,A),D)) = len ((inf rng f)*lower_volume(chi(A,A),D)) by FINSEQ_2:37; then A13: len ((inf rng f)*lower_volume(chi(A,A),D))=len D by Def8; for i st 1 <= i & i <= len p holds p.i=((inf rng f)*lower_volume(chi(A,A),D)).i proof let i;assume 1 <= i & i <= len p; then i in Seg(len D) by A10,FINSEQ_1:3; then p.i=(inf rng f)*(lower_volume(chi(A,A),D)).i by A10; hence thesis by RVSUM_1:66; end; then A14: p=(inf rng f)*lower_volume(chi(A,A),D) by A10,A13,FINSEQ_1:18; reconsider p as Element of (len D)-tuples_on REAL by A10,FINSEQ_2:110; reconsider q as Element of (len D)-tuples_on REAL by A11,FINSEQ_2:110; now let i; assume A15: i in Seg (len D); then A16: p.i=(inf rng f)*(lower_volume(chi(A,A),D).i) by A10; q.i=(inf rng (f|divset(D,i)))*vol(divset(D,i)) by A11,A15; hence p.i <= q.i by A8,A15,A16; end; hence thesis by A12,A14,RVSUM_1:112; end; then A17:(inf rng f)*Sum(lower_volume(chi(A,A),D))<=Sum(lower_volume(f,D)) by RVSUM_1:117; Sum(lower_volume(chi(A,A),D))=vol(A) by Th25; hence thesis by A17,Def10; end; theorem for A being closed-interval Subset of REAL, f being Function of A,REAL, S being non empty Division of A, D being Element of S, i being Nat holds f is_bounded_above_on A & i in Seg(len D)implies (sup rng f)*vol(divset(D,i)) >= (sup rng (f|divset(D,i)))*vol(divset(D,i)) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; let i be Nat; assume A1:f is_bounded_above_on A; assume A2:i in Seg(len D); A3:rng(f|divset(D,i)) c= rng f by FUNCT_1:76; A4:rng(f|divset(D,i)) is non empty Subset of REAL proof A5: dom f = A by FUNCT_2:def 1; i in dom D by A2,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (f|divset(D,i)) = divset(D,i) by A5,RELAT_1:91; hence thesis by RELAT_1:65; end; rng f is bounded_above by A1,Th15; then A6:sup rng f>=sup rng (f|divset(D,i)) by A3,A4,PSCOMP_1:13; 0 <= vol(divset(D,i)) by Th11; hence thesis by A6,AXIOMS:25; end; theorem Th29: for A being closed-interval Subset of REAL, f being Function of A,REAL, S being non empty Division of A, D being Element of S holds (f is_bounded_above_on A implies upper_sum(f,D) <= (sup rng f)*vol(A)) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume A1:f is_bounded_above_on A; A2:for i st i in Seg(len D) holds (sup rng f)*vol(divset(D,i)) >= (sup rng (f|divset(D,i)))*vol(divset(D,i)) proof let i; assume A3:i in Seg(len D); A4: rng(f|divset(D,i)) c= rng f by FUNCT_1:76; A5: rng(f|divset(D,i)) is non empty Subset of REAL proof A6: dom f = A by FUNCT_2:def 1; i in dom D by A3,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (f|divset(D,i)) = divset(D,i) by A6,RELAT_1:91; hence thesis by RELAT_1:65; end; rng f is bounded_above by A1,Th15; then A7: sup rng f>=sup rng (f|divset(D,i)) by A4,A5,PSCOMP_1:13; 0 <= vol(divset(D,i)) by Th11; hence thesis by A7,AXIOMS:25; end; A8: for i st i in Seg(len D) holds (sup rng f)*(upper_volume(chi(A,A),D).i) >= (sup rng (f|divset(D,i)))*vol(divset(D,i)) proof let i; assume A9:i in Seg(len D); then (sup rng f)*vol(divset(D,i)) >= (sup rng (f|divset(D,i)))*vol(divset(D,i)) by A2; hence thesis by A9,Th22; end; Sum((sup rng f)*upper_volume(chi(A,A),D)) >=Sum(upper_volume(f,D)) proof deffunc F(set)=(sup rng f)*(upper_volume(chi(A,A),D).$1); consider p being FinSequence of REAL such that A10: len p = len D & for i st i in Seg(len D) holds p.i=F(i) from SeqLambdaD; deffunc G(Nat)=(sup rng (f|divset(D,$1)))*vol(divset(D,$1)); consider q being FinSequence of REAL such that A11: len q = len D & for i st i in Seg(len D) holds q.i=G(i) from SeqLambdaD; A12: q=upper_volume(f,D) by A11,Def7; (sup rng f)*upper_volume(chi(A,A),D) =((sup rng f) multreal)*upper_volume(chi(A,A),D) by RVSUM_1:def 7; then len (upper_volume(chi(A,A),D)) = len ((sup rng f)*upper_volume(chi(A,A),D)) by FINSEQ_2:37; then A13: len ((sup rng f)*upper_volume(chi(A,A),D))=len D by Def7; for i st 1 <= i & i <= len p holds p.i=((sup rng f)*upper_volume(chi(A,A),D)).i proof let i;assume 1 <= i & i <= len p; then i in Seg(len D) by A10,FINSEQ_1:3; then p.i=(sup rng f)*(upper_volume(chi(A,A),D)).i by A10; hence thesis by RVSUM_1:66; end; then A14: p=(sup rng f)*upper_volume(chi(A,A),D) by A10,A13,FINSEQ_1:18; reconsider p as Element of (len D)-tuples_on REAL by A10,FINSEQ_2:110; reconsider q as Element of (len D)-tuples_on REAL by A11,FINSEQ_2:110; now let i; assume A15: i in Seg (len D); then A16: q.i=(sup rng (f|divset(D,i)))*vol(divset(D,i)) by A11; p.i=(sup rng f)*(upper_volume(chi(A,A),D).i) by A10,A15; hence q.i <= p.i by A8,A15,A16; end; hence thesis by A12,A14,RVSUM_1:112; end; then A17:(sup rng f)*Sum(upper_volume(chi(A,A),D))>=Sum(upper_volume(f,D)) by RVSUM_1:117; Sum(upper_volume(chi(A,A),D))=vol(A) by Th26; hence thesis by A17,Def9; end; theorem Th30: for A being closed-interval Subset of REAL, f being Function of A,REAL, S being non empty Division of A, D being Element of S holds f is_bounded_on A implies lower_sum(f,D) <= upper_sum(f,D) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume f is_bounded_on A; then f is_bounded_below_on A & f is_bounded_above_on A by RFUNCT_1:def 11; then A1:rng f is bounded_below & rng f is bounded_above by Th13,Th15; deffunc F(Nat)=(inf rng (f|divset(D,$1)))*vol(divset(D,$1)); consider p being FinSequence of REAL such that A2:len p = len D & for i st i in Seg(len D) holds p.i=F(i) from SeqLambdaD; A3:p=lower_volume(f,D) by A2,Def8; deffunc G(Nat)=(sup rng (f|divset(D,$1)))*vol(divset(D,$1)); consider q being FinSequence of REAL such that A4:len q = len D & for i st i in Seg(len D) holds q.i=G(i) from SeqLambdaD; A5:q=upper_volume(f,D) by A4,Def7; reconsider p as Element of (len D)-tuples_on REAL by A2,FINSEQ_2:110; reconsider q as Element of (len D)-tuples_on REAL by A4,FINSEQ_2:110; for i st i in Seg(len D) holds p.i <= q.i proof let i; assume that A6:i in Seg(len D); A7: rng (f|divset(D,i)) c= rng f by FUNCT_1:76; then A8: rng (f|divset(D,i)) is bounded_below by A1,RCOMP_1:3; rng (f|divset(D,i)) is bounded_above by A1,A7,RCOMP_1:4; then A9: rng (f|divset(D,i)) is bounded by A8,SEQ_4:def 3; rng(f|divset(D,i)) is non empty Subset of REAL proof A10: dom f = A by FUNCT_2:def 1; i in dom D by A6,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (f|divset(D,i)) = divset(D,i) by A10,RELAT_1:91; hence thesis by RELAT_1:65; end; then A11: inf (rng (f|divset(D,i)))<=sup (rng (f|divset(D,i))) by A9,SEQ_4:24; 0 <= vol(divset(D,i)) by Th11; then inf (rng(f|divset(D,i)))*vol(divset(D,i)) <= sup (rng(f|divset(D,i)))*vol(divset(D,i)) by A11,AXIOMS:25; then p.i <= sup (rng(f|divset(D,i)))*vol(divset(D,i)) by A2,A6; hence thesis by A4,A6; end; then Sum p <= Sum q by RVSUM_1:112; then lower_sum(f,D) <= Sum(upper_volume(f,D)) by A3,A5,Def10; hence thesis by Def9; end; definition let x be non empty FinSequence of REAL; redefine func rng x -> finite non empty Subset of REAL; coherence proof rng x is non empty Subset of REAL by FINSEQ_1:27; hence thesis; end; end; definition let A be closed-interval Subset of REAL; let D be Element of divs A; func delta(D) -> Real equals max rng upper_volume(chi(A,A),D); correctness by XREAL_0:def 1; end; definition let A be closed-interval Subset of REAL; let S be non empty Division of A; let D1,D2 be Element of S; pred D1 <= D2 means :Def20: len D1 <= len D2 & rng D1 c= rng D2; synonym D2 >= D1; end; theorem Th31: for A be closed-interval Subset of REAL, S be non empty Division of A, D1,D2 be Element of S holds len D1 = 1 implies D1 <= D2 proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume A1:len D1 = 1; len D2 <> 0 by FINSEQ_1:25; then A2:len D2 in Seg(len D2) by FINSEQ_1:5; hence len D1 <= len D2 by A1,FINSEQ_1:3; D1.1 = sup A by A1,Def2; then D1=<*sup A*> by A1,FINSEQ_1:57; then A3:rng D1 = {sup A} by FINSEQ_1:55; A4:len D2 in dom D2 by A2,FINSEQ_1:def 3; D2.(len D2) = sup A by Def2; then sup A in rng D2 by A4,FUNCT_1:def 5; then rng D1 is Subset of rng D2 by A3,SUBSET_1:63; hence thesis; end; theorem Th32: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S holds f is_bounded_above_on A & len D1 = 1 implies upper_sum(f,D1) >= upper_sum(f,D2) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume that A1:f is_bounded_above_on A and A2:len D1=1; A3:1 in Seg(len D1) by A2,FINSEQ_1:5; then A4:1 in dom D1 by FINSEQ_1:def 3; A5:divset(D1,1)=A proof A6: inf divset(D1,1)=inf A by A4,Def5; A7: sup divset(D1,1)=D1.1 by A4,Def5 .=sup A by A2,Def2; divset(D1,1)=[.inf divset(D1,1),sup divset(D1,1).] by Th5; hence thesis by A6,A7,Th5; end; A8: dom f = A by FUNCT_2:def 1; A9:len upper_volume(f,D1) = 1 by A2,Def7; A10:upper_volume(f,D1).1=(sup (rng(f|divset(D1,1))))*vol(divset(D1,1)) by A3,Def7; upper_sum(f,D1)=Sum(upper_volume(f,D1)) by Def9 .=Sum <*(sup (rng (f|divset(D1,1))))*vol(divset(D1,1))*> by A9,A10,FINSEQ_1:57 .=(sup (rng(f|A)))*vol(A) by A5,RVSUM_1:103 .=(sup (rng f))*vol(A) by A8,RELAT_1:97; hence upper_sum(f,D1)>=upper_sum(f,D2) by A1,Th29; end; theorem Th33: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S holds f is_bounded_below_on A & len D1 = 1 implies lower_sum(f,D1) <= lower_sum(f,D2) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume that A1:f is_bounded_below_on A and A2:len D1=1; A3:1 in Seg(len D1) by A2,FINSEQ_1:5; then A4:1 in dom D1 by FINSEQ_1:def 3; A5:divset(D1,1)=A proof A6: inf divset(D1,1)=inf A by A4,Def5; sup divset(D1,1)=D1.1 by A4,Def5 .=sup A by A2,Def2; then divset(D1,1)=[.inf A,sup A.] by A6,Th5; hence thesis by Th5; end; A7:dom f = A by FUNCT_2:def 1; A8:len lower_volume(f,D1) = 1 by A2,Def8; A9:lower_volume(f,D1).1=(inf (rng(f|divset(D1,1))))*vol(divset(D1,1)) by A3,Def8; lower_sum(f,D1)=Sum(lower_volume(f,D1)) by Def10 .=Sum <*(inf (rng (f|divset(D1,1))))*vol(divset(D1,1))*> by A8,A9,FINSEQ_1:57 .=(inf (rng(f|A)))*vol(A) by A5,RVSUM_1:103 .=(inf (rng f))*vol(A) by A7,RELAT_1:97; hence lower_sum(f,D1)<=lower_sum(f,D2) by A1,Th27; end; theorem for A be closed-interval Subset of REAL, S be non empty Division of A, D be Element of S st i in dom D holds ex A1,A2 be closed-interval Subset of REAL st A1=[.inf A,D.i .] & A2=[. D.i,sup A.] & A=A1 \/ A2 proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D be Element of S; assume A1:i in dom D; A2:rng D c= A by Def2; D.i in rng D by A1,FUNCT_1:def 5; then D.i in A by A2; then D.i in [.inf A,sup A.] by Th5; then D.i in {a: inf A <= a & a <= sup A} by RCOMP_1:def 1; then A3: ex a st a=D.i & inf A <= a & a <= sup A; then reconsider A1 =[.inf A,D.i .] as closed-interval Subset of REAL by Def1 ; take A1; reconsider A2 = [. D.i,sup A.] as closed-interval Subset of REAL by A3,Def1; take A2; A1 \/ A2 = [.inf A,sup A.] by A3,TREAL_1:2 .= A by Th5; hence thesis; end; theorem Th35: for A be closed-interval Subset of REAL, S be non empty Division of A, D1,D2 be Element of S st i in dom D1 holds D1 <= D2 implies ex j st j in dom D2 & D1.i=D2.j proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume A1:i in dom D1; assume A2:D1 <= D2; A3:D1.i in rng D1 by A1,FUNCT_1:def 5; rng D1 c= rng D2 by A2,Def20; then consider x1 such that A4:x1 in dom D2 & D1.i=D2.x1 by A3,FUNCT_1:def 5; reconsider x1 as Nat by A4; take x1; thus thesis by A4; end; definition let A be closed-interval Subset of REAL; let S be non empty Division of A; let D1,D2 be Element of S; let i be Nat; assume A1:D1 <= D2; func indx(D2,D1,i) -> Nat means :Def21: it in dom D2 & D1.i=D2.it if i in dom D1 otherwise it = 0; existence by A1,Th35; uniqueness proof let m,n be Nat; hereby assume that i in dom D1 and A2: m in dom D2 & D1.i=D2.m and A3: n in dom D2 & D1.i=D2.n; assume A4:m <> n; now per cases by A4,REAL_1:def 5; suppose m < n; hence contradiction by A2,A3,GOBOARD1:def 1; suppose n < m; hence contradiction by A2,A3,GOBOARD1:def 1; end; hence contradiction; end; assume that not(i in dom D1) and A5: m=0 and A6: n=0; thus m=n by A5,A6; end; correctness; end; theorem Th36: for p be increasing FinSequence of REAL, n be Nat holds n <= len p implies p/^n is increasing FinSequence of REAL proof let p be increasing FinSequence of REAL; let n be Nat; assume A1:n <= len p; for i,j st i in dom (p/^n) & j in dom (p/^n) & i< j holds (p/^n).i < (p/^n).j proof let i,j; assume that A2:i in dom(p/^n) and A3:j in dom(p/^n) and A4:i<j; A5: (p/^n).i=p.(i+n) by A1,A2,RFINSEQ:def 2; A6: (p/^n).j=p.(j+n) by A1,A3,RFINSEQ:def 2; i in Seg(len (p/^n)) by A2,FINSEQ_1:def 3; then 1 <= i & i <= len (p/^n) by FINSEQ_1:3; then A7: 1+n <= i+n & i <= len p - n by A1,AXIOMS:24,RFINSEQ:def 2; 1 <= 1+n by NAT_1:29; then 1 <= i+n & i+n <= len p by A7,AXIOMS:22,REAL_1:84; then i+n in Seg(len p) by FINSEQ_1:3; then A8: i+n in dom p by FINSEQ_1:def 3; j in Seg(len (p/^n)) by A3,FINSEQ_1:def 3; then 1 <= j & j <= len (p/^n) by FINSEQ_1:3; then 1 <= j & j <= len p - n by A1,RFINSEQ:def 2; then A9: 1+n <= j+n & j+n <= len p by AXIOMS:24,REAL_1:84; 1 <= 1+n by NAT_1:29; then 1 <= j+n & j+n <= len p by A9,AXIOMS:22; then j+n in Seg(len p) by FINSEQ_1:3; then A10: j+n in dom p by FINSEQ_1:def 3; i+n<j+n by A4,REAL_1:53; hence thesis by A5,A6,A8,A10,GOBOARD1:def 1; end; hence thesis by GOBOARD1:def 1; end; theorem Th37: for p be increasing FinSequence of REAL, i,j be Nat holds j in dom p & i <= j implies mid(p,i,j) is increasing FinSequence of REAL proof let p be increasing FinSequence of REAL; let i,j be Nat; assume that A1:j in dom p and A2:i <= j; A3:mid(p,i,j)=(p/^(i-'1))|(j-'i+1) by A2,JORDAN3:def 1; j in Seg(len p) by A1,FINSEQ_1:def 3; then j <= len p by FINSEQ_1:3; then i <= len p by A2,AXIOMS:22; then i-'1 <= len p by JORDAN3:7; then p/^(i-'1) is increasing FinSequence of REAL by Th36; then (p/^(i-'1))|Seg(j-'i+1) is increasing FinSequence of REAL by FINSEQ_1:23,GOBOARD2:20; hence thesis by A3,TOPREAL1:def 1; end; theorem Th38: for A be closed-interval Subset of REAL, S be non empty Division of A, D be Element of S, i,j be Nat holds i in dom D & j in dom D & i<=j implies ex B be closed-interval Subset of REAL st inf B=mid(D,i,j).1 & sup B=mid(D,i,j).(len mid(D,i,j)) & len mid(D,i,j)=j-i+1 & mid(D,i,j) is DivisionPoint of B proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D be Element of S; let i,j be Nat; assume that A1:i in dom D and A2:j in dom D and A3:i<=j; i-'1 <= len D proof j in Seg(len D) by A2,FINSEQ_1:def 3; then j <= len D by FINSEQ_1:3; then i <= len D by A3,AXIOMS:22; hence thesis by JORDAN3:7; end; then A4:len (D/^(i-'1)) = len D - (i-'1) by RFINSEQ:def 2; A5:j-'i+1 <= len (D/^(i-'1)) proof j in Seg(len D) by A2,FINSEQ_1:def 3; then j <= len D by FINSEQ_1:3; then A6: j-(i-'1) <= len D-(i-'1) by REAL_1:49; i in Seg(len D) by A1,FINSEQ_1:def 3; then 1 <= i by FINSEQ_1:3; then j-(i-'1)=j-(i-1) by SCMFSA_7:3; then j-(i-'1)=j-i+1 by XCMPLX_1:37; hence thesis by A3,A4,A6,SCMFSA_7:3; end; A7:0 < j-'i+1 proof j-'i = j-i by A3,SCMFSA_7:3; then j-'i >= 0 by A3,SQUARE_1:12; then j-'i+1 > 0+0 by REAL_1:67; hence thesis; end; reconsider k=j-'i+1 as Nat; reconsider D1=D/^(i-'1) as FinSequence of REAL; reconsider D2=D1|Seg k as FinSequence of REAL by FINSEQ_1:23; A8:mid(D,i,j) = D2 proof mid(D,i,j) = (D/^(i-'1))|(j-'i+1) by A3,JORDAN3:def 1 .=D1|Seg k by TOPREAL1:def 1; hence thesis; end; then A9:len mid(D,i,j) = j-'i+1 by A5,FINSEQ_1:21; 0<len mid(D,i,j) by A5,A7,A8,FINSEQ_1:21; then reconsider M=mid(D,i,j) as non empty increasing FinSequence of REAL by A2,A3,Th37,FINSEQ_1:25; A10:1 <= len M proof j-'i = j-i by A3,SCMFSA_7:3; then j-'i >= 0 by A3,SQUARE_1:12; then j-'i+1 >= 0 + 1 by AXIOMS:24; hence thesis by A5,A8,FINSEQ_1:21; end; A11:1 in dom M & len M in dom M proof 1 in Seg(len M) by A10,FINSEQ_1:3; hence 1 in dom M by FINSEQ_1:def 3; len M in Seg(len M) by A10,FINSEQ_1:3; hence thesis by FINSEQ_1:def 3; end; then M.1 <= M.(len M) by A10,GOBOARD2:18; then reconsider B=[. M.1,M.(len M) .] as closed-interval Subset of REAL by Def1; A12:rng M c= B proof for x st x in rng M holds x in B proof let x; assume x in rng M; then consider i such that A13: i in dom M & x=M.i by PARTFUN1:26; i in Seg(len M) by A13,FINSEQ_1:def 3; then 1 <= i & i <= len M by FINSEQ_1:3; then M.1 <= M.i & M.i <= M.(len M) by A11,A13,GOBOARD2:18; then M.i in {a: M.1 <= a & a <= M.(len M)}; hence thesis by A13,RCOMP_1:def 1; end; hence thesis by SUBSET_1:7; end; A14:len mid(D,i,j) = j-i+1 by A3,A9,SCMFSA_7:3; A15:B=[.inf B,sup B.] by Th5; then A16:inf B = M.1 by Th6; A17:M.(len M)=sup B by A15,Th6; then M is DivisionPoint of B by A12,Def2; hence thesis by A14,A16,A17; end; theorem Th39: for A,B be closed-interval Subset of REAL, S be non empty Division of A, S1 be non empty Division of B, D be Element of S, i,j be Nat holds i in dom D & j in dom D & i<=j & D.i>=inf B & D.j=sup B implies mid(D,i,j) is Element of S1 proof let A,B be closed-interval Subset of REAL; let S be non empty Division of A; let S1 be non empty Division of B; let D be Element of S; let i,j be Nat; assume that A1:i in dom D and A2:j in dom D and A3:i<=j and A4:D.i>=inf B and A5:D.j=sup B; consider A1 be closed-interval Subset of REAL such that A6:inf A1=mid(D,i,j).1 and A7:sup A1=mid(D,i,j).(len mid(D,i,j)) and A8:len mid(D,i,j)=j-i+1 and A9:mid(D,i,j) is DivisionPoint of A1 by A1,A2,A3,Th38; i in Seg(len D) by A1,FINSEQ_1:def 3; then A10:1 <= i by FINSEQ_1:3; j in Seg(len D) by A2,FINSEQ_1:def 3; then A11:j<=len D by FINSEQ_1:3; 0<=j-i by A3,SQUARE_1:12; then A12: 0+1<=j-i+1 by AXIOMS:24; i=1-(1-i) by XCMPLX_1:18; then i=1+-(1-i) by XCMPLX_0:def 8; then i=1+(i-1) by XCMPLX_1:143; then A13:1+i-1 = i by XCMPLX_1:29; A14:j-i+1+i-1=j proof j-i+1=j+1-i by XCMPLX_1:29; then j-i+1+i=j+1 by XCMPLX_1:27; hence thesis by XCMPLX_1:26; end; A15:A1 c= B proof for x st x in A1 holds x in B proof let x; assume x in A1; then x in [.inf A1,sup A1.] by Th5; then x in {a: inf A1 <= a & a <= sup A1} by RCOMP_1:def 1; then ex a st x=a & inf A1 <= a & a <= sup A1; then D.i <= x & x <= D.j by A3,A6,A7,A8,A10,A11,A12,A13,A14,JORDAN3:31; then inf B <= x & x <= sup B by A4,A5,AXIOMS:22; then x in {a: inf B <= a & a <= sup B}; then x in [.inf B,sup B.] by RCOMP_1:def 1; hence thesis by Th5; end; hence thesis by SUBSET_1:7; end; rng mid(D,i,j) c= A1 by A9,Def2; then A16:rng mid(D,i,j) c= B by A15,XBOOLE_1:1; mid(D,i,j).(len mid(D,i,j))=D.j by A3,A8,A10,A11,A12,A14,JORDAN3:31; then mid(D,i,j) is DivisionPoint of B by A5,A9,A16,Def2; hence thesis by Def4; end; definition let p be FinSequence of REAL; func PartSums(p) -> FinSequence of REAL means :Def22: len it = len p & for i st i in Seg(len p) holds it.i=Sum(p|i); existence proof deffunc F(Nat)=Sum(p|$1); thus ex IT being FinSequence of REAL st len IT = len p & for i st i in Seg(len p) holds IT.i=F(i) from SeqLambdaD; end; uniqueness proof let p1,p2 be FinSequence of REAL such that A1:len p1=len p & for i st i in Seg(len p) holds p1.i=Sum(p|i) and A2:len p2=len p & for i st i in Seg(len p) holds p2.i=Sum(p|i); for i st 1 <= i & i <= len p1 holds p1.i=p2.i proof let i; assume 1 <= i & i <= len p1; then A3: i in Seg(len p) by A1,FINSEQ_1:3; then p1.i=Sum(p|i) by A1; hence thesis by A2,A3; end; hence thesis by A1,A2,FINSEQ_1:18; end; end; theorem Th40: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S st D1 <= D2 & f is_bounded_above_on A holds for i be non empty Nat holds (i in dom D1 implies Sum(upper_volume(f,D1)|i) >= Sum(upper_volume(f,D2)|indx(D2,D1,i))) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume that A1:D1 <= D2 and A2:f is_bounded_above_on A; for i be non empty Nat holds i in dom D1 implies Sum(upper_volume(f,D1)|i) >= Sum(upper_volume(f,D2)|indx(D2,D1,i)) proof defpred P[Nat] means $1 in dom D1 implies Sum(upper_volume(f,D1)|$1) >= Sum(upper_volume(f,D2)|indx(D2,D1,$1)); A3: P[1] proof assume A4:1 in dom D1; then A5: 1 in Seg(len D1) by FINSEQ_1:def 3; then A6: 1 <= len D1 by FINSEQ_1:3; then A7: len mid(D1,1,1)=1-'1+1 by JORDAN3:27; then A8: len mid(D1,1,1)=1 by AMI_5:4; A9: mid(D1,1,1)=D1|1 proof A10: len mid(D1,1,1)=len (D1|1) by A6,A8,TOPREAL1:3; for k st 1 <= k & k <= len mid(D1,1,1) holds mid(D1,1,1).k=(D1|1).k proof let k; assume A11:1 <= k & k <= len mid(D1,1,1); then A12: k = 1 by A8,AXIOMS:21; then A13: mid(D1,1,1).k = D1.(1+1-1) by A6,JORDAN3:27; k in Seg(len(D1|1)) by A10,A11,FINSEQ_1:3; then k in dom (D1|1) by FINSEQ_1:def 3; then k in dom (D1|Seg 1) by TOPREAL1:def 1; then (D1|Seg 1).k = D1.k by FUNCT_1:68; hence thesis by A12,A13,TOPREAL1:def 1; end; hence thesis by A10,FINSEQ_1:18; end; indx(D2,D1,1) in dom D2 by A1,A4,Def21; then indx(D2,D1,1) in Seg(len D2) by FINSEQ_1:def 3; then A14: 1 <= indx(D2,D1,1) & indx(D2,D1,1) <= len D2 by FINSEQ_1:3; then A15: 1 <= len D2 by AXIOMS:22; then len mid(D2,1,indx(D2,D1,1))=indx(D2,D1,1)-'1+1 by A14,JORDAN3:27; then len mid(D2,1,indx(D2,D1,1))=indx(D2,D1,1)-1+1 by A14,SCMFSA_7:3; then A16: len mid(D2,1,indx(D2,D1,1))=indx(D2,D1,1)-(1-1) by XCMPLX_1:37; then A17: len mid(D2,1,indx(D2,D1,1))=len (D2|indx(D2,D1,1)) by A14,TOPREAL1 :3; A18: for k st 1 <= k & k <= len mid(D2,1,indx(D2,D1,1)) holds mid(D2,1,indx(D2,D1,1)).k=(D2|indx(D2,D1,1)).k proof let k; assume A19:1 <= k & k <= len mid(D2,1,indx(D2,D1,1)); A20: k+1 >= 1 by NAT_1:29; mid(D2,1,indx(D2,D1,1)).k=D2.(k+1-'1) by A14,A15,A19,JORDAN3:27; then mid(D2,1,indx(D2,D1,1)).k=D2.(k+1-1) by A20,SCMFSA_7:3; then A21: mid(D2,1,indx(D2,D1,1)).k=D2.k by XCMPLX_1:26; k in Seg len (D2|indx(D2,D1,1)) by A17,A19,FINSEQ_1:3; then k in dom (D2|indx(D2,D1,1)) by FINSEQ_1:def 3; then k in dom (D2|Seg indx(D2,D1,1)) by TOPREAL1:def 1; then (D2|Seg indx(D2,D1,1)).k=D2.k by FUNCT_1:68; hence thesis by A21,TOPREAL1:def 1; end; then A22: mid(D2,1,indx(D2,D1,1))=D2|indx(D2,D1,1) by A17,FINSEQ_1:18; set DD1=mid(D1,1,1); set B=divset(D1,1); consider S1 being non empty Division of B; A23: D1.1 = sup B by A4,Def5; then D1.1 >= inf B by SEQ_4:24; then reconsider DD1 as Element of S1 by A4,A23,Th39; A24: indx(D2,D1,1) in dom D2 by A1,A4,Def21; then indx(D2,D1,1) in Seg(len D2) by FINSEQ_1:def 3; then A25: 1 <= indx(D2,D1,1) & indx(D2,D1,1) <= len D2 by FINSEQ_1:3; then 1 <= len D2 by AXIOMS:22; then 1 in Seg(len D2) by FINSEQ_1:3; then A26: 1 in dom D2 by FINSEQ_1:def 3; A27: D2.indx(D2,D1,1) = sup B by A1,A4,A23,Def21; A28: rng D2 c= A by Def2; D2.1 in rng D2 by A26,FUNCT_1:def 5; then D2.1 in A by A28; then D2.1 in [.inf A,sup A.] by Th5; then D2.1 in {a: inf A <= a & a <= sup A} by RCOMP_1:def 1; then ex a st D2.1=a & inf A <= a & a <= sup A; then D2.1 >= inf B by A4,Def5; then reconsider DD2=mid(D2,1,indx(D2,D1,1)) as Element of S1 by A24,A25,A26,A27,Th39; reconsider g=f|divset(D1,1) as PartFunc of divset(D1,1),REAL by PARTFUN1:43; A29: dom g = dom f /\ divset(D1,1) by FUNCT_1:68; then A30: dom g = A /\ divset(D1,1) by FUNCT_2:def 1; divset(D1,1) c= A by A4,Th10; then dom g = divset(D1,1) by A30,XBOOLE_1:28; then g is total by PARTFUN1:def 4; then A31: g is Function of divset(D1,1), REAL by FUNCT_2:131; g is_bounded_above_on divset(D1,1) proof consider a be real number such that A32: for x being Element of A st x in A /\ dom f holds f.x <= a by A2,RFUNCT_1:def 9; for x being Element of divset(D1,1) st x in divset(D1,1) /\ dom g holds g.x <= a proof let x be Element of divset(D1,1); assume x in divset(D1,1) /\ dom g; then A33: x in dom g by XBOOLE_0:def 3; A34: A /\ dom f = dom f by XBOOLE_1:28; A35: dom g c= dom f by FUNCT_1:76; then x in A /\ dom f by A33,A34; then reconsider x as Element of A by A34; f.x <= a by A32,A33,A34,A35; hence thesis by A33,FUNCT_1:68; end; hence thesis by RFUNCT_1:def 9; end; then upper_sum(g,DD1) >= upper_sum(g,DD2) by A8,A31,Th32; then A36: Sum upper_volume(g,DD1) >= upper_sum(g,DD2) by Def9; A37: upper_volume(g,DD1) = upper_volume(f,D1)|1 proof A38: len upper_volume(g,DD1)=len DD1 by Def7 .= 1 by A7,AMI_5:4; 1 <= len upper_volume(f,D1) by A6,Def7; then A39: len upper_volume(g,DD1) = len (upper_volume(f,D1)|1) by A38,TOPREAL1:3; for i st 1 <= i & i <= len upper_volume(g,DD1) holds upper_volume(g,DD1).i=(upper_volume(f,D1)|1).i proof let i; assume A40: 1 <= i & i <= len upper_volume(g,DD1); A41: len DD1 = 1 by A7,AMI_5:4; A42: 1 in Seg 1 by FINSEQ_1:5; then A43: 1 in dom DD1 by A41,FINSEQ_1:def 3; A44: 1 in dom(D1|Seg 1) proof dom(D1|Seg 1) = dom D1 /\ Seg 1 by FUNCT_1:68; hence thesis by A4,A42,XBOOLE_0:def 3; end; A45: upper_volume(g,DD1).i = upper_volume(g,DD1).1 by A38,A40,AXIOMS:21 .= (sup (rng (g|divset(DD1,1))))*vol(divset(DD1,1)) by A41,A42,Def7; A46: divset(DD1,1)=[.inf divset(DD1,1),sup divset(DD1,1).] by Th5 .=[.inf B,sup divset(DD1,1).] by A43,Def5 .=[.inf B,DD1.1 .] by A43,Def5 .=[.inf A,(D1|1).1 .] by A4,A9,Def5 .=[.inf A,(D1|Seg 1).1 .] by TOPREAL1:def 1 .=[.inf A,D1.1 .] by A44,FUNCT_1:68; A47: divset(D1,1)=[.inf divset(D1,1),sup divset(D1,1).] by Th5 .=[.inf A,sup divset(D1,1).] by A4,Def5 .=[.inf A,D1.1 .] by A4,Def5; dom(upper_volume(f,D1))=Seg(len upper_volume(f,D1)) by FINSEQ_1:def 3 .=Seg(len D1) by Def7; then dom(upper_volume(f,D1)|Seg 1) =Seg(len D1) /\ Seg 1 by FUNCT_1:68 .=Seg 1 by A6,FINSEQ_1:9; then A48: 1 in dom (upper_volume(f,D1)|Seg 1) by FINSEQ_1:5; (upper_volume(f,D1)|1).i=(upper_volume(f,D1)|Seg 1).i by TOPREAL1:def 1 .=(upper_volume(f,D1)|Seg 1).1 by A38,A40,AXIOMS:21 .=upper_volume(f,D1).1 by A48,FUNCT_1:68 .=(sup (rng(f|divset(D1,1))))*vol(divset(D1,1)) by A5,Def7; hence thesis by A29,A45,A46,A47,RELAT_1:97; end; hence thesis by A39,FINSEQ_1:18; end; upper_volume(g,DD2) = upper_volume(f,D2)|indx(D2,D1,1) proof A49: len upper_volume(g,DD2)= indx(D2,D1,1) by A16,Def7; indx(D2,D1,1) <= len upper_volume(f,D2) by A14,Def7; then A50: len upper_volume(g,DD2)=len(upper_volume(f,D2)|indx(D2,D1,1)) by A49,TOPREAL1:3; for i st 1 <= i & i <= len upper_volume(g,DD2) holds upper_volume(g,DD2).i = (upper_volume(f,D2)|indx(D2,D1,1)).i proof let i; assume A51: 1 <= i & i <= len upper_volume(g,DD2); A52: 1 <= i & i <= len DD2 & i in Seg(len DD2) & i in dom DD2 proof thus 1 <= i & i <= len DD2 by A51,Def7; hence i in Seg(len DD2) by FINSEQ_1:3; hence thesis by FINSEQ_1:def 3; end; divset(DD2,i)=divset(D2,i) proof A53: i in dom DD2 & i in dom D2 proof thus i in dom DD2 by A52; Seg indx(D2,D1,1) c= Seg(len D2) by A14,FINSEQ_1:7; then i in Seg(len D2) by A16,A52; hence thesis by FINSEQ_1:def 3; end; now per cases; suppose A54:i=1; then A55: 1 in dom (D2|Seg indx(D2,D1,1)) by A22,A53,TOPREAL1:def 1; then 1 in dom D2 /\ Seg indx(D2,D1,1) by RELAT_1:90; then A56: 1 in dom D2 by XBOOLE_0:def 3; A57: divset(DD2,i)=[.inf divset(DD2,1),sup divset(DD2,1).] by A54,Th5 .=[.inf B,sup divset(DD2,1).] by A53,A54,Def5 .=[.inf B,DD2.1 .] by A53,A54,Def5 .=[.inf B,(D2|indx(D2,D1,1)).1 .] by A18,A52,A54 .=[.inf B,(D2|Seg indx(D2,D1,1)).1 .] by TOPREAL1:def 1 .=[.inf B,D2.1 .] by A55,FUNCT_1:68 .=[.inf A,D2.1 .] by A4,Def5; divset(D2,i)=[.inf divset(D2,1),sup divset(D2,1).] by A54,Th5 .=[.inf A,sup divset(D2,1).] by A56,Def5 .=[.inf A,D2.1 .] by A56,Def5; hence thesis by A57; suppose A58:i<>1; A59: DD2.(i-1)=D2.(i-1) proof A60: i-1 in dom(D2|Seg indx(D2,D1,1)) proof consider j being Nat such that A61: i = 1 + j by A52,NAT_1:28; A62: j = i - 1 by A61,XCMPLX_1:26; i <> 0 & i <> 1 by A52,A58; then i is non trivial by NAT_2:def 1; then A63: i>=1+1&i-1<=indx(D2,D1,1)-0 by A16,A52,NAT_2:31, REAL_1:92; then i-1 >= 1 & i-1 <= indx(D2,D1,1) by REAL_1:84 ; then A64: i-1 in Seg indx(D2,D1,1) by A62,FINSEQ_1:3; 1 <= i-1 & i-1 <= len D2 by A25,A63,AXIOMS:22,REAL_1:84; then i-1 in Seg(len D2) by A62,FINSEQ_1:3; then i-1 in dom D2 by FINSEQ_1:def 3; then i-1 in dom D2 /\ Seg indx(D2,D1,1) by A64,XBOOLE_0:def 3; hence thesis by FUNCT_1:68; end; DD2.(i-1)=(D2|indx(D2,D1,1)).(i-1) by A17,A18,FINSEQ_1:18 .=(D2|Seg indx(D2,D1,1)).(i-1) by TOPREAL1:def 1; hence thesis by A60,FUNCT_1:68; end; A65: DD2.i=D2.i proof A66: i in dom(D2|Seg indx(D2,D1,1)) proof 1 <= i & i <= len D2 by A16,A25,A52,AXIOMS:22; then i in Seg(len D2) by FINSEQ_1:3; then i in dom D2 by FINSEQ_1:def 3; then i in dom D2 /\ Seg indx(D2,D1,1) by A16,A52,XBOOLE_0: def 3; hence thesis by FUNCT_1:68; end; DD2.i=(D2|indx(D2,D1,1)).i by A17,A18,FINSEQ_1:18 .=(D2|Seg indx(D2,D1,1)).i by TOPREAL1:def 1; hence thesis by A66,FUNCT_1:68; end; A67: divset(DD2,i)=[.inf divset(DD2,i),sup divset(DD2,i).] by Th5 .=[. DD2.(i-1),sup divset(DD2,i).] by A53,A58,Def5 .=[. D2.(i-1),D2.i .] by A53,A58,A59,A65,Def5; divset(D2,i)=[.inf divset(D2,i),sup divset(D2,i).] by Th5 .=[. D2.(i-1),sup divset(D2,i).] by A53,A58,Def5 .=[. D2.(i-1),D2.i .] by A53,A58,Def5; hence thesis by A67; end; hence thesis; end; then A68: upper_volume(g,DD2).i =(sup (rng (g|divset(D2,i))))*vol(divset(D2,i)) by A52,Def7; A69: divset(D2,i) c= divset(D1,1) proof A70: divset(D2,i)=[.inf divset(D2,i),sup divset(D2,i).] by Th5; A71: divset(D1,1)=[.inf divset(D1,1),sup divset(D1,1).] by Th5; inf divset(D2,i) in [.inf divset(D1,1),sup divset(D1,1).] & sup divset(D2,i) in [.inf divset(D1,1),sup divset(D1,1).] proof A72: i in dom DD2 & i in dom D2 proof thus i in dom DD2 by A52; Seg indx(D2,D1,1) c= Seg(len D2) by A14,FINSEQ_1:7; then i in Seg(len D2) by A16,A52; hence thesis by FINSEQ_1:def 3; end; now per cases; suppose A73:i=1; then 1 in dom (D2|Seg indx(D2,D1,1)) by A22,A72,TOPREAL1:def 1; then 1 in dom D2 /\ Seg indx(D2,D1,1) by RELAT_1:90; then A74: 1 in dom D2 by XBOOLE_0:def 3; then inf divset(D2,i)=inf A by A73,Def5; then A75: inf divset(D2,i)=inf divset(D1,1) by A4,Def5; inf divset(D1,1) <= sup divset(D1,1) proof ex a,b st a<=b & a=inf divset(D1,1) & b=sup divset(D1,1) by Th4; hence thesis; end; hence inf divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by A75,RCOMP_1:15; A76: sup divset(D2,i)=D2.1 by A73,A74,Def5; D2.1 <= D2.indx(D2,D1,1) by A24,A25,A74,GOBOARD2:18; then sup divset(D2,i) <= D1.1 by A1,A4,A76,Def21; then A77: sup divset(D2,i) <= sup divset(D1,1) by A4,Def5; inf divset(D2,i) <= sup divset(D2,i) proof ex a,b st a<=b & a=inf divset(D2,i) & b=sup divset(D2,i) by Th4; hence thesis; end; then consider a being Real such that A78: a = sup divset(D2,i) & inf divset(D1,1) <= a & a <= sup divset(D1,1) by A75,A77; sup divset(D2,i)in{r: inf divset(D1,1)<=r & r<= sup divset(D1,1)} by A78; hence sup divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by RCOMP_1:def 1; suppose A79: i<>1; consider j being Nat such that A80: i = 1 + j by A52,NAT_1:28; A81: j = i - 1 by A80,XCMPLX_1:26; i <> 0 & i <> 1 by A52,A79; then i is non trivial by NAT_2:def 1; then A82: i >= 1+1 & i-1 <= indx(D2,D1,1)-0 by A16,A52,NAT_2:31,REAL_1:92; then 1 <= i-1 & i-1 <= len D2 by A25,AXIOMS:22,REAL_1:84; then i-1 in Seg(len D2) by A81,FINSEQ_1:3; then A83: i-1 in dom D2 by FINSEQ_1:def 3; A84: A <> {} & A is bounded_below by Th3; A85: inf divset(D2,i)=D2.(i-1) by A72,A79,Def5; A86: sup divset(D2,i)=D2.i by A72,A79,Def5; A87: inf divset(D1,1)=inf A by A4,Def5; A88: sup divset(D1,1)=D1.1 by A4,Def5; A89: rng D2 c= A by Def2; D2.(i-1) in rng D2 by A83,FUNCT_1:def 5; then A90: inf divset(D2,i) >= inf divset(D1,1) by A84,A85,A87,A89,SEQ_4:def 5; D2.(i-1)<= D2.indx(D2,D1,1) by A24,A82,A83,GOBOARD2:18; then inf divset(D2,i) <= sup divset(D1,1) by A1,A4,A85,A88,Def21; then consider a being Real such that A91: a = inf divset(D2,i) & inf divset(D1,1) <= a & a <= sup divset(D1,1) by A90; inf divset(D2,i)in{r: inf divset(D1,1)<=r & r<= sup divset(D1,1)} by A91; hence inf divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by RCOMP_1:def 1; D2.i in rng D2 by A72,FUNCT_1:def 5; then A92: sup divset(D2,i) >= inf divset(D1,1) by A84,A86,A87,A89,SEQ_4:def 5; D2.i <= D2.indx(D2,D1,1) by A16,A24,A52,A72,GOBOARD2:18; then sup divset(D2,i) <= sup divset(D1,1) by A1,A4,A86,A88,Def21; then consider a being Real such that A93: a = sup divset(D2,i) & inf divset(D1,1) <= a & a <= sup divset(D1,1) by A92; sup divset(D2,i)in{r: inf divset(D1,1)<=r & r<= sup divset(D1,1)} by A93; hence sup divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by RCOMP_1:def 1; end; hence thesis; end; hence thesis by A70,A71,RCOMP_1:16; end; A94: i in Seg(len D2) & i in dom (upper_volume(f,D2)|Seg indx(D2,D1,1)) proof A95: Seg indx(D2,D1,1) c= Seg(len D2) by A14,FINSEQ_1:7; hence i in Seg(len D2) by A16,A52; dom (upper_volume(f,D2)|Seg indx(D2,D1,1)) =dom upper_volume(f,D2) /\ Seg indx(D2,D1,1) by FUNCT_1:68 .=Seg(len upper_volume(f,D2)) /\ Seg indx(D2,D1,1) by FINSEQ_1:def 3 .=Seg(len D2) /\ Seg indx(D2,D1,1) by Def7 .=Seg indx(D2,D1,1) by A95,XBOOLE_1:28; hence thesis by A16,A52; end; (upper_volume(f,D2)|indx(D2,D1,1)).i =(upper_volume(f,D2)|Seg indx(D2,D1,1)).i by TOPREAL1:def 1 .=upper_volume(f,D2).i by A94,FUNCT_1:68 .=(sup (rng (f|divset(D2,i))))*vol(divset(D2,i)) by A94,Def7; hence thesis by A68,A69,FUNCT_1:82; end; hence thesis by A50,FINSEQ_1:18; end; hence thesis by A36,A37,Def9; end; A96: for k being non empty Nat st P[k] holds P[k+1] proof let k be non empty Nat; assume A97:k in dom D1 implies Sum(upper_volume(f,D1)|k) >= Sum(upper_volume(f,D2)|indx(D2,D1,k)); assume A98:k+1 in dom D1; then A99: k+1 in Seg(len D1) by FINSEQ_1:def 3; then A100: 1 <= k+1 & k+1 <= len D1 by FINSEQ_1:3; now per cases; suppose 1=k+1; hence Sum(upper_volume(f,D1)|(k+1)) >=Sum(upper_volume(f,D2)|indx(D2,D1,k+1)) by A3,A98; suppose A101:1<>k+1; set n=k+1; n is non trivial by A101,NAT_2:def 1; then n >= 2 by NAT_2:31; then A102: k >= (1+1)-1 by REAL_1:86; A103: k <= k+1 by NAT_1:29; then A104: 1 <= k & k <= len D1 by A100,A102,AXIOMS:22; then A105: k in Seg(len D1) by FINSEQ_1:3; then A106: k in dom D1 by FINSEQ_1:def 3; A107: 1 <= k+1 & k+1 <= len upper_volume(f,D1) by A100,Def7; A108: len upper_volume(f,D2) = len D2 by Def7; A109: indx(D2,D1,k) in dom D2 by A1,A106,Def21; A110: indx(D2,D1,k+1) in dom D2 by A1,A98,Def21; then A111: indx(D2,D1,k+1) in Seg(len D2) by FINSEQ_1:def 3; then A112: 1 <= indx(D2,D1,k+1) & indx(D2,D1,k+1) <= len D2 by FINSEQ_1:3; A113: 1 <= indx(D2,D1,k+1) & indx(D2,D1,k+1) <= len upper_volume(f,D2) by A108,A111,FINSEQ_1:3; A114: indx(D2,D1,k) < indx(D2,D1,k+1) proof assume indx(D2,D1,k) >= indx(D2,D1,k+1); then A115: D2.indx(D2,D1,k) >= D2.indx(D2,D1,k+1) by A109,A110,GOBOARD2: 18; k < k+1 by NAT_1:38; then A116: D1.k < D1.(k+1) by A98,A106,GOBOARD1:def 1; D1.k=D2.indx(D2,D1,k) by A1,A106,Def21; hence contradiction by A1,A98,A115,A116,Def21; end; A117: indx(D2,D1,k+1) >= indx(D2,D1,k) proof assume indx(D2,D1,k+1) < indx(D2,D1,k); then A118: D2.indx(D2,D1,k+1) < D2.indx(D2,D1,k) by A109,A110,GOBOARD1: def 1; D1.(k+1) = D2.indx(D2,D1,k+1) by A1,A98,Def21; then D1.(k+1) < D1.k by A1,A106,A118,Def21; hence contradiction by A98,A103,A106,GOBOARD2:18; end; then consider ID being Nat such that A119: indx(D2,D1,k+1) = indx(D2,D1,k) + ID by NAT_1:28; A120: ID = indx(D2,D1,k+1) - indx(D2,D1,k) by A119,XCMPLX_1:26; A121: indx(D2,D1,k+1)-indx(D2,D1,k) is Nat by A119,XCMPLX_1:26; A122: 1 <= k & k <= len upper_volume(f,D1) by A104,Def7; indx(D2,D1,k) in dom D2 by A1,A106,Def21; then indx(D2,D1,k)in Seg(len upper_volume(f,D2)) by A108,FINSEQ_1:def 3; then A123: 1<=indx(D2,D1,k) & indx(D2,D1,k)<=len upper_volume(f,D2) by FINSEQ_1:3; set K1D1=upper_volume(f,D1)|(k+1); set KD1 =upper_volume(f,D1)|k; set K1D2=upper_volume(f,D2)|indx(D2,D1,k+1); set KD2 =upper_volume(f,D2)|indx(D2,D1,k); set IDK1=indx(D2,D1,k+1); set IDK =indx(D2,D1,k); A124: len K1D1=k+1 by A107,TOPREAL1:3; then consider p1,q1 being FinSequence of REAL such that A125: len p1=k & len q1=1 & K1D1=p1^q1 by FINSEQ_2:26; len K1D2=IDK1 by A113,TOPREAL1:3 .=IDK + IDK1 - IDK by XCMPLX_1:26 .=IDK + (IDK1-IDK) by XCMPLX_1:29; then consider p2,q2 being FinSequence of REAL such that A126: len p2=IDK & len q2=IDK1-IDK & K1D2=p2^q2 by A121,FINSEQ_2:26; A127: p1=KD1 proof A128: len p1 = len KD1 by A122,A125,TOPREAL1:3; for i st 1 <= i & i <= len p1 holds p1.i=KD1.i proof let i; assume 1 <= i & i <= len p1; then A129: i in Seg(len p1) by FINSEQ_1:3; then A130: i in dom p1 by FINSEQ_1:def 3; A131: i in dom KD1 by A128,A129,FINSEQ_1:def 3; then A132: i in dom (upper_volume(f,D1)|Seg k) by TOPREAL1:def 1; A133: KD1.i = (upper_volume(f,D1)|Seg k).i by TOPREAL1:def 1 .= upper_volume(f,D1).i by A132,FUNCT_1:68; A134: dom KD1=Seg(len KD1) by FINSEQ_1:def 3.= Seg k by A122,TOPREAL1:3; k <= k+1 by NAT_1:29; then A135: Seg k c= Seg(k+1) by FINSEQ_1:7; dom K1D1 =Seg(len K1D1) by FINSEQ_1:def 3.= Seg(k+1) by A107,TOPREAL1:3; then i in dom K1D1 by A131,A134,A135; then A136: i in dom (upper_volume(f,D1)|Seg(k+1)) by TOPREAL1:def 1; K1D1.i = (upper_volume(f,D1)|Seg (k+1)).i by TOPREAL1:def 1 .= upper_volume(f,D1).i by A136,FUNCT_1:68; hence thesis by A125,A130,A133,FINSEQ_1:def 7; end; hence thesis by A128,FINSEQ_1:18; end; A137: p2=KD2 proof A138: len p2 = len KD2 by A123,A126,TOPREAL1:3; for i st 1 <= i & i <= len p2 holds p2.i=KD2.i proof let i; assume 1 <= i & i <= len p2; then A139: i in Seg(len p2) by FINSEQ_1:3; then A140: i in dom p2 by FINSEQ_1:def 3; A141: i in dom KD2 by A138,A139,FINSEQ_1:def 3; then A142: i in dom (upper_volume(f,D2)|Seg indx(D2,D1,k)) by TOPREAL1:def 1; A143: KD2.i=(upper_volume(f,D2)|Seg indx(D2,D1,k)).i by TOPREAL1:def 1 .= upper_volume(f,D2).i by A142,FUNCT_1:68; A144: dom KD2 =Seg(len KD2) by FINSEQ_1:def 3 .= Seg indx(D2,D1,k) by A123,TOPREAL1:3; A145: Seg indx(D2,D1,k) c= Seg indx(D2,D1,k+1) by A117,FINSEQ_1:7; dom K1D2 = Seg(len K1D2) by FINSEQ_1:def 3 .= Seg indx(D2,D1,k+1) by A113,TOPREAL1:3; then i in dom K1D2 by A141,A144,A145; then A146: i in dom (upper_volume(f,D2)|Seg indx(D2,D1,k+1)) by TOPREAL1: def 1; K1D2.i=(upper_volume(f,D2)|Seg indx(D2,D1,k+1)).i by TOPREAL1:def 1 .=upper_volume(f,D2).i by A146,FUNCT_1:68; hence thesis by A126,A140,A143,FINSEQ_1:def 7; end; hence thesis by A138,FINSEQ_1:18; end; A147: Sum q1 >= Sum q2 proof set DD1 = divset(D1,k+1); set MD1 = mid(D1,k+1,k+1); set MD2 = mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)); set g = f|DD1; consider S1 being non empty Division of DD1; A148: k+1 in dom D1 & D1.(k+1) >= inf DD1 & D1.(k+1) = sup DD1 proof (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; then inf DD1=D1.k by A98,A101,Def5; hence thesis by A98,A101,A103,A106,Def5,GOBOARD2:18; end; then reconsider MD1 as Element of S1 by Th39; A149: indx(D2,D1,k)+1 <= indx(D2,D1,k+1) by A114,NAT_1:38; then A150: indx(D2,D1,k)+1 <= len D2 by A112,AXIOMS:22; A151: indx(D2,D1,k) <= indx(D2,D1,k)+1 by NAT_1:29; A152: 1 <= indx(D2,D1,k)+1 by NAT_1:29; then indx(D2,D1,k)+1 in Seg(len D2) by A150,FINSEQ_1:3; then A153: indx(D2,D1,k)+1 in dom D2 by FINSEQ_1:def 3; A154: D2.indx(D2,D1,k+1)=D1.(k+1) by A1,A98,Def21; (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; then A155: inf DD1=D1.k by A98,A101,Def5; D2.(indx(D2,D1,k)+1)>=D2.indx(D2,D1,k)by A109,A151,A153,GOBOARD2:18; then A156: D2.(indx(D2,D1,k)+1) >= inf DD1 by A1,A106,A155,Def21; D2.indx(D2,D1,k+1) = sup DD1 by A98,A101,A154,Def5; then reconsider MD2 as Element of S1 by A110,A149,A153,A156,Th39; reconsider g as PartFunc of DD1,REAL by PARTFUN1:43; A157: g is total & g is_bounded_above_on DD1 proof dom g = dom f /\ divset(D1,k+1) by FUNCT_1:68; then A158: dom g = A /\ divset(D1,k+1) by FUNCT_2:def 1; divset(D1,k+1) c= A by A148,Th10; then dom g = divset(D1,k+1) by A158,XBOOLE_1:28; hence g is total by PARTFUN1:def 4; g is_bounded_above_on divset(D1,k+1) proof consider a be real number such that A159: for x being Element of A st x in A /\ dom f holds f.x <= a by A2,RFUNCT_1:def 9; for x being Element of divset(D1,k+1) st x in divset(D1,k+1) /\ dom g holds g.x <= a proof let x be Element of divset(D1,k+1); assume x in divset(D1,k+1) /\ dom g; then A160: x in dom g by XBOOLE_0:def 3; A161: A /\ dom f = dom f by XBOOLE_1:28; A162: dom g c= dom f by FUNCT_1:76; then x in A /\ dom f by A160,A161; then reconsider x as Element of A by A161; f.x <= a by A159,A160,A161,A162; hence thesis by A160,FUNCT_1:68; end; hence thesis by RFUNCT_1:def 9; end; hence thesis; end; then A163: g is Function of divset(D1,k+1),REAL by FUNCT_2:131; A164: q1=upper_volume(g,MD1) proof len MD1 = (k+1) -'(k+1) + 1 by A100,JORDAN3:27; then len MD1 = ((k+1)-(k+1)) +1 by SCMFSA_7:3; then A165: len MD1 = 0 + 1 by XCMPLX_1:14; then A166: len q1 = len(upper_volume(g,MD1)) by A125,Def7; for n st 1 <= n & n <= len q1 holds q1.n=upper_volume(g,MD1).n proof let n; assume A167: 1 <= n & n <= len q1; then A168: n = 1 by A125,AXIOMS:21; A169: n in Seg(len q1) by A167,FINSEQ_1:3; then A170: n in dom q1 by FINSEQ_1:def 3; k+1 in Seg(len K1D1) by A124,FINSEQ_1:6; then k+1 in dom K1D1 by FINSEQ_1:def 3; then A171: k+1 in dom (upper_volume(f,D1)|Seg(k+1)) by TOPREAL1:def 1; K1D1.(k+1)=(upper_volume(f,D1)|Seg(k+1)).(k+1) by TOPREAL1:def 1 .=upper_volume(f,D1).(k+1) by A171,FUNCT_1:68; then A172: q1.n = upper_volume(f,D1).(k+1) by A125,A168,A170,FINSEQ_1: def 7 .=(sup(rng(f|divset(D1,k+1))))*vol(divset(D1,k+1)) by A99,Def7; A173: divset(MD1,1)=[.inf divset(MD1,1),sup divset(MD1,1).] by Th5; A174: 1 in dom MD1 proof 1 in Seg(len MD1) by A165,FINSEQ_1:5; hence thesis by FINSEQ_1:def 3; end; A175: MD1.1 =D1.(k+1) by A100,JORDAN3:27; A176: divset(MD1,1)=[.inf DD1,sup divset(MD1,1).] by A173,A174,Def5 .=[.inf DD1,D1.(k+1).] by A174,A175,Def5; (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; then A177: inf DD1 = D1.k by A98,A101,Def5; sup DD1 = D1.(k+1) by A98,A101,Def5; then divset(D1,k+1)=[. D1.k,D1.(k+1).] by A177,Th5; then upper_volume(g,MD1).n =(sup(rng(g|divset(D1,k+1))))*vol(divset(D1,k+1)) by A125,A165,A168,A169,A176,A177,Def7; hence thesis by A172,FUNCT_1:82; end; hence thesis by A166,FINSEQ_1:18; end; A178: q2=upper_volume(g,MD2) proof A179: indx(D2,D1,k+1)-'(indx(D2,D1,k)+1)+1 =indx(D2,D1,k+1)-(indx(D2,D1,k)+1)+1 by A149,SCMFSA_7:3 .=indx(D2,D1,k+1)-indx(D2,D1,k)-1+1 by XCMPLX_1:36 .=indx(D2,D1,k+1)-indx(D2,D1,k)-(1-1) by XCMPLX_1:37 .=indx(D2,D1,k+1)-indx(D2,D1,k); A180: len(upper_volume(g,MD2))= len mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)) by Def7 .=indx(D2,D1,k+1)-indx(D2,D1,k) by A112,A149,A150,A152,A179, JORDAN3:27; for n st 1 <= n & n <= len q2 holds q2.n=upper_volume(g,MD2).n proof let n; assume A181:1 <= n & n <= len q2; then n in Seg(len q2) by FINSEQ_1:3; then A182: n in dom q2 by FINSEQ_1:def 3; A183: dom K1D2 = Seg(len K1D2) by FINSEQ_1:def 3 .= Seg indx(D2,D1,k+1) by A113,TOPREAL1:3; A184: indx(D2,D1,k)+n in dom K1D2 by A126,A182,FINSEQ_1:41; then A185: indx(D2,D1,k)+n in dom (upper_volume(f,D2)|Seg indx(D2,D1,k +1)) by TOPREAL1:def 1; A186: dom K1D2 c= Seg(len D2) by A112,A183,FINSEQ_1:7; then indx(D2,D1,k)+n in Seg(len D2) by A184; then A187: indx(D2,D1,k)+n in dom D2 by FINSEQ_1:def 3; A188: 1 <=indx(D2,D1,k)+n & indx(D2,D1,k)+n <= indx(D2,D1,k+1) by A183,A184,FINSEQ_1:3; then A189: n <= ID by A120,REAL_1:84; then A190: n in Seg ID by A181,FINSEQ_1:3; A191: len mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)) =indx(D2,D1,k+1)-indx(D2,D1,k) by A112,A149,A150,A152,A179,JORDAN3: 27 .=ID by A119,XCMPLX_1:26; then A192: n in Seg(len mid(D2,indx(D2,D1,k)+1,indx(D2, D1,k+1))) by A181,A189,FINSEQ_1:3; A193: n in dom MD2 by A190,A191,FINSEQ_1:def 3; A194: q2.n=K1D2.(indx(D2,D1,k)+n) by A126,A182,FINSEQ_1:def 7 .=(upper_volume(f,D2)|Seg indx(D2,D1,k+1)).(indx(D2,D1,k)+n) by TOPREAL1:def 1 .=upper_volume(f,D2).(indx(D2,D1,k)+n) by A185,FUNCT_1:68 .=(sup(rng(f|divset(D2,indx(D2,D1,k)+n))))*vol(divset(D2,indx(D2,D1,k)+n)) by A184,A186,Def7; A195: divset(MD2,n)=divset(D2,indx(D2,D1,k)+n) & divset(D2,indx(D2,D1,k)+n) c= divset(D1,k+1) proof now per cases; suppose A196:n=1; A197: (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; A198: 1<=indx(D2,D1,k)+1 & indx(D2,D1,k)+1<=len D2 by A184,A186,A196,FINSEQ_1:3; A199: indx(D2,D1,k)+1 <> 1 by A123,NAT_1:38; A200: inf divset(MD2,1)=inf divset(D1,k+1) by A193,A196,Def5 .= D1.k by A98,A101,A197,Def5; A201: sup divset(MD2,1)= mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)).1 by A193,A196,Def5 .= D2.(1+indx(D2,D1,k)) by A112,A198,JORDAN3:27; then A202: divset(MD2,n)=[.D1.k,D2.(indx(D2,D1,k)+1).] by A196, A200,Th5; A203: divset(D2,indx(D2,D1,k)+n)= [.inf divset(D2,indx(D2,D1,k)+1),sup divset(D2,indx(D2,D1,k)+1).] by A196,Th5 .=[.D2.(indx(D2,D1,k)+1-1),sup divset(D2,indx(D2,D1,k)+1).] by A153,A199,Def5 .=[.D2.indx(D2,D1,k),sup divset(D2,indx(D2,D1,k)+1).] by XCMPLX_1:26 .=[.D2.indx(D2,D1,k),D2.(indx(D2,D1,k)+1).] by A153,A199,Def5 .=[.D1.k,D2.(indx(D2,D1,k)+1).] by A1,A106,Def21; hence divset(MD2,n)=divset(D2,indx(D2,D1,k)+n) by A196,A200, A201,Th5; thus thesis by A193,A202,A203,Th10; suppose A204:n<>1; A205: indx(D2,D1,k)+1 <= indx(D2,D1,k+1) by A114,NAT_1:38; consider n1 being Nat such that A206: n=1+n1 by A181,NAT_1:28; A207: n1=n-1 by A206,XCMPLX_1:26; A208: n1+(indx(D2,D1,k)+1)-'1=indx(D2,D1,k)+n-1 proof n1+(indx(D2,D1,k)+1)=(n-1)+(indx(D2,D1,k)+1) by A206,XCMPLX_1:26 .=indx(D2,D1,k)+(n-1)+1 by XCMPLX_1:1 .=indx(D2,D1,k)+n-1+1 by XCMPLX_1:29 .=indx(D2,D1,k)+n+-1+1 by XCMPLX_0:def 8 .=indx(D2,D1,k)+n by XCMPLX_1:139; hence thesis by A188,SCMFSA_7:3; end; A209: 1<=n-1 & n-1<=len MD2 proof n <> 0 by A181; then n is non trivial by A204,NAT_2:def 1; then n >= 1+1 by NAT_2:31; hence n-1>=1 by REAL_1:84; n<=n+1 by NAT_1:37; then n-1 <= n by REAL_1:86; hence thesis by A189,A191,AXIOMS:22; end; n+(indx(D2,D1,k)+1)=(indx(D2,D1,k)+n)+1 by XCMPLX_1:1; then n+(indx(D2,D1,k)+1) >= 1 by NAT_1:29; then A210: n+(indx(D2,D1,k)+1)-'1= (n+(indx(D2,D1,k)+1))-1 by SCMFSA_7:3 .=n+indx(D2,D1,k)+1-1 by XCMPLX_1:1 .=indx(D2,D1,k)+n by XCMPLX_1:26; A211: indx(D2,D1,k)+n <> 1 proof assume indx(D2,D1,k)+n = 1; then indx(D2,D1,k)=1-n by XCMPLX_1:26; then n+1 <= 1 by A123,REAL_1:84; then n <= 1-1 by REAL_1:84; hence contradiction by A181,NAT_1:19; end; A212: inf divset(MD2,n)=MD2.(n-1) by A193,A204,Def5 .=D2.(indx(D2,D1,k)+n-1) by A112,A150,A152,A205,A207,A208,A209,JORDAN3: 27; A213: sup divset(MD2,n)=MD2.n by A193,A204,Def5 .=D2.(indx(D2,D1,k)+n) by A112,A150,A152,A181,A189,A191,A205,A210 ,JORDAN3:27; then A214:divset(MD2,n)= [. D2.(indx(D2,D1,k)+n-1),D2.(indx(D2,D1,k)+n) .] by A212,Th5; A215: divset(D2,indx(D2,D1,k)+n) =[.inf divset(D2,indx(D2,D1,k)+n),sup divset(D2,indx(D2,D1,k)+n).] by Th5 .=[.D2.(indx(D2,D1,k)+n-1),sup divset(D2,indx(D2,D1,k)+n).] by A187,A211,Def5 .=[. D2.(indx(D2,D1,k)+n-1),D2.(indx(D2,D1,k)+n) .] by A187,A211,Def5; hence divset(MD2,n)=divset(D2,indx(D2,D1,k)+n) by A212,A213, Th5; thus thesis by A193,A214,A215,Th10; end; hence thesis; end; then g|divset(MD2,n) =f|divset(D2,indx(D2,D1,k)+n) by FUNCT_1:82; hence thesis by A192,A194,A195,Def7; end; hence thesis by A126,A180,FINSEQ_1:18; end; len MD1 = 1 & MD1 <= MD2 proof len MD1 = (k+1) -'(k+1) + 1 by A100,JORDAN3:27; then len MD1 = (k+1) - (k+1) + 1 by SCMFSA_7:3; then A216: len MD1 = 0 + 1 by XCMPLX_1:14; hence len MD1 = 1; thus thesis by A216,Th31; end; then upper_sum(g,MD1) >= upper_sum(g,MD2) by A157,A163,Th32; then Sum(upper_volume(g,MD1)) >= upper_sum(g,MD2) by Def9; hence thesis by A164,A178,Def9; end; A217: Sum K1D1=Sum p1+Sum q1 by A125,RVSUM_1:105; A218: Sum K1D2=Sum p2+Sum q2 by A126,RVSUM_1:105; Sum q1 = Sum K1D1 - Sum p1 by A217,XCMPLX_1:26; then Sum K1D1 >= Sum q2 + Sum p1 by A147,REAL_1:84; then Sum K1D1 - Sum q2 >= Sum p1 by REAL_1:84; then Sum K1D1 - Sum q2 >= Sum p2 by A97,A105,A127,A137,AXIOMS:22,FINSEQ_1:def 3; hence thesis by A218,REAL_1:84; end; hence thesis; end; thus for k being non empty Nat holds P[k] from Ind_from_1(A3,A96); end; hence thesis; end; theorem Th41: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S st D1 <= D2 & f is_bounded_below_on A holds for i be non empty Nat holds (i in dom D1 implies Sum(lower_volume(f,D1)|i) <= Sum(lower_volume(f,D2)|indx(D2,D1,i))) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume that A1:D1 <= D2 and A2:f is_bounded_below_on A; for i be non empty Nat holds i in dom D1 implies Sum(lower_volume(f,D1)|i) <= Sum(lower_volume(f,D2)|indx(D2,D1,i)) proof defpred P[Nat] means $1 in dom D1 implies Sum(lower_volume(f,D1)|$1) <= Sum(lower_volume(f,D2)|indx(D2,D1,$1)); A3: P[1] proof assume A4:1 in dom D1; then A5: 1 in Seg(len D1) by FINSEQ_1:def 3; then A6: 1 <= len D1 by FINSEQ_1:3; then A7: len mid(D1,1,1)=1-'1+1 by JORDAN3:27; then A8: len mid(D1,1,1)=1 by AMI_5:4; A9: mid(D1,1,1)=D1|1 proof A10: len mid(D1,1,1)=len (D1|1) by A6,A8,TOPREAL1:3; for k st 1 <= k & k <= len mid(D1,1,1) holds mid(D1,1,1).k=(D1|1).k proof let k; assume A11:1 <= k & k <= len mid(D1,1,1); then A12: k = 1 by A8,AXIOMS:21; then A13: mid(D1,1,1).k = D1.(1+1-1) by A6,JORDAN3:27; k in Seg(len(D1|1)) by A10,A11,FINSEQ_1:3; then k in dom (D1|1) by FINSEQ_1:def 3; then k in dom (D1|Seg 1) by TOPREAL1:def 1; then (D1|Seg 1).k = D1.k by FUNCT_1:68; hence thesis by A12,A13,TOPREAL1:def 1; end; hence thesis by A10,FINSEQ_1:18; end; indx(D2,D1,1) in dom D2 by A1,A4,Def21; then indx(D2,D1,1) in Seg(len D2) by FINSEQ_1:def 3; then A14: 1 <= indx(D2,D1,1) & indx(D2,D1,1) <= len D2 by FINSEQ_1:3; then A15: 1 <= len D2 by AXIOMS:22; then len mid(D2,1,indx(D2,D1,1))=indx(D2,D1,1)-'1+1 by A14,JORDAN3:27; then len mid(D2,1,indx(D2,D1,1))=indx(D2,D1,1)-1+1 by A14,SCMFSA_7:3; then A16: len mid(D2,1,indx(D2,D1,1))=indx(D2,D1,1)-(1-1) by XCMPLX_1:37; then A17: len mid(D2,1,indx(D2,D1,1))=len(D2|indx(D2,D1,1)) by A14,TOPREAL1: 3; A18: for k st 1 <= k & k <= len mid(D2,1,indx(D2,D1,1)) holds mid(D2,1,indx(D2,D1,1)).k=(D2|indx(D2,D1,1)).k proof let k; assume A19:1 <= k & k <= len mid(D2,1,indx(D2,D1,1)); A20: k+1 >= 1 by NAT_1:29; mid(D2,1,indx(D2,D1,1)).k=D2.(k+1-'1) by A14,A15,A19,JORDAN3:27; then mid(D2,1,indx(D2,D1,1)).k=D2.(k+1-1) by A20,SCMFSA_7:3; then A21: mid(D2,1,indx(D2,D1,1)).k=D2.k by XCMPLX_1:26; k in Seg len (D2|indx(D2,D1,1)) by A17,A19,FINSEQ_1:3; then k in dom (D2|indx(D2,D1,1)) by FINSEQ_1:def 3; then k in dom (D2|Seg indx(D2,D1,1)) by TOPREAL1:def 1; then (D2|Seg indx(D2,D1,1)).k=D2.k by FUNCT_1:68; hence thesis by A21,TOPREAL1:def 1; end; then A22: mid(D2,1,indx(D2,D1,1))=D2|indx(D2,D1,1) by A17,FINSEQ_1:18; set DD1=mid(D1,1,1); set DD2=mid(D2,1,indx(D2,D1,1)); set B=divset(D1,1); consider S1 being non empty Division of B; A23: D1.1 = sup B by A4,Def5; inf B <= sup B by SEQ_4:24; then reconsider DD1 as Element of S1 by A4,A23,Th39; A24: indx(D2,D1,1) in dom D2 by A1,A4,Def21; then indx(D2,D1,1) in Seg(len D2) by FINSEQ_1:def 3; then A25: 1 <= indx(D2,D1,1) & indx(D2,D1,1) <= len D2 by FINSEQ_1:3; then 1 <= len D2 by AXIOMS:22; then 1 in Seg(len D2) by FINSEQ_1:3; then A26: 1 in dom D2 by FINSEQ_1:def 3; A27: D2.indx(D2,D1,1) = sup B by A1,A4,A23,Def21; A28: rng D2 c= A by Def2; D2.1 in rng D2 by A26,FUNCT_1:def 5; then D2.1 in A by A28; then D2.1 in [.inf A,sup A.] by Th5; then D2.1 in {a: inf A <= a & a <= sup A} by RCOMP_1:def 1; then ex a st D2.1=a & inf A <= a & a <= sup A; then D2.1 >= inf B by A4,Def5; then reconsider DD2 as Element of S1 by A24,A25,A26,A27,Th39; set g=f|divset(D1,1); reconsider g as PartFunc of divset(D1,1),REAL by PARTFUN1:43; A29: dom g = dom f /\ divset(D1,1) by FUNCT_1:68; then A30: dom g = A /\ divset(D1,1) by FUNCT_2:def 1; divset(D1,1) c= A by A4,Th10; then dom g = divset(D1,1) by A30,XBOOLE_1:28; then g is total by PARTFUN1:def 4; then A31: g is Function of divset(D1,1),REAL by FUNCT_2:131; g is_bounded_below_on divset(D1,1) proof consider a be real number such that A32: for x being Element of A st x in A /\ dom f holds a <= f.x by A2,RFUNCT_1:def 10; for x being Element of divset(D1,1) st x in divset(D1,1) /\ dom g holds a <= g.x proof let x be Element of divset(D1,1); assume x in divset(D1,1) /\ dom g; then A33: x in dom g by XBOOLE_0:def 3; A34: A /\ dom f = dom f by XBOOLE_1:28; A35: dom g c= dom f by FUNCT_1:76; then reconsider x as Element of A by A33,A34,XBOOLE_0:def 3; a <= f.x by A32,A33,A34,A35; hence thesis by A33,FUNCT_1:68; end; hence thesis by RFUNCT_1:def 10; end; then lower_sum(g,DD1) <= lower_sum(g,DD2) by A8,A31,Th33; then A36: Sum lower_volume(g,DD1) <= lower_sum(g,DD2) by Def10; A37: lower_volume(g,DD1) = lower_volume(f,D1)|1 proof A38: len lower_volume(g,DD1)=len DD1 by Def8 .= 1 by A7,AMI_5:4; 1 <= len lower_volume(f,D1) by A6,Def8; then A39: len lower_volume(g,DD1) = len (lower_volume(f,D1)|1) by A38,TOPREAL1:3; for i st 1 <= i & i <= len lower_volume(g,DD1) holds lower_volume(g,DD1).i=(lower_volume(f,D1)|1).i proof let i; assume A40: 1 <= i & i <= len lower_volume(g,DD1); A41: len DD1 = 1 by A7,AMI_5:4; A42: 1 in Seg 1 by FINSEQ_1:5; A43: 1 in Seg(len DD1) by A41,FINSEQ_1:5; A44: 1 in dom DD1 by A41,A42,FINSEQ_1:def 3; A45: 1 in dom(D1|Seg 1) proof dom(D1|Seg 1) = dom D1 /\ Seg 1 by FUNCT_1:68; hence thesis by A4,A42,XBOOLE_0:def 3; end; A46: lower_volume(g,DD1).i = lower_volume(g,DD1).1 by A38,A40,AXIOMS:21 .= (inf (rng (g|divset(DD1,1))))*vol(divset(DD1,1)) by A43,Def8; A47: divset(DD1,1)=[.inf divset(DD1,1),sup divset(DD1,1).] by Th5 .=[.inf B,sup divset(DD1,1).] by A44,Def5 .=[.inf B,DD1.1 .] by A44,Def5 .=[.inf A,(D1|1).1 .] by A4,A9,Def5 .=[.inf A,(D1|Seg 1).1 .] by TOPREAL1:def 1 .=[.inf A,D1.1 .] by A45,FUNCT_1:68; A48: divset(D1,1)=[.inf divset(D1,1),sup divset(D1,1).] by Th5 .=[.inf A,sup divset(D1,1).] by A4,Def5 .=[.inf A,D1.1 .] by A4,Def5; dom(lower_volume(f,D1))=Seg(len lower_volume(f,D1)) by FINSEQ_1:def 3 .=Seg(len D1) by Def8; then dom(lower_volume(f,D1)|Seg 1) =Seg(len D1) /\ Seg 1 by FUNCT_1:68 .=Seg 1 by A6,FINSEQ_1:9; then A49: 1 in dom (lower_volume(f,D1)|Seg 1) by FINSEQ_1:5; (lower_volume(f,D1)|1).i=(lower_volume(f,D1)|Seg 1).i by TOPREAL1:def 1 .=(lower_volume(f,D1)|Seg 1).1 by A38,A40,AXIOMS:21 .=lower_volume(f,D1).1 by A49,FUNCT_1:68 .=(inf (rng(f|divset(D1,1))))*vol(divset(D1,1)) by A5,Def8; hence thesis by A29,A46,A47,A48,RELAT_1:97; end; hence thesis by A39,FINSEQ_1:18; end; lower_volume(g,DD2) = lower_volume(f,D2)|indx(D2,D1,1) proof A50: len lower_volume(g,DD2)= indx(D2,D1,1) by A16,Def8; indx(D2,D1,1) <= len lower_volume(f,D2) by A14,Def8; then A51: len lower_volume(g,DD2)=len(lower_volume(f,D2)|indx(D2,D1,1)) by A50,TOPREAL1:3; for i st 1 <= i & i <= len lower_volume(g,DD2) holds lower_volume(g,DD2).i = (lower_volume(f,D2)|indx(D2,D1,1)).i proof let i; assume A52:1 <= i & i <= len lower_volume(g,DD2); A53: (1 <= i & i <= len DD2) & i in Seg(len DD2) & i in dom DD2 proof thus 1 <= i & i <= len DD2 by A52,Def8; hence i in Seg(len DD2) by FINSEQ_1:3; hence thesis by FINSEQ_1:def 3; end; divset(DD2,i)=divset(D2,i) proof A54: i in dom DD2 & i in dom D2 proof thus i in dom DD2 by A53; Seg indx(D2,D1,1) c= Seg(len D2) by A14,FINSEQ_1:7; then i in Seg(len D2) by A16,A53; hence thesis by FINSEQ_1:def 3; end; now per cases; suppose A55:i=1; then A56: 1 in dom (D2|Seg indx(D2,D1,1)) by A22,A54,TOPREAL1:def 1; then 1 in dom D2 /\ Seg indx(D2,D1,1) by RELAT_1:90; then A57: 1 in dom D2 by XBOOLE_0:def 3; A58: divset(DD2,i)=[.inf divset(DD2,1),sup divset(DD2,1).] by A55,Th5 .=[.inf B,sup divset(DD2,1).] by A54,A55,Def5 .=[.inf B,DD2.1 .] by A54,A55,Def5 .=[.inf B,(D2|indx(D2,D1,1)).1 .] by A18,A53,A55 .=[.inf B,(D2|Seg indx(D2,D1,1)).1 .] by TOPREAL1:def 1 .=[.inf B,D2.1 .] by A56,FUNCT_1:68 .=[.inf A,D2.1 .] by A4,Def5; divset(D2,i)=[.inf divset(D2,1),sup divset(D2,1).] by A55,Th5 .=[.inf A,sup divset(D2,1).] by A57,Def5 .=[.inf A,D2.1 .] by A57,Def5; hence thesis by A58; suppose A59:i<>1; A60: DD2.(i-1)=D2.(i-1) proof A61: i-1 in dom(D2|Seg indx(D2,D1,1)) proof consider j being Nat such that A62: i = 1 + j by A53,NAT_1:28; A63: j = i - 1 by A62,XCMPLX_1:26; i <> 0 & i <> 1 by A53,A59; then i is non trivial by NAT_2:def 1; then A64: i >= 1+1 & i-1 <= indx(D2,D1,1)-0 by A16,A53,NAT_2:31,REAL_1:92; then i-1 >= 1 & i-1 <= indx(D2,D1,1) by REAL_1:84; then A65: i-1 in Seg indx(D2,D1,1) by A63,FINSEQ_1:3; 1 <= i-1 & i-1 <= len D2 by A25,A64,AXIOMS:22,REAL_1:84; then i-1 in Seg(len D2) by A63,FINSEQ_1:3; then i-1 in dom D2 by FINSEQ_1:def 3; then i-1 in dom D2 /\ Seg indx(D2,D1,1) by A65,XBOOLE_0:def 3; hence thesis by FUNCT_1:68; end; DD2.(i-1)=(D2|indx(D2,D1,1)).(i-1) by A17,A18,FINSEQ_1:18 .=(D2|Seg indx(D2,D1,1)).(i-1) by TOPREAL1:def 1; hence thesis by A61,FUNCT_1:68; end; A66: DD2.i=D2.i proof A67: i in dom(D2|Seg indx(D2,D1,1)) proof 1 <= i & i <= len D2 by A16,A25,A53,AXIOMS:22; then i in Seg(len D2) by FINSEQ_1:3; then i in dom D2 by FINSEQ_1:def 3; then i in dom D2 /\ Seg indx(D2,D1,1) by A16,A53,XBOOLE_0: def 3; hence thesis by FUNCT_1:68; end; DD2.i=(D2|indx(D2,D1,1)).i by A17,A18,FINSEQ_1:18 .=(D2|Seg indx(D2,D1,1)).i by TOPREAL1:def 1; hence thesis by A67,FUNCT_1:68; end; A68: divset(DD2,i)=[.inf divset(DD2,i),sup divset(DD2,i).] by Th5 .=[. DD2.(i-1),sup divset(DD2,i).] by A54,A59,Def5 .=[. D2.(i-1),D2.i .] by A54,A59,A60,A66,Def5; divset(D2,i)=[.inf divset(D2,i),sup divset(D2,i).] by Th5 .=[. D2.(i-1),sup divset(D2,i).] by A54,A59,Def5 .=[. D2.(i-1),D2.i .] by A54,A59,Def5; hence thesis by A68; end; hence thesis; end; then A69: lower_volume(g,DD2).i =(inf (rng (g|divset(D2,i))))*vol(divset(D2,i)) by A53,Def8; A70: divset(D2,i) c= divset(D1,1) proof A71: divset(D2,i)=[.inf divset(D2,i),sup divset(D2,i).] by Th5; A72: divset(D1,1)=[.inf divset(D1,1),sup divset(D1,1).] by Th5; inf divset(D2,i) in [.inf divset(D1,1),sup divset(D1,1).] & sup divset(D2,i) in [.inf divset(D1,1),sup divset(D1,1).] proof A73: i in dom DD2 & i in dom D2 proof thus i in dom DD2 by A53; Seg indx(D2,D1,1) c= Seg(len D2) by A14,FINSEQ_1:7; then i in Seg(len D2) by A16,A53; hence thesis by FINSEQ_1:def 3; end; now per cases; suppose A74:i=1; then 1 in dom (D2|Seg indx(D2,D1,1)) by A22,A73,TOPREAL1:def 1; then 1 in dom D2 /\ Seg indx(D2,D1,1) by RELAT_1:90; then A75: 1 in dom D2 by XBOOLE_0:def 3; then inf divset(D2,i)=inf A by A74,Def5; then A76: inf divset(D2,i)=inf divset(D1,1) by A4,Def5; inf divset(D1,1) <= sup divset(D1,1) proof ex a,b st a<=b & a=inf divset(D1,1) & b=sup divset(D1,1) by Th4; hence thesis; end; hence inf divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by A76,RCOMP_1:15; A77: sup divset(D2,i)=D2.1 by A74,A75,Def5; D2.1 <= D2.indx(D2,D1,1) by A24,A25,A75,GOBOARD2:18; then D2.1 <= D1.1 by A1,A4,Def21; then A78: sup divset(D2,i) <= sup divset(D1,1) by A4,A77,Def5; inf divset(D2,i) <= sup divset(D2,i) proof ex a,b st a<=b & a=inf divset(D2,i) & b=sup divset(D2,i) by Th4; hence thesis; end; then consider a being Real such that A79: a = sup divset(D2,i) & inf divset(D1,1) <= a & a <= sup divset(D1,1) by A76,A78; sup divset(D2,i)in{r: inf divset(D1,1)<=r & r<= sup divset(D1,1)} by A79; hence sup divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by RCOMP_1:def 1; suppose A80:i<>1; consider j being Nat such that A81: i = 1 + j by A53,NAT_1:28; A82: j = i - 1 by A81,XCMPLX_1:26; i <> 0 & i <> 1 by A53,A80; then i is non trivial by NAT_2:def 1; then A83: i >= 1+1 & i-1 <= indx(D2,D1,1)-0 by A16,A53,NAT_2:31,REAL_1:92; then 1 <= i-1 & i-1 <= len D2 by A25,AXIOMS:22,REAL_1:84; then i-1 in Seg(len D2) by A82,FINSEQ_1:3; then A84: i-1 in dom D2 by FINSEQ_1:def 3; A85: A <> {} & A is bounded_below by Th3; A86: inf divset(D2,i)=D2.(i-1) by A73,A80,Def5; A87: sup divset(D2,i)=D2.i by A73,A80,Def5; A88: inf divset(D1,1)=inf A by A4,Def5; A89: sup divset(D1,1)=D1.1 by A4,Def5; A90: rng D2 c= A by Def2; D2.(i-1) in rng D2 by A84,FUNCT_1:def 5; then A91: inf divset(D2,i) >= inf divset(D1,1) by A85,A86,A88,A90,SEQ_4:def 5; D2.(i-1)<= D2.indx(D2,D1,1) by A24,A83,A84,GOBOARD2:18; then inf divset(D2,i) <= sup divset(D1,1) by A1,A4,A86,A89, Def21 ; then consider a being Real such that A92: a = inf divset(D2,i) & inf divset(D1,1) <= a & a <= sup divset(D1,1) by A91; inf divset(D2,i)in{r: inf divset(D1,1)<=r & r<= sup divset(D1,1)} by A92; hence inf divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by RCOMP_1:def 1; D2.i in rng D2 by A73,FUNCT_1:def 5; then A93: sup divset(D2,i) >= inf divset(D1,1) by A85,A87,A88,A90,SEQ_4:def 5; D2.i <= D2.indx(D2,D1,1) by A16,A24,A53,A73,GOBOARD2:18; then sup divset(D2,i) <= sup divset(D1,1) by A1,A4,A87,A89,Def21; then consider a being Real such that A94: a = sup divset(D2,i) & inf divset(D1,1) <= a & a <= sup divset(D1,1) by A93; sup divset(D2,i)in{r: inf divset(D1,1)<=r & r<= sup divset(D1,1)} by A94; hence sup divset(D2,i)in[.inf divset(D1,1),sup divset(D1,1).] by RCOMP_1:def 1; end; hence thesis; end; hence thesis by A71,A72,RCOMP_1:16; end; A95: i in Seg(len D2) & i in dom (lower_volume(f,D2)|Seg indx(D2,D1,1)) proof A96: Seg indx(D2,D1,1) c= Seg(len D2) by A14,FINSEQ_1:7; hence i in Seg(len D2) by A16,A53; dom (lower_volume(f,D2)|Seg indx(D2,D1,1)) =dom lower_volume(f,D2) /\ Seg indx(D2,D1,1) by FUNCT_1:68 .=Seg(len lower_volume(f,D2)) /\ Seg indx(D2,D1,1) by FINSEQ_1:def 3 .=Seg(len D2) /\ Seg indx(D2,D1,1) by Def8 .=Seg indx(D2,D1,1) by A96,XBOOLE_1:28; hence thesis by A16,A53; end; (lower_volume(f,D2)|indx(D2,D1,1)).i =(lower_volume(f,D2)|Seg indx(D2,D1,1)).i by TOPREAL1:def 1 .=lower_volume(f,D2).i by A95,FUNCT_1:68 .=(inf (rng (f|divset(D2,i))))*vol(divset(D2,i)) by A95,Def8; hence thesis by A69,A70,FUNCT_1:82; end; hence thesis by A51,FINSEQ_1:18; end; hence thesis by A36,A37,Def10; end; A97: for k being non empty Nat st P[k] holds P[k+1] proof let k be non empty Nat; assume A98:k in dom D1 implies Sum(lower_volume(f,D1)|k) <= Sum(lower_volume(f,D2)|indx(D2,D1,k)); assume A99:k+1 in dom D1; then A100: k+1 in Seg(len D1) by FINSEQ_1:def 3; then A101: 1 <= k+1 & k+1 <= len D1 by FINSEQ_1:3; now per cases; suppose 1=k+1; hence Sum(lower_volume(f,D1)|(k+1)) <=Sum(lower_volume(f,D2)|indx(D2,D1,k+1)) by A3,A99; suppose A102:1<>k+1; set n=k+1; n is non trivial by A102,NAT_2:def 1; then n >= 2 by NAT_2:31; then A103: k >= (1+1)-1 by REAL_1:86; A104: k <= k+1 by NAT_1:29; then A105: 1 <= k & k <= len D1 by A101,A103,AXIOMS:22; then A106: k in Seg(len D1) by FINSEQ_1:3; then A107: k in dom D1 by FINSEQ_1:def 3; A108: 1 <= k+1 & k+1 <= len lower_volume(f,D1) by A101,Def8; A109: len lower_volume(f,D2) = len D2 by Def8; A110: indx(D2,D1,k) in dom D2 by A1,A107,Def21; A111: indx(D2,D1,k+1) in dom D2 by A1,A99,Def21; then A112: indx(D2,D1,k+1) in Seg(len D2) by FINSEQ_1:def 3; then A113: 1 <= indx(D2,D1,k+1) & indx(D2,D1,k+1) <= len D2 by FINSEQ_1:3; A114: 1 <= indx(D2,D1,k+1) & indx(D2,D1,k+1) <= len lower_volume(f,D2) by A109,A112,FINSEQ_1:3; A115: indx(D2,D1,k) < indx(D2,D1,k+1) proof assume indx(D2,D1,k) >= indx(D2,D1,k+1); then A116: D2.indx(D2,D1,k) >= D2.indx(D2,D1,k+1) by A110,A111,GOBOARD2: 18; k < k+1 by NAT_1:38; then A117: D1.k < D1.(k+1) by A99,A107,GOBOARD1:def 1; D1.k=D2.indx(D2,D1,k) by A1,A107,Def21; hence contradiction by A1,A99,A116,A117,Def21; end; A118: indx(D2,D1,k+1) >= indx(D2,D1,k) proof assume indx(D2,D1,k+1) < indx(D2,D1,k); then A119: D2.indx(D2,D1,k+1) < D2.indx(D2,D1,k) by A110,A111,GOBOARD1: def 1; D1.(k+1) = D2.indx(D2,D1,k+1) by A1,A99,Def21; then D1.(k+1) < D1.k by A1,A107,A119,Def21; hence contradiction by A99,A104,A107,GOBOARD2:18; end; then consider ID being Nat such that A120: indx(D2,D1,k+1) = indx(D2,D1,k) + ID by NAT_1:28; A121: ID = indx(D2,D1,k+1) - indx(D2,D1,k) by A120,XCMPLX_1:26; A122: indx(D2,D1,k+1)-indx(D2,D1,k) is Nat by A120,XCMPLX_1:26; A123: 1 <= k & k <= len lower_volume(f,D1) by A105,Def8; indx(D2,D1,k) in dom D2 by A1,A107,Def21; then indx(D2,D1,k) in Seg(len D2) by FINSEQ_1:def 3; then A124: 1<=indx(D2,D1,k) & indx(D2,D1,k)<=len lower_volume(f,D2) by A109,FINSEQ_1:3; set K1D1=lower_volume(f,D1)|(k+1); set KD1 =lower_volume(f,D1)|k; set K1D2=lower_volume(f,D2)|indx(D2,D1,k+1); set KD2 =lower_volume(f,D2)|indx(D2,D1,k); set IDK1=indx(D2,D1,k+1); set IDK =indx(D2,D1,k); A125: len K1D1=k+1 by A108,TOPREAL1:3; then consider p1,q1 being FinSequence of REAL such that A126: len p1=k & len q1=1 & K1D1=p1^q1 by FINSEQ_2:26; len K1D2=IDK1 by A114,TOPREAL1:3 .=IDK + IDK1 - IDK by XCMPLX_1:26 .=IDK + (IDK1-IDK) by XCMPLX_1:29; then consider p2,q2 being FinSequence of REAL such that A127: len p2=IDK & len q2=IDK1-IDK & K1D2=p2^q2 by A122,FINSEQ_2:26; A128: p1=KD1 proof A129: len p1 = len KD1 by A123,A126,TOPREAL1:3; for i st 1 <= i & i <= len p1 holds p1.i=KD1.i proof let i; assume 1 <= i & i <= len p1; then A130: i in Seg(len p1) by FINSEQ_1:3; then A131: i in dom p1 by FINSEQ_1:def 3; A132: i in dom KD1 by A129,A130,FINSEQ_1:def 3; then A133: i in dom (lower_volume(f,D1)|Seg k) by TOPREAL1:def 1; A134: KD1.i = (lower_volume(f,D1)|Seg k).i by TOPREAL1:def 1 .= lower_volume(f,D1).i by A133,FUNCT_1:68; A135: dom KD1=Seg(len KD1) by FINSEQ_1:def 3.= Seg k by A123,TOPREAL1:3 ; k <= k+1 by NAT_1:29; then A136: Seg k c= Seg(k+1) by FINSEQ_1:7; dom K1D1 =Seg(len K1D1) by FINSEQ_1:def 3.= Seg(k+1) by A108,TOPREAL1:3; then i in dom K1D1 by A132,A135,A136; then A137: i in dom (lower_volume(f,D1)|Seg(k+1)) by TOPREAL1:def 1; K1D1.i = (lower_volume(f,D1)|Seg (k+1)).i by TOPREAL1:def 1 .= lower_volume(f,D1).i by A137,FUNCT_1:68; hence thesis by A126,A131,A134,FINSEQ_1:def 7; end; hence thesis by A129,FINSEQ_1:18; end; A138: p2=KD2 proof A139: len p2 = len KD2 by A124,A127,TOPREAL1:3; for i st 1 <= i & i <= len p2 holds p2.i=KD2.i proof let i; assume 1 <= i & i <= len p2; then A140: i in Seg(len p2) by FINSEQ_1:3; then A141: i in dom p2 by FINSEQ_1:def 3; A142: i in dom KD2 by A139,A140,FINSEQ_1:def 3; then A143: i in dom (lower_volume(f,D2)|Seg indx(D2,D1,k)) by TOPREAL1:def 1; A144: KD2.i=(lower_volume(f,D2)|Seg indx(D2,D1,k)).i by TOPREAL1:def 1 .= lower_volume(f,D2).i by A143,FUNCT_1:68; A145: dom KD2 =Seg(len KD2) by FINSEQ_1:def 3 .= Seg indx(D2,D1,k) by A124,TOPREAL1:3; A146: Seg indx(D2,D1,k) c= Seg indx(D2,D1,k+1) by A118,FINSEQ_1:7; dom K1D2 = Seg(len K1D2) by FINSEQ_1:def 3 .= Seg indx(D2,D1,k+1) by A114,TOPREAL1:3; then i in dom K1D2 by A142,A145,A146; then A147: i in dom (lower_volume(f,D2)|Seg indx(D2,D1,k+1)) by TOPREAL1: def 1; K1D2.i=(lower_volume(f,D2)|Seg indx(D2,D1,k+1)).i by TOPREAL1:def 1 .=lower_volume(f,D2).i by A147,FUNCT_1:68; hence thesis by A127,A141,A144,FINSEQ_1:def 7; end; hence thesis by A139,FINSEQ_1:18; end; A148: Sum q1 <= Sum q2 proof set DD1 = divset(D1,k+1); set MD1 = mid(D1,k+1,k+1); set MD2 = mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)); set g = f|DD1; consider S1 being non empty Division of DD1; A149: k+1 in dom D1 & D1.(k+1) >= inf DD1 & D1.(k+1) = sup DD1 proof (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; then inf DD1=D1.k by A99,A102,Def5; hence thesis by A99,A102,A104,A107,Def5,GOBOARD2:18; end; then reconsider MD1 as Element of S1 by Th39; A150: indx(D2,D1,k)+1 <= indx(D2,D1,k+1) by A115,NAT_1:38; then A151: indx(D2,D1,k)+1 <= len D2 by A113,AXIOMS:22; A152: indx(D2,D1,k) <= indx(D2,D1,k)+1 by NAT_1:29; A153: 1 <= indx(D2,D1,k)+1 by NAT_1:29; then indx(D2,D1,k)+1 in Seg(len D2) by A151,FINSEQ_1:3; then A154: indx(D2,D1,k)+1 in dom D2 by FINSEQ_1:def 3; A155: D2.indx(D2,D1,k+1)=D1.(k+1) by A1,A99,Def21; A156: inf divset(D1,k+1)=D1.((k+1)-1) & sup divset(D1,k+1)=D1.(k+1) by A99,A102,Def5; (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; then A157: inf DD1=D1.k by A99,A102,Def5; D2.(indx(D2,D1,k)+1)>=D2.indx(D2,D1,k)by A110,A152,A154,GOBOARD2: 18 ; then D2.(indx(D2,D1,k)+1) >= inf DD1 by A1,A107,A157,Def21; then reconsider MD2 as Element of S1 by A111,A150,A154,A155,A156, Th39; reconsider g as PartFunc of DD1,REAL by PARTFUN1:43; A158: g is total & g is_bounded_below_on DD1 proof dom g = dom f /\ divset(D1,k+1) by FUNCT_1:68; then A159: dom g = A /\ divset(D1,k+1) by FUNCT_2:def 1; divset(D1,k+1) c= A by A149,Th10; then dom g = divset(D1,k+1) by A159,XBOOLE_1:28; hence g is total by PARTFUN1:def 4; g is_bounded_below_on divset(D1,k+1) proof consider a be real number such that A160: for x being Element of A st x in A /\ dom f holds a <= f.x by A2,RFUNCT_1:def 10; for x being Element of divset(D1,k+1) st x in divset(D1,k+1) /\ dom g holds a <= g.x proof let x be Element of divset(D1,k+1); assume x in divset(D1,k+1) /\ dom g; then A161: x in dom g by XBOOLE_0:def 3; A162: A /\ dom f = dom f by XBOOLE_1:28; A163: dom g c= dom f by FUNCT_1:76; then reconsider x as Element of A by A161,A162,XBOOLE_0:def 3; a <= f.x by A160,A161,A162,A163; hence thesis by A161,FUNCT_1:68; end; hence thesis by RFUNCT_1:def 10; end; hence thesis; end; then A164: g is Function of divset(D1,k+1),REAL by FUNCT_2:131; A165: q1=lower_volume(g,MD1) proof len MD1 = (k+1) -'(k+1) + 1 by A101,JORDAN3:27; then len MD1 = (k+1) - (k+1) + 1 by SCMFSA_7:3; then A166: len MD1 = 0 + 1 by XCMPLX_1:14; then A167: len q1 = len(lower_volume(g,MD1)) by A126,Def8; for n st 1 <= n & n <= len q1 holds q1.n=lower_volume(g,MD1).n proof let n; assume A168: 1 <= n & n <= len q1; then A169: n = 1 by A126,AXIOMS:21; A170: n in Seg(len q1) by A168,FINSEQ_1:3; then A171: n in dom q1 by FINSEQ_1:def 3; k+1 in Seg(len K1D1) by A125,FINSEQ_1:6; then k+1 in dom K1D1 by FINSEQ_1:def 3; then A172: k+1 in dom (lower_volume(f,D1)|Seg(k+1)) by TOPREAL1:def 1; K1D1.(k+1)=(lower_volume(f,D1)|Seg(k+1)).(k+1) by TOPREAL1:def 1 .=lower_volume(f,D1).(k+1) by A172,FUNCT_1:68; then A173: q1.n = lower_volume(f,D1).(k+1) by A126,A169,A171,FINSEQ_1: def 7 .=(inf(rng(f|divset(D1,k+1))))*vol(divset(D1,k+1)) by A100,Def8; 1 in dom MD1 proof 1 in Seg 1 by FINSEQ_1:5; hence thesis by A166,FINSEQ_1:def 3; end; then A174: inf divset(MD1,1) = inf DD1 & sup divset(MD1,1) = MD1.1 by Def5; MD1.1 =D1.(k+1) by A101,JORDAN3:27; then A175: divset(MD1,1)=[.inf DD1,D1.(k+1).] by A174,Th5; (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; then A176: inf DD1 = D1.k by A99,A102,Def5; sup DD1 = D1.(k+1) by A99,A102,Def5; then divset(D1,k+1)=[. D1.k,D1.(k+1).] by A176,Th5; then lower_volume(g,MD1).n =(inf(rng(g|divset(D1,k+1))))*vol(divset(D1,k+1)) by A126,A166,A169,A170,A175,A176,Def8; hence thesis by A173,FUNCT_1:82; end; hence thesis by A167,FINSEQ_1:18; end; A177: q2=lower_volume(g,MD2) proof A178: indx(D2,D1,k+1)-'(indx(D2,D1,k)+1)+1 =indx(D2,D1,k+1)-(indx(D2,D1,k)+1)+1 by A150,SCMFSA_7:3 .=indx(D2,D1,k+1)-indx(D2,D1,k)-1+1 by XCMPLX_1:36 .=indx(D2,D1,k+1)-indx(D2,D1,k)-(1-1) by XCMPLX_1:37 .=indx(D2,D1,k+1)-indx(D2,D1,k); A179: len(lower_volume(g,MD2))= len mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)) by Def8 .=indx(D2,D1,k+1)-indx(D2,D1,k) by A113,A150,A151,A153,A178, JORDAN3:27; for n st 1 <= n & n <= len q2 holds q2.n=lower_volume(g,MD2).n proof let n; assume A180:1 <= n & n <= len q2; then n in Seg(len q2) by FINSEQ_1:3; then A181: n in dom q2 by FINSEQ_1:def 3; A182: dom K1D2 = Seg(len K1D2) by FINSEQ_1:def 3 .= Seg indx(D2,D1,k+1) by A114,TOPREAL1:3; A183: indx(D2,D1,k)+n in dom K1D2 by A127,A181,FINSEQ_1:41; then A184: indx(D2,D1,k)+n in dom (lower_volume(f,D2)|Seg indx(D2,D1,k +1)) by TOPREAL1:def 1; A185: Seg indx(D2,D1,k+1) c= Seg(len D2) by A113,FINSEQ_1:7; then indx(D2,D1,k)+n in Seg(len D2) by A182,A183; then A186: indx(D2,D1,k)+n in dom D2 by FINSEQ_1:def 3; A187: 1 <=indx(D2,D1,k)+n & indx(D2,D1,k)+n <= indx(D2,D1,k+1) by A182,A183,FINSEQ_1:3; then A188: n <= indx(D2,D1,k+1)-indx(D2,D1,k) by REAL_1:84; A189: len mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)) =indx(D2,D1,k+1)-indx(D2,D1,k) by A113,A150,A151,A153,A178,JORDAN3: 27 .=ID by A120,XCMPLX_1:26; then A190: n in Seg(len mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1))) by A121,A180,A188,FINSEQ_1:3; then A191: n in dom MD2 by FINSEQ_1:def 3; A192: q2.n=K1D2.(indx(D2,D1,k)+n) by A127,A181,FINSEQ_1:def 7 .=(lower_volume(f,D2)|Seg indx(D2,D1,k+1)).(indx(D2,D1,k)+n) by TOPREAL1:def 1 .=lower_volume(f,D2).(indx(D2,D1,k)+n) by A184,FUNCT_1:68 .=(inf(rng(f|divset(D2,indx(D2,D1,k)+n))))*vol(divset(D2,indx(D2,D1,k)+n)) by A182,A183,A185,Def8; A193: divset(MD2,n)=divset(D2,indx(D2,D1,k)+n) & divset(D2,indx(D2,D1,k)+n) c= divset(D1,k+1) proof now per cases; suppose A194:n=1; A195: (k+1)-1=k+(1-1) by XCMPLX_1:29 .=k; A196: 1<=indx(D2,D1,k)+1&indx(D2,D1,k)+1<=len D2 by A182,A183,A185,A194,FINSEQ_1:3; A197: indx(D2,D1,k)+1 <> 1 by A124,NAT_1:38; A198: inf divset(MD2,1)=inf divset(D1,k+1) by A191,A194,Def5 .= D1.k by A99,A102,A195,Def5; A199: sup divset(MD2,1)= mid(D2,indx(D2,D1,k)+1,indx(D2,D1,k+1)).1 by A191,A194,Def5 .= D2.(1+indx(D2,D1,k)) by A113,A196,JORDAN3:27; then A200: divset(MD2,n)=[.D1.k,D2.(indx(D2,D1,k)+1).] by A194, A198,Th5; A201: divset(D2,indx(D2,D1,k)+n)= [.inf divset(D2,indx(D2,D1,k)+1),sup divset(D2,indx(D2,D1,k)+1).] by A194,Th5 .=[.D2.(indx(D2,D1,k)+1-1),sup divset(D2,indx(D2,D1,k)+1).] by A154,A197,Def5 .=[.D2.indx(D2,D1,k),sup divset(D2,indx(D2,D1,k)+1).] by XCMPLX_1:26 .=[.D2.indx(D2,D1,k),D2.(indx(D2,D1,k)+1).] by A154,A197,Def5 .=[.D1.k,D2.(indx(D2,D1,k)+1).] by A1,A107,Def21; hence divset(MD2,n)=divset(D2,indx(D2,D1,k)+n) by A194,A198, A199,Th5; thus thesis by A191,A200,A201,Th10; suppose A202:n<>1; A203: indx(D2,D1,k)+1 <= indx(D2,D1,k+1) by A115,NAT_1:38; consider n1 being Nat such that A204: n=1+n1 by A180,NAT_1:28; A205: n1=n-1 by A204,XCMPLX_1:26; A206: n1+(indx(D2,D1,k)+1)-'1=indx(D2,D1,k)+n-1 proof n1+(indx(D2,D1,k)+1)=(n-1)+(indx(D2,D1,k)+1) by A204,XCMPLX_1:26 .=indx(D2,D1,k)+(n-1)+1 by XCMPLX_1:1 .=indx(D2,D1,k)+n-1+1 by XCMPLX_1:29 .=indx(D2,D1,k)+n+-1+1 by XCMPLX_0:def 8 .=indx(D2,D1,k)+n by XCMPLX_1:139; hence thesis by A187,SCMFSA_7:3; end; A207: 1<=n-1 & n-1<=len MD2 proof n <> 0 by A180; then n is non trivial by A202,NAT_2:def 1; then n >= 1+1 by NAT_2:31; hence n-1>=1 by REAL_1:84; n<=n+1 by NAT_1:37; then n-1 <= n by REAL_1:86; hence thesis by A121,A188,A189,AXIOMS:22; end; A208: n+(indx(D2,D1,k)+1)-'1=indx(D2,D1,k)+n proof n+(indx(D2,D1,k)+1)=(indx(D2,D1,k)+n)+1 by XCMPLX_1:1; then n+(indx(D2,D1,k)+1) >= 1 by NAT_1:29; then n+(indx(D2,D1,k)+1)-'1= (n+(indx(D2,D1,k)+1))-1 by SCMFSA_7:3 .=n+indx(D2,D1,k)+1-1 by XCMPLX_1:1 .=indx(D2,D1,k)+n by XCMPLX_1:26; hence thesis; end; A209: indx(D2,D1,k)+n <> 1 proof assume indx(D2,D1,k)+n = 1; then indx(D2,D1,k)=1-n by XCMPLX_1:26; then n+1 <= 1 by A124,REAL_1:84; then n <= 1-1 by REAL_1:84; hence contradiction by A180,NAT_1:19; end; A210: inf divset(MD2,n)=MD2.(n-1) by A191,A202,Def5 .=D2.(indx(D2,D1,k)+n-1) by A113,A151,A153,A203,A205,A206,A207,JORDAN3: 27; A211: sup divset(MD2,n)=MD2.n by A191,A202,Def5 .=D2.(indx(D2,D1,k)+n) by A113,A121,A151,A153,A180,A188,A189,A203 ,A208,JORDAN3:27; then A212:divset(MD2,n)= [. D2.(indx(D2,D1,k)+n-1),D2.(indx(D2,D1,k)+n) .] by A210,Th5 ; A213: divset(D2,indx(D2,D1,k)+n) =[.inf divset(D2,indx(D2,D1,k)+n),sup divset(D2,indx(D2,D1,k)+n).] by Th5 .=[.D2.(indx(D2,D1,k)+n-1),sup divset(D2,indx(D2,D1,k)+n).] by A186,A209,Def5 .=[. D2.(indx(D2,D1,k)+n-1),D2.(indx(D2,D1,k)+n) .] by A186,A209,Def5; hence divset(MD2,n)=divset(D2,indx(D2,D1,k)+n) by A210,A211,Th5; thus thesis by A191,A212,A213,Th10; end; hence thesis; end; then g|divset(MD2,n) =f|divset(D2,indx(D2,D1,k)+n) by FUNCT_1:82; hence thesis by A190,A192,A193,Def8; end; hence thesis by A127,A179,FINSEQ_1:18; end; len MD1 = 1 & MD1 <= MD2 proof len MD1 = (k+1) -'(k+1) + 1 by A101,JORDAN3:27; then len MD1 = (k+1) - (k+1) + 1 by SCMFSA_7:3; then len MD1 = 0 + 1 by XCMPLX_1:14; hence thesis by Th31; end; then lower_sum(g,MD1) <= lower_sum(g,MD2) by A158,A164,Th33; then Sum(lower_volume(g,MD1)) <= lower_sum(g,MD2) by Def10; hence thesis by A165,A177,Def10; end; A214: Sum K1D1=Sum p1+Sum q1 by A126,RVSUM_1:105; A215: Sum K1D2=Sum p2+Sum q2 by A127,RVSUM_1:105; Sum q1 = Sum K1D1 - Sum p1 by A214,XCMPLX_1:26; then Sum K1D1 <= Sum q2 + Sum p1 by A148,REAL_1:86; then Sum K1D1 - Sum q2 <= Sum p1 by REAL_1:86; then Sum K1D1 - Sum q2 <= Sum p2 by A98,A106,A128,A138,AXIOMS:22,FINSEQ_1:def 3; hence thesis by A215,REAL_1:86; end; hence thesis; end; thus for n being non empty Nat holds P[n] from Ind_from_1(A3,A97); end; hence thesis; end; theorem Th42: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S, i be Nat holds D1 <= D2 & i in dom D1 & f is_bounded_above_on A implies (PartSums(upper_volume(f,D1))).i >= (PartSums(upper_volume(f,D2))).indx(D2,D1,i) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; let i be Nat; assume that A1:D1 <= D2 and A2:i in dom D1 and A3:f is_bounded_above_on A; A4:i is non empty Nat proof i in Seg(len D1) by A2,FINSEQ_1:def 3; hence thesis by BINARITH:5; end; A5:indx(D2,D1,i) in Seg(len upper_volume(f,D2)) proof A6: len upper_volume(f,D2)=len D2 by Def7; indx(D2,D1,i) in dom D2 by A1,A2,Def21; hence thesis by A6,FINSEQ_1:def 3; end; i in Seg(len D1) by A2,FINSEQ_1:def 3; then i in Seg(len upper_volume(f,D1)) by Def7; then (PartSums(upper_volume(f,D1))).i=Sum(upper_volume(f,D1)|i) by Def22; then (PartSums(upper_volume(f,D1))).i >= Sum(upper_volume(f,D2)|indx(D2,D1,i)) by A1,A2,A3,A4,Th40; hence thesis by A5,Def22; end; theorem Th43: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S, i be Nat holds D1 <= D2 & i in dom D1 & f is_bounded_below_on A implies (PartSums(lower_volume(f,D1))).i <= (PartSums(lower_volume(f,D2))).indx(D2,D1,i) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; let i be Nat; assume that A1:D1 <= D2 and A2:i in dom D1 and A3:f is_bounded_below_on A; A4:i is non empty Nat proof i in Seg(len D1) by A2,FINSEQ_1:def 3; hence thesis by BINARITH:5; end; A5:indx(D2,D1,i) in Seg(len lower_volume(f,D2)) proof A6: len lower_volume(f,D2)=len D2 by Def8; indx(D2,D1,i) in dom D2 by A1,A2,Def21; hence thesis by A6,FINSEQ_1:def 3; end; i in Seg(len D1) by A2,FINSEQ_1:def 3; then i in Seg(len lower_volume(f,D1)) by Def8; then (PartSums(lower_volume(f,D1))).i=Sum(lower_volume(f,D1)|i) by Def22; then (PartSums(lower_volume(f,D1))).i <= Sum(lower_volume(f,D2)|indx(D2,D1,i)) by A1,A2,A3,A4,Th41; hence thesis by A5,Def22; end; theorem Th44: for A be closed-interval Subset of REAL, f be PartFunc of A,REAL, S be non empty Division of A, D be Element of S holds (PartSums(upper_volume(f,D))).(len D) = upper_sum(f,D) proof let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; let S be non empty Division of A; let D be Element of S; A1:len D <> 0 by FINSEQ_1:25; len upper_volume(f,D) = len D by Def7; then len D in Seg(len upper_volume(f,D)) by A1,FINSEQ_1:5; then A2:(PartSums(upper_volume(f,D))).(len D) = Sum(upper_volume(f,D)|(len D)) by Def22; upper_volume(f,D)|(Seg len D) = upper_volume(f,D) proof dom upper_volume(f,D)=Seg len upper_volume(f,D) by FINSEQ_1:def 3; then dom upper_volume(f,D)=Seg len D by Def7; hence thesis by RELAT_1:97; end; then upper_volume(f,D)|(len D) = upper_volume(f,D) by TOPREAL1:def 1; hence thesis by A2,Def9; end; theorem Th45: for A be closed-interval Subset of REAL, f be PartFunc of A,REAL, S be non empty Division of A, D be Element of S holds (PartSums(lower_volume(f,D))).(len D) = lower_sum(f,D) proof let A be closed-interval Subset of REAL; let f be PartFunc of A,REAL; let S be non empty Division of A; let D be Element of S; A1:len D <> 0 by FINSEQ_1:25; len lower_volume(f,D) = len D by Def8; then len D in Seg(len lower_volume(f,D)) by A1,FINSEQ_1:5; then A2:(PartSums(lower_volume(f,D))).(len D) = Sum(lower_volume(f,D)|(len D)) by Def22; lower_volume(f,D)|(Seg len D) = lower_volume(f,D) proof dom lower_volume(f,D)=Seg len lower_volume(f,D) by FINSEQ_1:def 3; then dom lower_volume(f,D)=Seg len D by Def8; hence thesis by RELAT_1:97; end; then lower_volume(f,D)|(len D) = lower_volume(f,D) by TOPREAL1:def 1; hence thesis by A2,Def10; end; theorem Th46: for A be closed-interval Subset of REAL, S be non empty Division of A, D1,D2 be Element of S holds D1 <= D2 implies indx(D2,D1,len D1) = len D2 proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume A1:D1 <= D2; assume A2:indx(D2,D1,len D1) <> len D2; A3:len D1 in dom D1 proof len D1 <> 0 by FINSEQ_1:25; then len D1 in Seg(len D1) by FINSEQ_1:5; hence thesis by FINSEQ_1:def 3; end; then D1.(len D1)=D2.indx(D2,D1,len D1) by A1,Def21; then A4:D2.indx(D2,D1,len D1)=upper_bound A by Def2; A5:len D2 in dom D2 proof len D2 <> 0 by FINSEQ_1:25; then len D2 in Seg(len D2) by FINSEQ_1:5; hence thesis by FINSEQ_1:def 3; end; A6:indx(D2,D1,len D1) in dom D2 by A1,A3,Def21; indx(D2,D1,len D1) < len D2 proof indx(D2,D1,len D1) in Seg(len D2) by A6,FINSEQ_1:def 3; then indx(D2,D1,len D1) <= len D2 by FINSEQ_1:3; hence thesis by A2,REAL_1:def 5; end; then D2.indx(D2,D1,len D1) < D2.(len D2) by A5,A6,GOBOARD1:def 1; hence contradiction by A4,Def2; end; theorem Th47: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S holds D1 <= D2 & f is_bounded_above_on A implies upper_sum(f,D2) <= upper_sum(f,D1) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume that A1:D1 <= D2 and A2:f is_bounded_above_on A; len D1 in dom D1 proof len D1 <> 0 by FINSEQ_1:25; then len D1 in Seg(len D1) by FINSEQ_1:5; hence thesis by FINSEQ_1:def 3; end; then (PartSums(upper_volume(f,D1))).(len D1) >= (PartSums(upper_volume(f,D2))).indx(D2,D1,len D1) by A1,A2,Th42; then upper_sum(f,D1) >= (PartSums(upper_volume(f,D2))).indx(D2,D1,len D1) by Th44; then upper_sum(f,D1) >= (PartSums(upper_volume(f,D2))).(len D2) by A1,Th46; hence thesis by Th44; end; theorem Th48: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S holds D1 <= D2 & f is_bounded_below_on A implies lower_sum(f,D2) >= lower_sum(f,D1) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume that A1:D1 <= D2 and A2:f is_bounded_below_on A; len D1 in dom D1 proof len D1 <> 0 by FINSEQ_1:25; then len D1 in Seg(len D1) by FINSEQ_1:5; hence thesis by FINSEQ_1:def 3; end; then (PartSums(lower_volume(f,D1))).(len D1) <= (PartSums(lower_volume(f,D2))).indx(D2,D1,len D1) by A1,A2,Th43; then lower_sum(f,D1) <= (PartSums(lower_volume(f,D2))).indx(D2,D1,len D1) by Th45; then lower_sum(f,D1) <= (PartSums(lower_volume(f,D2))).(len D2) by A1,Th46; hence thesis by Th45; end; theorem Th49:for A be closed-interval Subset of REAL, S be non empty Division of A, D1,D2 be Element of S holds ex D be Element of S st D1 <= D & D2 <= D proof let A be closed-interval Subset of REAL; let S be non empty Division of A; let D1,D2 be Element of S; consider D3 being FinSequence of REAL such that A1:rng D3 = rng(D1^D2) & len D3 = card rng(D1^D2) & D3 is increasing by GOBOARD2:21; rng D1 \/ rng D2 <> {}; then rng (D1^D2) <> {} by FINSEQ_1:44; then reconsider D3 as non empty increasing FinSequence of REAL by A1,FINSEQ_1:27; A2:rng D1 c= A by Def2; rng D2 c= A by Def2; then rng D1 \/ rng D2 c= A by A2,XBOOLE_1:8; then A3:rng D3 c= A by A1,FINSEQ_1:44; D3.(len D3) = sup A proof assume A4:D3.(len D3) <> sup A; now per cases by A4,REAL_1:def 5; suppose A5:D3.(len D3) > sup A; len D3 <> 0 by FINSEQ_1:25; then len D3 in Seg(len D3) by FINSEQ_1:5; then len D3 in dom D3 by FINSEQ_1:def 3; then D3.(len D3) in rng D3 by FUNCT_1:def 5; then D3.(len D3) in A by A3; then D3.(len D3) in [.inf A,sup A.] by Th5; then D3.(len D3) in {r:inf A <= r & r <= sup A} by RCOMP_1:def 1; then consider a such that A6: a=D3.(len D3) & inf A <= a & a <= sup A; thus contradiction by A5,A6; suppose A7:D3.(len D3) < sup A; len D3 <> 0 by FINSEQ_1:25; then len D3 in Seg(len D3) by FINSEQ_1:5; then A8: len D3 in dom D3 by FINSEQ_1:def 3; len D1 <> 0 by FINSEQ_1:25; then len D1 in Seg(len D1) by FINSEQ_1:5; then A9: len D1 in dom D1 by FINSEQ_1:def 3; A10: rng D1 c= rng (D1^D2) by FINSEQ_1:42; D1.(len D1) = sup A by Def2; then sup A in rng D1 by A9,FUNCT_1:def 5; then consider k such that A11: k in dom D3 & D3.k = sup A by A1,A10,FINSEQ_2:11; k in Seg(len D3) by A11,FINSEQ_1:def 3; then k <= len D3 by FINSEQ_1:3; hence contradiction by A7,A8,A11,GOBOARD2:18; end; hence thesis; end; then D3 is DivisionPoint of A by A3,Def2; then reconsider D3 as Element of S by Def4; D1 is one-to-one by JORDAN7:17; then A12:len D1 = card(rng D1) by FINSEQ_4:77; D2 is one-to-one by JORDAN7:17; then A13:len D2 = card(rng D2) by FINSEQ_4:77; A14:rng D1 c= rng (D1^D2) by FINSEQ_1:42; then A15:len D1 <= len D3 by A1,A12,CARD_1:80; A16:rng D2 c= rng (D1^D2) by FINSEQ_1:43; then A17:len D2 <= len D3 by A1,A13,CARD_1:80; take D3; thus thesis by A1,A14,A15,A16,A17,Def20; end; theorem Th50:for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D1,D2 be Element of S st f is_bounded_on A holds lower_sum(f,D1) <= upper_sum(f,D2) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D1,D2 be Element of S; assume that A1:f is_bounded_on A; consider D be Element of S such that A2:D1 <= D & D2 <= D by Th49; A3:f is_bounded_below_on A & f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A4:lower_sum(f,D1) <= lower_sum(f,D) by A2,Th48; A5:lower_sum(f,D) <= upper_sum(f,D) by A1,Th30; upper_sum(f,D) <= upper_sum(f,D2) by A2,A3,Th47; then lower_sum(f,D) <= upper_sum(f,D2) by A5,AXIOMS:22; hence thesis by A4,AXIOMS:22; end; begin :: Additivity of integral theorem Th51:for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A holds upper_integral(f) >= lower_integral(f) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; assume A1:f is_bounded_on A; dom upper_sum_set(f) is non empty by Def11; then A2:rng upper_sum_set(f) is non empty by RELAT_1:65; dom lower_sum_set(f) is non empty by Def12; then A3:rng lower_sum_set(f) is non empty by RELAT_1:65; for b be real number st b in rng upper_sum_set(f) holds lower_integral(f) <= b proof let b be real number; assume b in rng upper_sum_set(f); then consider D1 being Element of divs A such that A4: D1 in dom upper_sum_set(f) & b=(upper_sum_set(f)).D1 by PARTFUN1:26; A5: b=upper_sum(f,D1) by A4,Def11; for a being real number st a in rng lower_sum_set(f) holds a <= upper_sum(f,D1) proof let a be real number; assume a in rng lower_sum_set(f); then consider D2 being Element of divs A such that A6: D2 in dom lower_sum_set(f) & a=(lower_sum_set(f)).D2 by PARTFUN1:26; a=lower_sum(f,D2) by A6,Def12; hence thesis by A1,Th50; end; then sup rng lower_sum_set(f) <= b by A3,A5,PSCOMP_1:10; hence thesis by Def16; end; then lower_integral(f) <= inf rng upper_sum_set(f) by A2,PSCOMP_1:8; hence thesis by Def15; end; theorem Th52: for X,Y be Subset of REAL holds (-X)+(-Y)=-(X+Y) proof let X,Y be Subset of REAL; A1:(-X)+(-Y)={ x + y : x in -X & y in -Y} by COMPLSP1:def 21; A2: -(X+Y)={ -z : z in X+Y} by PSCOMP_1:def 7; A3: -X={ -z : z in X} by PSCOMP_1:def 7; A4: -Y={ -z : z in Y} by PSCOMP_1:def 7; A5: X+Y={x + y : x in X & y in Y} by COMPLSP1:def 21; for z st z in (-X)+(-Y) holds z in -(X+Y) proof let z; assume z in -(X)+(-Y); then consider x,y such that A6:z=x+y & x in -X & y in -Y by A1; consider a such that A7:x=-a & a in X by A3,A6; consider b such that A8:y=-b & b in Y by A4,A6; A9: z=-(a+b) by A6,A7,A8,XCMPLX_1:140; a+b in X+Y by A5,A7,A8; hence thesis by A2,A9; end; then A10: (-X)+(-Y) c= -(X+Y) by SUBSET_1:7; for z st z in -(X+Y) holds z in (-X)+(-Y) proof let z; assume z in -(X+Y); then consider x such that A11:z=-x & x in X+Y by A2; consider a,b such that A12:x=a+b & a in X & b in Y by A5,A11; A13: z=-a+-b by A11,A12,XCMPLX_1:140; -a in -X & -b in -Y by A3,A4,A12; hence thesis by A1,A13; end; then -(X+Y) c= (-X)+(-Y) by SUBSET_1:7; hence thesis by A10,XBOOLE_0:def 10; end; theorem Th53: for X,Y being Subset of REAL holds X is bounded_above & Y is bounded_above implies X+Y is bounded_above proof let X,Y be Subset of REAL; assume that A1:X is bounded_above and A2:Y is bounded_above; A3:(-X) is bounded_below by A1,PSCOMP_1:15; (-Y) is bounded_below by A2,PSCOMP_1:15; then (-X)+(-Y) is bounded_below by A3,COMPLSP1:95; then -(X+Y) is bounded_below by Th52; hence thesis by PSCOMP_1:15; end; theorem Th54: for X,Y be non empty Subset of REAL st X is bounded_above & Y is bounded_above holds sup(X+Y) = sup X + sup Y proof let X,Y be non empty Subset of REAL; assume that A1:X is bounded_above and A2:Y is bounded_above; A3:(-X)+(-Y)=-(X+Y) by Th52; then A4: -(X+Y) is non empty by COMPLSP1:94; A5:(-X) is bounded_below by A1,PSCOMP_1:15; A6:(-Y) is bounded_below by A2,PSCOMP_1:15; then A7: -(X+Y) is bounded_below by A3,A5,COMPLSP1:95; inf(-X+-Y) = inf(-X)+inf(-Y) by A5,A6,COMPLSP1:96; then inf(-X+-Y) = -sup(--X)+inf(-Y) by A5,PSCOMP_1:17 .= -sup X + -sup(--Y) by A6,PSCOMP_1:17 .= -(sup X + sup Y) by XCMPLX_1:140; then -sup(--(X+Y))=-(sup X + sup Y) by A3,A4,A7,PSCOMP_1:17; then -(-sup(X+Y))=sup X + sup Y; hence thesis; end; theorem Th55: for A be closed-interval Subset of REAL, f,g be Function of A,REAL, S be non empty Division of A, D be Element of S st i in Seg(len D) & f is_bounded_above_on A & g is_bounded_above_on A holds upper_volume(f+g,D).i <= upper_volume(f,D).i + upper_volume(g,D).i proof let A be closed-interval Subset of REAL; let f,g be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume A1:i in Seg(len D); assume that A2:f is_bounded_above_on A; assume that A3:g is_bounded_above_on A; A4:rng(f|divset(D,i)) is bounded_above & rng(f|divset(D,i)) is non empty proof A5: rng(f|divset(D,i)) c= rng f by FUNCT_1:76; rng f is bounded_above by A2,Th15; hence rng(f|divset(D,i)) is bounded_above by A5,RCOMP_1:4; A6: dom f = A by FUNCT_2:def 1; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (f|divset(D,i)) = divset(D,i) by A6,RELAT_1:91; hence thesis by RELAT_1:65; end; A7:rng(g|divset(D,i)) is bounded_above & rng(g|divset(D,i)) is non empty proof A8: rng(g|divset(D,i)) c= rng g by FUNCT_1:76; rng g is bounded_above by A3,Th15; hence rng(g|divset(D,i)) is bounded_above by A8,RCOMP_1:4; A9: dom g = A by FUNCT_2:def 1; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (g|divset(D,i)) = divset(D,i) by A9,RELAT_1:91; hence thesis by RELAT_1:65; end; then A10:sup(rng(f|divset(D,i))+rng(g|divset(D,i))) =sup rng(f|divset(D,i)) + sup rng(g|divset(D,i)) by A4,Th54; A11:rng(f|divset(D,i))+rng(g|divset(D,i)) is bounded_above by A4,A7,Th53; A12:rng((f+g)|divset(D,i)) is non empty proof A13: dom f = A by FUNCT_2:def 1; dom g = A by FUNCT_2:def 1; then A14: dom(f+g) = A /\ A by A13,SEQ_1:def 3; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom((f+g)|divset(D,i)) = divset(D,i) by A14,RELAT_1:91; hence thesis by RELAT_1:65; end; A15:0 <= vol(divset(D,i)) by Th11; (f+g)|divset(D,i)=f|divset(D,i) + g|divset(D,i) by RFUNCT_1:60; then rng((f+g)|divset(D,i))c=rng(f|divset(D,i))+rng(g|divset(D,i)) by Th12; then sup rng((f+g)|divset(D,i)) <= sup rng(f|divset(D,i)) + sup rng(g|divset(D,i)) by A10,A11,A12,PSCOMP_1: 13; then sup rng((f+g)|divset(D,i))*vol(divset(D,i)) <= (sup rng(f|divset(D,i)) + sup rng(g|divset(D,i)))*vol(divset(D,i)) by A15,AXIOMS:25; then sup rng((f+g)|divset(D,i))*vol(divset(D,i)) <= sup rng(f|divset(D,i))*vol(divset(D,i))+ sup rng(g|divset(D,i))*vol(divset(D,i)) by XCMPLX_1:8; then upper_volume(f+g,D).i <= sup rng(f|divset(D,i))*vol(divset(D,i))+ sup rng(g|divset(D,i))*vol(divset(D,i)) by A1,Def7; then upper_volume(f+g,D).i <= upper_volume(f,D).i+ sup rng(g|divset(D,i))*vol(divset(D,i)) by A1,Def7; hence thesis by A1,Def7; end; theorem Th56: for A be closed-interval Subset of REAL, f,g be Function of A,REAL, S be non empty Division of A, D be Element of S st i in Seg(len D) & f is_bounded_below_on A & g is_bounded_below_on A holds lower_volume(f,D).i + lower_volume(g,D).i <= lower_volume(f+g,D).i proof let A be closed-interval Subset of REAL; let f,g be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume A1:i in Seg(len D); assume that A2:f is_bounded_below_on A; assume that A3:g is_bounded_below_on A; A4:rng(f|divset(D,i)) is bounded_below & rng(f|divset(D,i)) is non empty proof A5: rng(f|divset(D,i)) c= rng f by FUNCT_1:76; rng f is bounded_below by A2,Th13; hence rng(f|divset(D,i)) is bounded_below by A5,RCOMP_1:3; A6: dom f = A by FUNCT_2:def 1; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (f|divset(D,i)) = divset(D,i) by A6,RELAT_1:91; hence thesis by RELAT_1:65; end; A7:rng(g|divset(D,i)) is bounded_below & rng(g|divset(D,i)) is non empty proof A8: rng(g|divset(D,i)) c= rng g by FUNCT_1:76; rng g is bounded_below by A3,Th13; hence rng(g|divset(D,i)) is bounded_below by A8,RCOMP_1:3; A9: dom g = A by FUNCT_2:def 1; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom (g|divset(D,i)) = divset(D,i) by A9,RELAT_1:91; hence thesis by RELAT_1:65; end; then A10:inf(rng(f|divset(D,i))+rng(g|divset(D,i))) =inf rng(f|divset(D,i)) + inf rng(g|divset(D,i)) by A4,COMPLSP1:96; A11:rng(f|divset(D,i))+rng(g|divset(D,i)) is bounded_below by A4,A7,COMPLSP1:95 ; A12:rng((f+g)|divset(D,i)) is non empty proof A13: dom f = A by FUNCT_2:def 1; dom g = A by FUNCT_2:def 1; then A14: dom(f+g) = A /\ A by A13,SEQ_1:def 3; i in dom D by A1,FINSEQ_1:def 3; then divset(D,i) c= A by Th10; then dom((f+g)|divset(D,i)) = divset(D,i) by A14,RELAT_1:91; hence thesis by RELAT_1:65; end; A15:0 <= vol(divset(D,i)) by Th11; (f+g)|divset(D,i)=f|divset(D,i) + g|divset(D,i) by RFUNCT_1:60; then rng((f+g)|divset(D,i))c=rng(f|divset(D,i))+rng(g|divset(D,i)) by Th12; then inf rng((f+g)|divset(D,i)) >= inf rng(f|divset(D,i)) + inf rng(g|divset(D,i)) by A10,A11,A12,PSCOMP_1: 12; then inf rng((f+g)|divset(D,i))*vol(divset(D,i)) >= (inf rng(f|divset(D,i)) + inf rng(g|divset(D,i)))*vol(divset(D,i)) by A15,AXIOMS:25; then inf rng((f+g)|divset(D,i))*vol(divset(D,i)) >= inf rng(f|divset(D,i))*vol(divset(D,i))+ inf rng(g|divset(D,i))*vol(divset(D,i)) by XCMPLX_1:8; then lower_volume(f+g,D).i >= inf rng(f|divset(D,i))*vol(divset(D,i))+ inf rng(g|divset(D,i))*vol(divset(D,i)) by A1,Def8; then lower_volume(f+g,D).i >= lower_volume(f,D).i+ inf rng(g|divset(D,i))*vol(divset(D,i)) by A1,Def8; hence thesis by A1,Def8; end; theorem Th57: for A be closed-interval Subset of REAL, f,g be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_above_on A & g is_bounded_above_on A holds upper_sum(f+g,D) <= upper_sum(f,D) + upper_sum(g,D) proof let A be closed-interval Subset of REAL; let f,g be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume A1:f is_bounded_above_on A & g is_bounded_above_on A; set F=upper_volume(f,D); set G=upper_volume(g,D); set H=upper_volume(f+g,D); A2:len F = len D by Def7; A3:len G = len D by Def7; A4:len H = len D by Def7; A5:F is Element of (len D)-tuples_on REAL by A2,FINSEQ_2:110; A6:G is Element of (len D)-tuples_on REAL by A3,FINSEQ_2:110; A7:H is Element of (len D)-tuples_on REAL by A4,FINSEQ_2:110; A8:F+G is Element of (len D)-tuples_on REAL proof F+G = addreal.:(F,G) by RVSUM_1:def 4; hence thesis by A5,A6,FINSEQ_2:140; end; for j st j in Seg(len D) holds H.j <= (F+G).j proof let j; assume that A9:j in Seg(len D); upper_volume(f+g,D).j <= upper_volume(f,D).j + upper_volume(g,D).j by A1,A9,Th55; hence thesis by A5,A6,RVSUM_1:27; end; then Sum H <= Sum(F+G) by A7,A8,RVSUM_1:112; then Sum H <= Sum F+Sum G by A5,A6,RVSUM_1:119; then upper_sum(f+g,D)<=Sum upper_volume(f,D)+Sum upper_volume(g,D) by Def9; then upper_sum(f+g,D)<=upper_sum(f,D)+Sum upper_volume(g,D) by Def9; hence thesis by Def9; end; theorem Th58: for A be closed-interval Subset of REAL, f,g be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_below_on A & g is_bounded_below_on A holds lower_sum(f,D) + lower_sum(g,D) <= lower_sum(f+g,D) proof let A be closed-interval Subset of REAL; let f,g be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume A1:f is_bounded_below_on A & g is_bounded_below_on A; set F=lower_volume(f,D); set G=lower_volume(g,D); set H=lower_volume(f+g,D); A2:len F = len D by Def8; A3:len G = len D by Def8; A4:len H = len D by Def8; A5:F is Element of (len D)-tuples_on REAL by A2,FINSEQ_2:110; A6:G is Element of (len D)-tuples_on REAL by A3,FINSEQ_2:110; A7:H is Element of (len D)-tuples_on REAL by A4,FINSEQ_2:110; A8:F+G is Element of (len D)-tuples_on REAL proof F+G = addreal.:(F,G) by RVSUM_1:def 4; hence thesis by A5,A6,FINSEQ_2:140; end; for j st j in Seg(len D) holds (F+G).j <= H.j proof let j; assume that A9:j in Seg(len D); lower_volume(f,D).j + lower_volume(g,D).j <= lower_volume(f+g,D).j by A1,A9,Th56; hence thesis by A5,A6,RVSUM_1:27; end; then Sum(F+G) <= Sum H by A7,A8,RVSUM_1:112; then Sum F+Sum G <= Sum H by A5,A6,RVSUM_1:119; then Sum lower_volume(f,D)+Sum lower_volume(g,D)<=lower_sum(f+g,D) by Def10; then lower_sum(f,D)+Sum lower_volume(g,D)<=lower_sum(f+g,D) by Def10; hence thesis by Def10; end; theorem for A be closed-interval Subset of REAL, f,g be Function of A,REAL st f is_bounded_on A & g is_bounded_on A & f is_integrable_on A & g is_integrable_on A holds f+g is_integrable_on A & integral(f+g)=integral(f)+integral(g) proof let A be closed-interval Subset of REAL; let f,g be Function of A,REAL; assume that A1:f is_bounded_on A and A2:g is_bounded_on A and A3:f is_integrable_on A and A4:g is_integrable_on A; A5:f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; A6:g is_bounded_above_on A & g is_bounded_below_on A by A2,RFUNCT_1:def 11; f+g is total by RFUNCT_1:66; then A7: f+g is Function of A,REAL by FUNCT_2:131; A8: f+g is_bounded_on (A /\ A) by A1,A2,RFUNCT_1:100; A9:dom upper_sum_set(f+g) = divs A by Def11; A10:dom lower_sum_set(f+g) = divs A by Def12; for D be Element of divs A st D in divs A /\ dom(upper_sum_set(f+g)) holds (inf rng f)*vol(A) + (inf rng g)*vol(A) <= (upper_sum_set(f+g)).D proof let D be Element of divs A; assume D in divs A /\ dom(upper_sum_set(f+g)); then D in dom(upper_sum_set(f+g)) by XBOOLE_0:def 3; then (upper_sum_set(f+g)).D = upper_sum((f+g),D) by Def11; then A11: lower_sum((f+g),D) <= (upper_sum_set(f+g)).D by A7,A8,Th30; lower_sum(f,D)+lower_sum(g,D) <= lower_sum((f+g),D) by A5,A6,Th58; then A12: lower_sum(f,D)+lower_sum(g,D) <= (upper_sum_set(f+g)).D by A11, AXIOMS:22; (inf rng f)*vol(A)+lower_sum(g,D) <= lower_sum(f,D)+lower_sum(g,D) proof (inf rng f)*vol(A) <= lower_sum(f,D) by A5,Th27; hence thesis by AXIOMS:24; end; then A13: (inf rng f)*vol(A)+lower_sum(g,D) <= (upper_sum_set(f+g)).D by A12,AXIOMS:22; (inf rng f)*vol(A)+(inf rng g)*vol(A)<=(inf rng f)*vol(A)+lower_sum(g,D) proof (inf rng g)*vol(A) <= lower_sum(g,D) by A6,Th27; hence thesis by AXIOMS:24; end; hence thesis by A13,AXIOMS:22; end; then upper_sum_set(f+g) is_bounded_below_on divs A by RFUNCT_1:def 10; then A14:rng upper_sum_set(f+g) is bounded_below by Th13; then A15:f+g is_upper_integrable_on A by Def13; A16:rng lower_sum_set(f+g) is bounded_above proof lower_sum_set(f+g) is_bounded_above_on divs A proof for D be Element of divs A st D in divs A /\ dom(lower_sum_set(f+g)) holds (lower_sum_set(f+g)).D <= (sup rng f)*vol(A) + (sup rng g)*vol(A) proof let D be Element of divs A; assume D in divs A /\ dom(lower_sum_set(f+g)); then D in dom(lower_sum_set(f+g)) by XBOOLE_0:def 3; then (lower_sum_set(f+g)).D = lower_sum((f+g),D) by Def12; then A17: (lower_sum_set(f+g)).D <= upper_sum((f+g),D) by A7,A8,Th30; upper_sum((f+g),D) <= upper_sum(f,D)+upper_sum(g,D) by A5,A6,Th57; then A18: (lower_sum_set(f+g)).D <= upper_sum(f,D)+upper_sum(g,D) by A17,AXIOMS:22; upper_sum(f,D)+upper_sum(g,D) <= (sup rng f)*vol(A)+upper_sum(g,D) proof upper_sum(f,D) <= (sup rng f)*vol(A) by A5,Th29; hence thesis by AXIOMS:24; end; then A19: (lower_sum_set(f+g)).D <= (sup rng f)*vol(A)+upper_sum(g,D) by A18,AXIOMS:22; (sup rng f)*vol(A)+upper_sum(g,D)<= (sup rng f)*vol(A)+(sup rng g)*vol(A) proof upper_sum(g,D) <= (sup rng g)*vol(A) by A6,Th29; hence thesis by AXIOMS:24; end; hence thesis by A19,AXIOMS:22; end; hence thesis by RFUNCT_1:def 9; end; hence thesis by Th15; end; then A20:f+g is_lower_integrable_on A by Def14; upper_integral(f+g) = lower_integral(f+g) & upper_integral(f+g) = integral(f) + integral(g) proof A21: inf rng upper_sum_set(f+g) = upper_integral(f+g) by Def15; A22: sup rng lower_sum_set(f+g) = lower_integral(f+g) by Def16; dom upper_sum_set f <> {} by Def11; then A23: rng upper_sum_set f is non empty Subset of REAL by RELAT_1:65; dom lower_sum_set f <> {} by Def12; then A24: rng lower_sum_set f is non empty Subset of REAL by RELAT_1:65; dom upper_sum_set g <> {} by Def11; then A25: rng upper_sum_set g is non empty Subset of REAL by RELAT_1:65; dom lower_sum_set g <> {} by Def12; then A26: rng lower_sum_set g is non empty Subset of REAL by RELAT_1:65; A27: for D be Element of divs A st D in divs A /\ dom upper_sum_set(f+g) holds (upper_sum_set f).D + (upper_sum_set g).D >= upper_integral(f+g) proof let D be Element of divs A; assume D in divs A /\ dom upper_sum_set(f+g); then A28: D in dom(upper_sum_set(f+g)) by XBOOLE_0:def 3; then (upper_sum_set(f+g)).D in rng upper_sum_set(f+g) by FUNCT_1:def 5; then A29: (upper_sum_set(f+g)).D >= upper_integral(f+g) by A14,A21,SEQ_4:def 5; A30: D in dom(upper_sum_set(f)) & D in dom(upper_sum_set(g)) proof A31: D in divs A; hence D in dom(upper_sum_set(f)) by Def11; thus thesis by A31,Def11; end; upper_sum(f,D)+upper_sum(g,D) >= upper_sum((f+g),D) by A5,A6,Th57; then (upper_sum_set f).D+upper_sum(g,D) >= upper_sum((f+g),D) by A30, Def11; then (upper_sum_set f).D+(upper_sum_set g).D >= upper_sum((f+g),D) by A30,Def11; then (upper_sum_set f).D+(upper_sum_set g).D>=(upper_sum_set(f+g)).D by A28,Def11; hence thesis by A29,AXIOMS:22; end; A32: for D be Element of divs A st D in divs A /\ dom lower_sum_set(f+g) holds (lower_sum_set f).D + (lower_sum_set g).D <= lower_integral(f+g) proof let D be Element of divs A; assume D in divs A /\ dom lower_sum_set(f+g); then A33: D in dom(lower_sum_set(f+g)) by XBOOLE_0:def 3; then (lower_sum_set(f+g)).D in rng lower_sum_set(f+g) by FUNCT_1:def 5; then A34: (lower_sum_set(f+g)).D <= lower_integral(f+g) by A16,A22,SEQ_4:def 4; A35: D in dom(lower_sum_set(f)) & D in dom(lower_sum_set(g)) proof A36: D in divs A; hence D in dom(lower_sum_set(f)) by Def12; thus thesis by A36,Def12; end; lower_sum(f,D)+lower_sum(g,D) <= lower_sum((f+g),D) by A5,A6,Th58; then (lower_sum_set f).D+lower_sum(g,D) <= lower_sum((f+g),D) by A35, Def12; then (lower_sum_set f).D+(lower_sum_set g).D <= lower_sum((f+g),D) by A35,Def12; then (lower_sum_set f).D+(lower_sum_set g).D<=(lower_sum_set(f+g)).D by A33,Def12; hence thesis by A34,AXIOMS:22; end; for a1 be real number st a1 in rng upper_sum_set(f) holds a1 >= upper_integral(f+g) - upper_integral(g) proof let a1 be real number; assume a1 in rng upper_sum_set(f); then consider D1 be Element of divs A such that A37: D1 in dom upper_sum_set(f) & a1=(upper_sum_set(f)).D1 by PARTFUN1:26; A38: a1=upper_sum(f,D1) by A37,Def11; for a2 being real number st a2 in rng upper_sum_set(g) holds a2 >= upper_integral(f+g) - a1 proof let a2 be real number; assume a2 in rng upper_sum_set(g); then consider D2 be Element of divs A such that A39: D2 in dom upper_sum_set(g) & a2=(upper_sum_set(g)).D2 by PARTFUN1:26; A40: a2=upper_sum(g,D2) by A39,Def11; consider D be Element of divs A such that A41: D1 <= D & D2 <= D by Th49; A42: (upper_sum_set f).D + (upper_sum_set g).D >= upper_integral(f+g) by A9,A27; A43: D in dom upper_sum_set(f) & D in dom upper_sum_set(g) proof A44: D in divs A; hence D in dom(upper_sum_set(f)) by Def11; thus thesis by A44,Def11; end; then (upper_sum_set(f)).D = upper_sum(f,D) by Def11; then A45: (upper_sum_set(f)).D <= upper_sum(f,D1) by A5,A41,Th47; (upper_sum_set(g)).D = upper_sum(g,D) by A43,Def11; then (upper_sum_set(g)).D <= upper_sum(g,D2) by A6,A41,Th47; then (upper_sum_set f).D + (upper_sum_set g).D <= upper_sum(f,D1) + upper_sum(g,D2) by A45,REAL_1:55; then upper_sum(f,D1)+upper_sum(g,D2) >= upper_integral(f+g) by A42,AXIOMS:22; hence thesis by A38,A40,REAL_1:86; end; then inf rng upper_sum_set(g) >= upper_integral(f+g) - a1 by A25, PSCOMP_1:8; then a1+inf rng upper_sum_set(g) >= upper_integral(f+g) by REAL_1:86; then a1 + upper_integral(g) >= upper_integral(f+g) by Def15; hence thesis by REAL_1:86; end; then inf rng upper_sum_set(f)>=upper_integral(f+g)-upper_integral(g) by A23,PSCOMP_1:8; then upper_integral(f) >= upper_integral(f+g) - upper_integral(g) by Def15 ; then A46: upper_integral(f) + upper_integral(g) >= upper_integral(f+g) by REAL_1:86; for a1 be real number st a1 in rng lower_sum_set(f) holds a1 <= lower_integral(f+g) - lower_integral(g) proof let a1 be real number; assume a1 in rng lower_sum_set(f); then consider D1 be Element of divs A such that A47: D1 in dom lower_sum_set(f) & a1=(lower_sum_set(f)).D1 by PARTFUN1:26; A48: a1=lower_sum(f,D1) by A47,Def12; for a2 be real number st a2 in rng lower_sum_set(g) holds a2 <= lower_integral(f+g) - a1 proof let a2 be real number; assume a2 in rng lower_sum_set(g); then consider D2 be Element of divs A such that A49: D2 in dom lower_sum_set(g) & a2=(lower_sum_set(g)).D2 by PARTFUN1:26; A50: a2=lower_sum(g,D2) by A49,Def12; consider D be Element of divs A such that A51: D1 <= D & D2 <= D by Th49; A52: (lower_sum_set f).D + (lower_sum_set g).D <= lower_integral(f+g) by A10,A32; A53: D in dom lower_sum_set(f) & D in dom lower_sum_set(g) proof A54: D in divs A; hence D in dom(lower_sum_set(f)) by Def12; thus thesis by A54,Def12; end; then (lower_sum_set(f)).D = lower_sum(f,D) by Def12; then A55: (lower_sum_set(f)).D >= lower_sum(f,D1) by A5,A51,Th48; (lower_sum_set(g)).D = lower_sum(g,D) by A53,Def12; then (lower_sum_set(g)).D >= lower_sum(g,D2) by A6,A51,Th48; then (lower_sum_set f).D + (lower_sum_set g).D >= lower_sum(f,D1) + lower_sum(g,D2) by A55,REAL_1:55; then lower_sum(f,D1)+lower_sum(g,D2) <= lower_integral(f+g) by A52,AXIOMS:22; hence thesis by A48,A50,REAL_1:84; end; then sup rng lower_sum_set(g)<= lower_integral(f+g) - a1 by A26,PSCOMP_1:10; then a1+sup rng lower_sum_set(g) <= lower_integral(f+g) by REAL_1:84; then a1 + lower_integral(g) <= lower_integral(f+g) by Def16; hence thesis by REAL_1:84; end; then sup rng lower_sum_set(f)<=lower_integral(f+g)-lower_integral(g) by A24,PSCOMP_1:10; then lower_integral(f) <= lower_integral(f+g) - lower_integral(g) by Def16 ; then A56: lower_integral(f) + lower_integral(g) <= lower_integral(f+g) by REAL_1:84; A57: upper_integral(f+g)>=lower_integral(f+g) by A7,A8,Th51; then upper_integral(f)+upper_integral(g)>=lower_integral(f+g) by A46, AXIOMS:22; then integral(f)+upper_integral(g)>=lower_integral(f+g) by Def18; then A58:integral(f)+integral(g) >= lower_integral(f+g) by Def18; A59: lower_integral(f)+lower_integral(g) =upper_integral(f) + lower_integral(g) by A3,Def17 .=upper_integral(f) + upper_integral(g) by A4,Def17 .=integral(f) + upper_integral(g) by Def18 .=integral(f) + integral(g) by Def18; then A60: integral(f)+integral(g) <= upper_integral(f+g) by A56,A57,A58,AXIOMS: 21; integral(f)+upper_integral(g)>=upper_integral(f+g) by A46,Def18; then integral(f)+integral(g) >= upper_integral(f+g) by Def18; then upper_integral(f+g)=integral(f) + integral(g) by A60,AXIOMS:21; hence thesis by A56,A58,A59,AXIOMS:21; end; hence thesis by A15,A20,Def17,Def18; end;