environ vocabulary FINSEQ_1, INTEGRA1, ARYTM, ORDINAL2, RCOMP_1, PROB_1, RELAT_1, FUNCT_1, RFINSEQ, FINSEQ_5, ARYTM_1, BOOLE, CARD_1, JORDAN3, PARTFUN1, RFUNCT_1, SEQ_2, ARYTM_3, SEQ_1, MEASURE5, RLVECT_1, FUNCT_3, SQUARE_1, FINSET_1, INTEGRA2; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, RELSET_1, SEQ_4, PARTFUN1, FUNCT_2, PSCOMP_1, FINSEQ_1, TOPREAL1, RFUNCT_1, RVSUM_1, INTEGRA1, SEQ_1, JORDAN3, PRE_CIRC, CQC_SIM1, RCOMP_1, FINSET_1, CARD_1, FINSEQ_5, RFINSEQ, BINARITH; constructors REAL_1, INTEGRA1, PRE_CIRC, CQC_SIM1, PARTFUN1, RFUNCT_1, FINSEQ_5, RFINSEQ, TOPREAL1, BINARITH, JORDAN3, PSCOMP_1; clusters XREAL_0, RELAT_1, RELSET_1, FINSEQ_1, GROUP_2, INTEGRA1, RFINSEQ, ARYTM_3, FUNCT_2, MEMBERED, ORDINAL2, NUMBERS; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin :: Lemmas of Finite Sequence reserve a,b,r,x,y,z for Real, i,j,k,n,m for Nat, x1 for set, p for FinSequence of REAL; theorem :: INTEGRA2:1 for A be closed-interval Subset of REAL, x being real number holds x in A iff inf A <= x & x <= sup A; definition let IT be FinSequence of REAL; attr IT is non-decreasing means :: INTEGRA2:def 1 for n be Nat st n in dom IT & n+1 in dom IT holds IT.n <= IT.(n+1); end; definition cluster non-decreasing FinSequence of REAL; end; theorem :: INTEGRA2:2 for p be non-decreasing FinSequence of REAL, i,j st i in dom p & j in dom p & i <= j holds p.i <= p.j; theorem :: INTEGRA2:3 for p ex q be non-decreasing FinSequence of REAL st p,q are_fiberwise_equipotent; theorem :: INTEGRA2:4 for D be non empty set, f be FinSequence of D, k1,k2,k3 be Nat st 1<=k1 & k3<=len f & k1<=k2 & k2<k3 holds mid(f,k1,k2)^mid(f,k2+1,k3)=mid(f,k1,k3); begin :: Scalar Product of Real Subset definition let A be Subset of REAL; let x be real number; func x * A -> Subset of REAL means :: INTEGRA2:def 2 for y being Real holds y in it iff ex z being Real st z in A & y = x * z; end; theorem :: INTEGRA2:5 for X,Y be non empty set, f be PartFunc of X,REAL st f is_bounded_above_on X & Y c= X holds f|Y is_bounded_above_on Y; theorem :: INTEGRA2:6 for X,Y be non empty set, f be PartFunc of X,REAL st f is_bounded_below_on X & Y c= X holds f|Y is_bounded_below_on Y; theorem :: INTEGRA2:7 for X be non empty Subset of REAL holds r*X is non empty; theorem :: INTEGRA2:8 for X be Subset of REAL holds r*X = {r*x : x in X}; theorem :: INTEGRA2:9 for X be non empty Subset of REAL st X is bounded_above & 0<=r holds r*X is bounded_above; theorem :: INTEGRA2:10 for X be non empty Subset of REAL st X is bounded_above & r<=0 holds r*X is bounded_below; theorem :: INTEGRA2:11 for X be non empty Subset of REAL st X is bounded_below & 0<=r holds r*X is bounded_below; theorem :: INTEGRA2:12 for X be non empty Subset of REAL st X is bounded_below & r<=0 holds r*X is bounded_above; theorem :: INTEGRA2:13 for X be non empty Subset of REAL st X is bounded_above & 0<=r holds sup(r*X) = r*(sup X); theorem :: INTEGRA2:14 for X be non empty Subset of REAL st X is bounded_above & r<=0 holds inf(r*X) = r*(sup X); theorem :: INTEGRA2:15 for X be non empty Subset of REAL st X is bounded_below & 0<=r holds inf(r*X) = r*(inf X); theorem :: INTEGRA2:16 for X be non empty Subset of REAL st X is bounded_below & r<=0 holds sup(r*X) = r*(inf X); begin :: Scalar Multiple of Integral theorem :: INTEGRA2:17 for X be non empty set, f be Function of X,REAL holds rng(r(#)f) = r*rng f; theorem :: INTEGRA2:18 for X,Z be non empty set, f be PartFunc of X,REAL holds rng(r(#)(f|Z)) = r*rng(f|Z); theorem :: INTEGRA2:19 for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r >= 0 holds (upper_sum_set(r(#)f)).D >= r*(inf rng f)*vol(A); theorem :: INTEGRA2:20 for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r <= 0 holds (upper_sum_set(r(#)f)).D >= r*(sup rng f)*vol(A); theorem :: INTEGRA2:21 for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r >= 0 holds (lower_sum_set(r(#)f)).D <= r*(sup rng f)*vol(A); theorem :: INTEGRA2:22 for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r <= 0 holds (lower_sum_set(r(#)f)).D <= r*(inf rng f)*vol(A); theorem :: INTEGRA2:23 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_above_on A & r >= 0 holds upper_volume(r(#)f,D).i = r*upper_volume(f,D).i; theorem :: INTEGRA2:24 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_above_on A & r <= 0 holds lower_volume(r(#)f,D).i = r*upper_volume(f,D).i; theorem :: INTEGRA2:25 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_below_on A & r >= 0 holds lower_volume(r(#)f,D).i = r*lower_volume(f,D).i; theorem :: INTEGRA2:26 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_below_on A & r <= 0 holds upper_volume(r(#)f,D).i = r*lower_volume(f,D).i; theorem :: INTEGRA2:27 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_above_on A & r >= 0 holds upper_sum(r(#)f,D) = r*upper_sum(f,D); theorem :: INTEGRA2:28 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_above_on A & r <= 0 holds lower_sum(r(#)f,D) = r*upper_sum(f,D); theorem :: INTEGRA2:29 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_below_on A & r >= 0 holds lower_sum(r(#)f,D) = r*lower_sum(f,D); theorem :: INTEGRA2:30 for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_below_on A & r <= 0 holds upper_sum(r(#)f,D) = r*lower_sum(f,D); theorem :: INTEGRA2:31 for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds r(#)f is_integrable_on A & integral(r(#)f) = r*integral(f); begin :: Monotonicity of Integral theorem :: INTEGRA2:32 for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A & f is_integrable_on A &(for x st x in A holds f.x >= 0) holds integral(f) >= 0; theorem :: INTEGRA2:33 for A be closed-interval Subset of REAL, f,g be Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A holds f-g is_integrable_on A & integral(f-g) = integral(f)-integral(g); theorem :: INTEGRA2:34 for A be closed-interval Subset of REAL, f,g be Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A & (for x st x in A holds f.x >= g.x) holds integral(f) >= integral(g); begin :: Definition of Division Sequence theorem :: INTEGRA2:35 for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A holds rng upper_sum_set(f) is bounded_below; theorem :: INTEGRA2:36 for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A holds rng lower_sum_set(f) is bounded_above; definition let A be closed-interval Subset of REAL; mode DivSequence of A is Function of NAT,divs A; end; definition let A be closed-interval Subset of REAL, T be DivSequence of A; func delta(T) -> Real_Sequence means :: INTEGRA2:def 3 for i holds it.i = delta(T.i); end; definition let A be closed-interval Subset of REAL, f be PartFunc of A,REAL, T be DivSequence of A; func upper_sum(f,T) -> Real_Sequence means :: INTEGRA2:def 4 for i holds it.i = upper_sum(f,T.i); func lower_sum(f,T) -> Real_Sequence means :: INTEGRA2:def 5 for i holds it.i = lower_sum(f,T.i); end; theorem :: INTEGRA2:37 for A be closed-interval Subset of REAL, D1,D2 be Element of divs A st D1 <= D2 holds (for j st j in dom D2 holds ex i st i in dom D1 & divset(D2,j) c= divset(D1,i)) ; theorem :: INTEGRA2:38 for X,Y be finite non empty Subset of REAL st X c= Y holds max X <= max Y; theorem :: INTEGRA2:39 for X,Y be finite non empty Subset of REAL st (ex y st y in Y & max X <= y) holds max X <= max Y; theorem :: INTEGRA2:40 for A,B be closed-interval Subset of REAL st A c= B holds vol(A) <= vol(B); theorem :: INTEGRA2:41 for A be closed-interval Subset of REAL, D1,D2 be Element of divs A st D1 <= D2 holds delta(D1) >= delta(D2);