Copyright (c) 1999 Association of Mizar Users
environ vocabulary FINSEQ_1, INTEGRA1, ARYTM, ORDINAL2, RCOMP_1, PROB_1, RELAT_1, FUNCT_1, RFINSEQ, FINSEQ_5, ARYTM_1, BOOLE, CARD_1, JORDAN3, PARTFUN1, RFUNCT_1, SEQ_2, ARYTM_3, SEQ_1, MEASURE5, RLVECT_1, FUNCT_3, SQUARE_1, FINSET_1, INTEGRA2; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, FUNCT_1, RELSET_1, SEQ_4, PARTFUN1, FUNCT_2, PSCOMP_1, FINSEQ_1, TOPREAL1, RFUNCT_1, RVSUM_1, INTEGRA1, SEQ_1, JORDAN3, PRE_CIRC, CQC_SIM1, RCOMP_1, FINSET_1, CARD_1, FINSEQ_5, RFINSEQ, BINARITH; constructors REAL_1, INTEGRA1, PRE_CIRC, CQC_SIM1, PARTFUN1, RFUNCT_1, FINSEQ_5, RFINSEQ, TOPREAL1, BINARITH, JORDAN3, PSCOMP_1; clusters XREAL_0, RELAT_1, RELSET_1, FINSEQ_1, GROUP_2, INTEGRA1, RFINSEQ, ARYTM_3, FUNCT_2, MEMBERED, ORDINAL2, NUMBERS; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; definitions TARSKI, XBOOLE_0; theorems AXIOMS, REAL_1, SEQ_4, SUBSET_1, REAL_2, PARTFUN1, PSCOMP_1, INTEGRA1, RFUNCT_1, FUNCT_1, FINSEQ_1, RVSUM_1, NEWTON, SEQ_1, PRE_CIRC, RCOMP_1, NAT_1, GOBOARD2, RFINSEQ, GOBOARD1, CQC_SIM1, CARD_1, FINSEQ_5, TOPREAL1, FINSEQ_3, JORDAN3, RELAT_1, FUNCT_2, XREAL_0, SCMFSA_7, XBOOLE_0, XBOOLE_1, SQUARE_1, XCMPLX_0, XCMPLX_1; schemes SUBSET_1, SEQ_1, NAT_1, REAL_1; begin :: Lemmas of Finite Sequence reserve a,b,r,x,y,z for Real, i,j,k,n,m for Nat, x1 for set, p for FinSequence of REAL; theorem for A be closed-interval Subset of REAL, x being real number holds x in A iff inf A <= x & x <= sup A proof let A be closed-interval Subset of REAL; let x be real number; hereby assume x in A; then x in [.inf A,sup A.] by INTEGRA1:5; then x in {a: inf A <= a & a <= sup A} by RCOMP_1:def 1; then ex a st a=x & inf A <= a & a <= sup A; hence inf A <= x & x <= sup A; end; A1: x is Real by XREAL_0:def 1; assume inf A <= x & x <= sup A; then x in {a: inf A <= a & a <= sup A} by A1; then x in [.inf A,sup A.] by RCOMP_1:def 1; hence thesis by INTEGRA1:5; end; definition let IT be FinSequence of REAL; attr IT is non-decreasing means :Def1: for n be Nat st n in dom IT & n+1 in dom IT holds IT.n <= IT.(n+1); end; definition cluster non-decreasing FinSequence of REAL; existence proof take f = <*>REAL; let n; assume n in dom f & n+1 in dom f; hence f.n <= f.(n+1); end; end; theorem for p be non-decreasing FinSequence of REAL, i,j st i in dom p & j in dom p & i <= j holds p.i <= p.j proof let p be non-decreasing FinSequence of REAL; let i,j; assume A1:i in dom p; assume A2:j in dom p; assume i <= j; then consider n such that A3:j = i + n by NAT_1:28; defpred P[Nat] means for i,j st j = i + $1 & i in dom p & j in dom p holds p.i <= p.j; A4:P[0]; A5:for k st P[k] holds P[k+1] proof let k; assume A6:P[k]; P[k+1] proof let i,j; assume A7:j=i+(k+1); assume A8:i in dom p; assume A9:j in dom p; reconsider l=i+k as Nat; A10: j=l+1 by A7,XCMPLX_1:1; 1 <= i & 0 <= k by A8,FINSEQ_3:27,NAT_1:18; then A11: 1+0 <= l by REAL_1:55; j <= len p by A9,FINSEQ_3:27; then l < len p by A10,NAT_1:38; then A12: l in dom p by A11,FINSEQ_3:27; then A13: p.i <= p.l by A6,A8; p.l <= p.j by A9,A10,A12,Def1; hence thesis by A13,AXIOMS:22; end; hence thesis; end; for k holds P[k] from Ind(A4,A5); hence thesis by A1,A2,A3; end; theorem for p ex q be non-decreasing FinSequence of REAL st p,q are_fiberwise_equipotent proof let p; consider q being non-increasing FinSequence of REAL such that A1:p,q are_fiberwise_equipotent by RFINSEQ:35; A2:Rev q is non-decreasing FinSequence of REAL proof for n be Nat st n in dom Rev q & n+1 in dom Rev q holds (Rev q).n <= (Rev q).(n+1) proof let n; assume A3:n in dom Rev q & n+1 in dom Rev q; (Rev q).n <= (Rev q).(n+1) proof set x=(Rev q).n, y=(Rev q).(n+1); A4: x = q.(len q - n + 1) by A3,FINSEQ_5:def 3; A5: y = q.(len q - (n+1) + 1) by A3,FINSEQ_5:def 3; n in Seg len Rev q by A3,FINSEQ_1:def 3; then n in Seg len q by FINSEQ_5:def 3; then n <= len q by FINSEQ_1:3; then consider m such that A6: len q = n + m by NAT_1:28; A7: m = len q - n by A6,XCMPLX_1:26; A8: m + 1 = len q - n + 1 by A6,XCMPLX_1:26; A9: len q - n + 1 in dom q proof 1 <= len q - n + 1 & len q - n + 1 <= len q proof thus 1<=len q-n+1 by A7,NAT_1:29; n in Seg len Rev q by A3,FINSEQ_1:def 3; then 1 <= n by FINSEQ_1:3; then n - 1 >= 0 by SQUARE_1:12; then len q + 0 <= len q + (n - 1) by REAL_1:55; then len q - (n - 1) <= len q by REAL_1:86; hence thesis by XCMPLX_1:37; end; then len q - n + 1 in Seg len q by A8,FINSEQ_1:3; hence thesis by FINSEQ_1:def 3; end; A10: len q - (n+1) + 1 = len q-n-1+1 by XCMPLX_1:36 .= len q-n-(1-1) by XCMPLX_1:37 .= len q-n; n+1 in Seg len Rev q by A3,FINSEQ_1:def 3; then n+1 in Seg len q by FINSEQ_5:def 3; then n+1 <= len q by FINSEQ_1:3; then A11: 1 <= len q - (n+1) + 1 by A10,REAL_1:84; len q <= len q + n by NAT_1:29; then len q - (n+1) + 1 <= len q by A10,REAL_1:86; then len q - (n+1) + 1 in Seg len q by A7,A10,A11,FINSEQ_1:3; then len q - (n+1) + 1 in dom q by FINSEQ_1:def 3; hence thesis by A4,A5,A9,A10,RFINSEQ:def 4; end; hence thesis; end; hence thesis by Def1; end; A12:p,Rev q are_fiberwise_equipotent proof defpred P[Nat] means for p be FinSequence of REAL,q be non-increasing FinSequence of REAL st len p = $1 & p,q are_fiberwise_equipotent holds p,Rev q are_fiberwise_equipotent; A13: P[0] proof let p be FinSequence of REAL; let q be non-increasing FinSequence of REAL; assume A14:len p = 0; assume A15:p,q are_fiberwise_equipotent; p = {} by A14,FINSEQ_1:25; then A16: rng p = {} by FINSEQ_1:27; len q = 0 by A14,A15,RFINSEQ:16; then len Rev q = 0 by FINSEQ_5:def 3; then Rev q = {} by FINSEQ_1:25; then A17: rng Rev q = {} by FINSEQ_1:27; for x be set holds card (p"{x}) = card((Rev q)"{x}) proof let x be set; card (p"{x}) = 0 by A16,CARD_1:78,FUNCT_1:142; hence thesis by A17,CARD_1:78,FUNCT_1:142; end; hence thesis by RFINSEQ:def 1; end; A18: for k st P[k] holds P[k+1] proof let k; assume A19:P[k]; P[k+1] proof let p be FinSequence of REAL; let q be non-increasing FinSequence of REAL; assume A20:len p = k+1; assume A21:p,q are_fiberwise_equipotent; A22: k <= len p by A20,NAT_1:29; consider q1 being non-increasing FinSequence of REAL such that A23: p,q1 are_fiberwise_equipotent by RFINSEQ:35; len p = len q1 by A23,RFINSEQ:16; then A24: len(q1|k) = k by A22,TOPREAL1:3; q,q1 are_fiberwise_equipotent by A21,A23,RFINSEQ:2; then A25: q=q1 by RFINSEQ:36; reconsider q1k = q1|k as non-increasing FinSequence of REAL by RFINSEQ:33; q1|k,Rev(q1k) are_fiberwise_equipotent by A19,A24; then A26: (q1|k)^<*q1.(k+1)*>,Rev(q1k)^<*q1.(k+1)*> are_fiberwise_equipotent by RFINSEQ:14; A27: len q1= k+1 by A20,A23,RFINSEQ:16; then A28: q1,Rev(q1k)^<*q1.(k+1)*> are_fiberwise_equipotent by A26,RFINSEQ:20; Rev(q1k)^<*q1.(k+1)*>,<*q1.(k+1)*>^Rev(q1k) are_fiberwise_equipotent by RFINSEQ:15; then A29: q1,<*q1.(k+1)*>^Rev(q1k) are_fiberwise_equipotent by A28,RFINSEQ: 2; <*q1.(k+1)*>^Rev(q1k) = Rev((q1|k)^<*q1.(k+1)*>) by FINSEQ_5:66 .= Rev(q1) by A27,RFINSEQ:20; hence thesis by A23,A25,A29,RFINSEQ:2; end; hence thesis; end; A30: for k holds P[k] from Ind(A13,A18); len p = len p; hence thesis by A1,A30; end; reconsider r=Rev q as non-decreasing FinSequence of REAL by A2; take r; thus thesis by A12; end; theorem for D be non empty set, f be FinSequence of D, k1,k2,k3 be Nat st 1<=k1 & k3<=len f & k1<=k2 & k2<k3 holds mid(f,k1,k2)^mid(f,k2+1,k3)=mid(f,k1,k3) proof let D be non empty set; let f be FinSequence of D; let k1,k2,k3 be Nat; assume A1:1<=k1 & k3<=len f & k1<=k2 & k2<k3; then A2:1 <= k2 & k2 <= len f by AXIOMS:22; then A3:1<=k1 & k1<=len f & 1<=k2 & k2<=len f & 1<=k3 & k3<=len f & k1<=k2 & k2<k3 by A1,AXIOMS:22; A4:1<=k2+1 & k2+1<=k3 & k1<k3 by A1,A2,AXIOMS:22,NAT_1:38; then A5:1<=k2+1 & k2+1<=k3 & k2+1<=len f & k1<=k3 & k1 <= k2+1 by A1,AXIOMS:22,NAT_1:37; A6:len mid(f,k1,k2)=k2-'k1+1 by A3,JORDAN3:27 .=k2-k1+1 by A1,SCMFSA_7:3; A7:len mid(f,k2+1,k3)=k3-'(k2+1)+1 by A3,A5,JORDAN3:27 .=k3-(k2+1)+1 by A4,SCMFSA_7:3 .=k3-((k2+1)-1) by XCMPLX_1:37 .=k3-(k2+(1-1)) by XCMPLX_1:29 .=k3-k2; then A8:len(mid(f,k1,k2)^mid(f,k2+1,k3))=(k2-k1+1)+(k3-k2) by A6,FINSEQ_1:35 .=(k3-k2)+(k2-k1)+1 by XCMPLX_1:1 .=k3-k1+1 by XCMPLX_1:39; A9:len mid(f,k1,k3)=k3-'k1+1 by A3,A4,JORDAN3:27 .=k3-k1+1 by A4,SCMFSA_7:3; for k st 1<=k & k<=len(mid(f,k1,k2)^mid(f,k2+1,k3)) holds (mid(f,k1,k2)^mid(f,k2+1,k3)).k = mid(f,k1,k3).k proof let k; assume A10:1<=k & k<=len(mid(f,k1,k2)^mid(f,k2+1,k3)); then k in Seg len(mid(f,k1,k2)^mid(f,k2+1,k3)) by FINSEQ_1:3; then A11: k in dom(mid(f,k1,k2)^mid(f,k2+1,k3)) by FINSEQ_1:def 3; now per cases by A11,FINSEQ_1:38; suppose A12:k in dom mid(f,k1,k2); then k in Seg len mid(f,k1,k2) by FINSEQ_1:def 3; then A13: 1 <= k & k <= k2-k1+1 by A6,FINSEQ_1:3; k2-k1 <= k3-k1 by A1,REAL_1:49; then k2-k1+1 <= k3-k1+1 by AXIOMS:24; then A14: k <= k3-k1+1 by A13,AXIOMS:22; (mid(f,k1,k2)^mid(f,k2+1,k3)).k=mid(f,k1,k2).k by A12,FINSEQ_1:def 7 .=f.(k-1+k1) by A1,A2,A13,JORDAN3:31; hence (mid(f,k1,k2)^mid(f,k2+1,k3)).k = mid(f,k1,k3).k by A1,A4,A13,A14,JORDAN3:31; suppose ex n st n in dom mid(f,k2+1,k3)&k=len mid(f,k1,k2)+n; then consider n such that A15: n in dom mid(f,k2+1,k3) & k=len mid(f,k1,k2)+n; k3-k2-1=k3-(k2+1) by XCMPLX_1:36; then A16: k3-k2=k3-(k2+1)+1 by XCMPLX_1:27; n in Seg len mid(f,k2+1,k3) by A15,FINSEQ_1:def 3; then A17: 1 <= n & n <= k3-(k2+1)+1 by A7,A16,FINSEQ_1:3; A18: (mid(f,k1,k2)^mid(f,k2+1,k3)).k=mid(f,k2+1,k3).n by A15,FINSEQ_1:def 7 .=f.(n+(k2+1)-1) by A1,A4,A17,JORDAN3:31 .=f.(n+k2+1-1) by XCMPLX_1:1 .=f.(n+k2+(1-1)) by XCMPLX_1:29 .=f.(n+k2+0); mid(f,k1,k3).k=f.(len mid(f,k1,k2)+n+k1-1) by A1,A4,A8,A10,A15,JORDAN3: 31 .=f.(k2-(k1-1)+n+k1-1) by A6,XCMPLX_1:37 .=f.(k2-(k1-1)+n+(k1-1)) by XCMPLX_1:29 .=f.(k2-(k1-1)+(n+(k1-1))) by XCMPLX_1:1 .=f.(n+k2) by XCMPLX_1:28; hence thesis by A18; end; hence thesis; end; hence thesis by A8,A9,FINSEQ_1:18; end; begin :: Scalar Product of Real Subset definition let A be Subset of REAL; let x be real number; func x * A -> Subset of REAL means :Def2:for y being Real holds y in it iff ex z being Real st z in A & y = x * z; existence proof defpred P[set] means ex z being Real st z in A & $1 = x * z; consider B being Subset of REAL such that A1:for y being Real holds y in B iff P[y] from SepReal; reconsider B as Subset of REAL; take B; thus thesis by A1; end; uniqueness proof let A1,A2 being Subset of REAL such that A2:for y being Real holds y in A1 iff ex z being Real st z in A & y = x * z and A3:for y being Real holds y in A2 iff ex z being Real st z in A & y = x * z; A4:A1 c= A2 proof let y be set; assume A5:y in A1; then reconsider y as Real; ex z being Real st (z in A & y = x * z) by A2,A5; hence thesis by A3; end; A2 c= A1 proof let y be set; assume A6:y in A2; then reconsider y as Real; ex z being Real st z in A & y = x * z by A3,A6; hence thesis by A2; end; hence thesis by A4,XBOOLE_0:def 10; end; end; theorem for X,Y be non empty set, f be PartFunc of X,REAL st f is_bounded_above_on X & Y c= X holds f|Y is_bounded_above_on Y proof let X,Y be non empty set; let f be PartFunc of X,REAL; assume A1:f is_bounded_above_on X; assume A2:Y c= X; consider a be real number such that A3:for x being Element of X st x in X /\ dom f holds a>=f.x by A1,RFUNCT_1:def 9; for x being Element of X st x in Y /\ dom (f|Y) holds a>=(f|Y).x proof let x be Element of X; assume x in Y /\ dom (f|Y); then A4: x in dom (f|Y) by XBOOLE_0:def 3; then A5: x in dom f /\ Y by FUNCT_1:68; reconsider x as Element of X; dom f /\ Y c= dom f /\ X by A2,XBOOLE_1:26; then a >= f.x by A3,A5; hence thesis by A4,FUNCT_1:68; end; hence thesis by RFUNCT_1:def 9; end; theorem for X,Y be non empty set, f be PartFunc of X,REAL st f is_bounded_below_on X & Y c= X holds f|Y is_bounded_below_on Y proof let X,Y be non empty set; let f be PartFunc of X,REAL; assume A1:f is_bounded_below_on X; assume A2:Y c= X; consider a be real number such that A3:for x being Element of X st x in X /\ dom f holds f.x>=a by A1,RFUNCT_1:def 10; for x being Element of X st x in Y /\ dom (f|Y) holds (f|Y).x>=a proof let x be Element of X; assume x in Y /\ dom (f|Y); then A4: x in dom (f|Y) by XBOOLE_0:def 3; then A5: x in dom f /\ Y by FUNCT_1:68; reconsider x as Element of X; dom f /\ Y c= dom f /\ X by A2,XBOOLE_1:26; then a <= f.x by A3,A5; hence thesis by A4,FUNCT_1:68; end; hence thesis by RFUNCT_1:def 10; end; theorem Th7: for X be non empty Subset of REAL holds r*X is non empty proof let X be non empty Subset of REAL; consider x such that A1:x in X by SUBSET_1:10; reconsider x as Real; ex z being Real st z in X & r * x = r * z by A1; hence thesis by Def2; end; theorem Th8: for X be Subset of REAL holds r*X = {r*x : x in X} proof let X be Subset of REAL; thus r*X c= {r*x : x in X} proof let y be set; assume y in r*X; then consider z being Real such that A1: z in X & y = r * z by Def2; thus thesis by A1; end; let y be set; assume y in {r*x : x in X}; then consider z being Real such that A2: y = r * z & z in X; thus thesis by A2,Def2; end; theorem for X be non empty Subset of REAL st X is bounded_above & 0<=r holds r*X is bounded_above proof let X be non empty Subset of REAL; assume A1:X is bounded_above & 0<=r; then consider b be real number such that A2:for x be real number st x in X holds x <= b by SEQ_4:def 1; for y be real number st y in r*X holds y <= r*b proof let y be real number; assume y in r*X; then y in {r*x : x in X} by Th8; then consider x such that A3: y=r*x & x in X; x <= b by A2,A3; hence thesis by A1,A3,AXIOMS:25; end; hence thesis by SEQ_4:def 1; end; theorem for X be non empty Subset of REAL st X is bounded_above & r<=0 holds r*X is bounded_below proof let X be non empty Subset of REAL; assume A1:X is bounded_above & r<=0; then consider b be real number such that A2:for x be real number st x in X holds x <= b by SEQ_4:def 1; for y be real number st y in r*X holds r*b <= y proof let y be real number; assume y in r*X; then y in {r*x : x in X} by Th8; then consider x such that A3: y=r*x & x in X; x <= b by A2,A3; hence thesis by A1,A3,REAL_1:52; end; hence thesis by SEQ_4:def 2; end; theorem for X be non empty Subset of REAL st X is bounded_below & 0<=r holds r*X is bounded_below proof let X be non empty Subset of REAL; assume A1:X is bounded_below & 0<=r; then consider b be real number such that A2:for x be real number st x in X holds b <= x by SEQ_4:def 2; for y be real number st y in r*X holds r*b <= y proof let y be real number; assume y in r*X; then y in {r*x : x in X} by Th8; then consider x such that A3: y=r*x & x in X; b <= x by A2,A3; hence thesis by A1,A3,AXIOMS:25; end; hence thesis by SEQ_4:def 2; end; theorem for X be non empty Subset of REAL st X is bounded_below & r<=0 holds r*X is bounded_above proof let X be non empty Subset of REAL; assume A1:X is bounded_below & r<=0; then consider b be real number such that A2:for x be real number st x in X holds b <= x by SEQ_4:def 2; for y be real number st y in r*X holds y <= r*b proof let y be real number; assume y in r*X; then y in {r*x : x in X} by Th8; then consider x such that A3: y=r*x & x in X; b <= x by A2,A3; hence thesis by A1,A3,REAL_1:52; end; hence thesis by SEQ_4:def 1; end; theorem Th13:for X be non empty Subset of REAL st X is bounded_above & 0<=r holds sup(r*X) = r*(sup X) proof let X be non empty Subset of REAL; assume A1:X is bounded_above & 0<=r; A2:for a be real number st a in r*X holds a <= r*(sup X) proof let a be real number; assume a in r*X; then a in {r*x : x in X} by Th8; then consider x such that A3: a=r*x & x in X; x <= sup X by A1,A3,SEQ_4:def 4; hence thesis by A1,A3,AXIOMS:25; end; A4:for b be real number st for a be real number st a in r*X holds a <= b holds r*(sup X) <= b proof let b be real number; assume A5:for a be real number st a in r*X holds a <= b; consider x such that A6: x in X by SUBSET_1:10; r*x in {r*y : y in X} by A6; then A7: r*x in r*X by Th8; now per cases by A1; suppose r=0; hence r*(sup X) <= b by A5,A7; suppose A8:r>0; for z be real number st z in X holds z <= b/r proof let z be real number; assume z in X; then r*z in {r*y : y in X}; then r*z in r*X by Th8; then r*z <= b by A5; hence thesis by A8,REAL_2:177; end; then sup X <= b/r by PSCOMP_1:10; then r*(sup X) <= b/r*r by A8,AXIOMS:25; hence r*(sup X) <= b by A8,XCMPLX_1:88; end; hence thesis; end; r*X is non empty Subset of REAL by Th7; hence thesis by A2,A4,PSCOMP_1:11; end; theorem Th14:for X be non empty Subset of REAL st X is bounded_above & r<=0 holds inf(r*X) = r*(sup X) proof let X be non empty Subset of REAL; assume A1:X is bounded_above & r<=0; A2:for a be real number st a in r*X holds r*(sup X) <= a proof let a be real number; assume a in r*X; then a in {r*x : x in X} by Th8; then consider x such that A3: a=r*x & x in X; x <= sup X by A1,A3,SEQ_4:def 4; hence thesis by A1,A3,REAL_1:52; end; A4:for b be real number st for a be real number st a in r*X holds a >= b holds r*(sup X) >= b proof let b be real number; assume A5:for a be real number st a in r*X holds a >= b; consider x such that A6: x in X by SUBSET_1:10; r*x in {r*y : y in X} by A6; then A7: r*x in r*X by Th8; now per cases by A1; suppose r=0; hence r*(sup X) >= b by A5,A7; suppose A8:r<0; for z be real number st z in X holds z <= b/r proof let z be real number; assume z in X; then r*z in {r*y : y in X}; then r*z in r*X by Th8; then r*z >= b by A5; hence thesis by A8,REAL_2:177; end; then sup X <= b/r by PSCOMP_1:10; then r*(sup X) >= b/r*r by A8,REAL_1:52; hence r*(sup X) >= b by A8,XCMPLX_1:88; end; hence thesis; end; r*X is non empty Subset of REAL by Th7; hence thesis by A2,A4,PSCOMP_1:9; end; theorem Th15:for X be non empty Subset of REAL st X is bounded_below & 0<=r holds inf(r*X) = r*(inf X) proof let X be non empty Subset of REAL; assume A1:X is bounded_below & 0<=r; A2:for a being real number st a in r*X holds r*(inf X) <= a proof let a be real number; assume a in r*X; then a in {r*x : x in X} by Th8; then consider x such that A3: a=r*x & x in X; inf X <= x by A1,A3,SEQ_4:def 5; hence thesis by A1,A3,AXIOMS:25; end; A4:for b be real number st for a be real number st a in r*X holds a >= b holds r*(inf X) >= b proof let b be real number; assume A5:for a be real number st a in r*X holds a >= b; consider x such that A6: x in X by SUBSET_1:10; r*x in {r*y : y in X} by A6; then A7: r*x in r*X by Th8; now per cases by A1; suppose r=0; hence r*(inf X) >= b by A5,A7; suppose A8:r>0; for z be real number st z in X holds z >= b/r proof let z be real number; assume z in X; then r*z in {r*y : y in X}; then r*z in r*X by Th8; then r*z >= b by A5; hence thesis by A8,REAL_2:177; end; then inf X >= b/r by PSCOMP_1:8; then r*(inf X) >= b/r*r by A8,AXIOMS:25; hence r*(inf X) >= b by A8,XCMPLX_1:88; end; hence thesis; end; r*X is non empty Subset of REAL by Th7; hence thesis by A2,A4,PSCOMP_1:9; end; theorem Th16:for X be non empty Subset of REAL st X is bounded_below & r<=0 holds sup(r*X) = r*(inf X) proof let X be non empty Subset of REAL; assume A1:X is bounded_below & r<=0; A2:for a be real number st a in r*X holds r*(inf X) >= a proof let a be real number; assume a in r*X; then a in {r*x : x in X} by Th8; then consider x such that A3: a=r*x & x in X; inf X <= x by A1,A3,SEQ_4:def 5; hence thesis by A1,A3,REAL_1:52; end; A4:for b be real number st for a be real number st a in r*X holds a <= b holds r*(inf X) <= b proof let b be real number; assume A5: for a being real number st a in r*X holds a <= b; consider x such that A6: x in X by SUBSET_1:10; r*x in {r*y : y in X} by A6; then A7: r*x in r*X by Th8; now per cases by A1; suppose r=0; hence r*(inf X) <= b by A5,A7; suppose A8:r<0; for z be real number st z in X holds z >= b/r proof let z be real number; assume z in X; then r*z in {r*y : y in X}; then r*z in r*X by Th8; then r*z <= b by A5; hence thesis by A8,REAL_2:177; end; then inf X >= b/r by PSCOMP_1:8; then r*(inf X) <= b/r*r by A8,REAL_1:52; hence r*(inf X) <= b by A8,XCMPLX_1:88; end; hence thesis; end; r*X is non empty Subset of REAL by Th7; hence thesis by A2,A4,PSCOMP_1:11; end; begin :: Scalar Multiple of Integral theorem Th17: for X be non empty set, f be Function of X,REAL holds rng(r(#)f) = r*rng f proof let X be non empty set; let f be Function of X,REAL; A1:rng(r(#)f) c= r*rng f proof for y holds y in rng(r(#)f) implies y in r*rng f proof let y; assume y in rng(r(#)f); then consider x being Element of X such that A2: x in dom(r(#)f) & y=(r(#)f).x by PARTFUN1:26; A3: y = r*(f.x) by A2,RFUNCT_1:73; x in dom f by A2,SEQ_1:def 6; then f.x in rng f by FUNCT_1:def 5; then y in {r*b : b in rng f} by A3; hence thesis by Th8; end; hence thesis by SUBSET_1:7; end; r*rng f c= rng(r(#)f) proof for y holds y in r*rng f implies y in rng(r(#)f) proof let y; assume y in r*rng f; then y in {r*b : b in rng f} by Th8; then consider b such that A4: y=r*b & b in rng f; consider x being Element of X such that A5: x in dom f & b=f.x by A4,PARTFUN1:26; x in dom(r(#)f) by A5,SEQ_1:def 6; then (r(#)f).x in rng(r(#)f) by FUNCT_1:def 5; hence thesis by A4,A5,RFUNCT_1:73; end; hence thesis by SUBSET_1:7; end; hence thesis by A1,XBOOLE_0:def 10; end; theorem Th18: for X,Z be non empty set, f be PartFunc of X,REAL holds rng(r(#)(f|Z)) = r*rng(f|Z) proof let X,Z be non empty set; let f be PartFunc of X,REAL; A1:rng(r(#)f|Z) c= r*rng(f|Z) proof for y holds y in rng(r(#)f|Z) implies y in r*rng(f|Z) proof let y; assume y in rng(r(#)f|Z); then consider x be Element of X such that A2: x in dom(r(#)f|Z) & y=(r(#)f|Z).x by PARTFUN1:26; A3: y=r*(f|Z).x by A2,SEQ_1:def 6; x in dom(f|Z) by A2,SEQ_1:def 6; then (f|Z).x in rng(f|Z) by FUNCT_1:def 5; then y in {r*b : b in rng(f|Z)} by A3; hence thesis by Th8; end; hence thesis by SUBSET_1:7; end; r*rng(f|Z) c= rng(r(#)f|Z) proof for y holds y in r*rng(f|Z) implies y in rng(r(#)f|Z) proof let y; assume y in r*rng(f|Z); then y in {r*b : b in rng(f|Z)} by Th8; then consider b such that A4: y=r*b & b in rng(f|Z); consider x being Element of X such that A5: x in dom(f|Z) & b=(f|Z).x by A4,PARTFUN1:26; A6: x in dom(r(#)f|Z) by A5,SEQ_1:def 6; then y= (r(#)f|Z).x by A4,A5,SEQ_1:def 6; hence thesis by A6,FUNCT_1:def 5; end; hence thesis by SUBSET_1:7; end; hence thesis by A1,XBOOLE_0:def 10; end; theorem Th19: for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r >= 0 holds (upper_sum_set(r(#)f)).D >= r*(inf rng f)*vol(A) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let D be Element of divs A; assume that A1:f is_bounded_on A and A2:r >= 0; A3:dom(upper_sum_set(r(#)f))=divs A by INTEGRA1:def 11; r(#)f is total by RFUNCT_1:67; then A4: r(#)f is Function of A, REAL by FUNCT_2:131; A5:r(#)f is_bounded_on A by A1,RFUNCT_1:97; then A6:r(#)f is_bounded_below_on A & r(#) f is_bounded_above_on A by RFUNCT_1:def 11; f is_bounded_below_on A & f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A7:rng f is bounded_below by INTEGRA1:13; (upper_sum_set(r(#)f)).D = upper_sum(r(#)f,D) by A3,INTEGRA1:def 11; then A8:(upper_sum_set(r(#)f)).D >= lower_sum(r(#)f,D) by A4,A5,INTEGRA1:30; A9:lower_sum(r(#)f,D) >= (inf rng(r(#)f))*vol(A) by A4,A6,INTEGRA1:27; (inf rng(r(#)f))=inf (r*(rng f)) by Th17 .=r*(inf rng f) by A2,A7,Th15; hence thesis by A8,A9,AXIOMS:22; end; theorem Th20: for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r <= 0 holds (upper_sum_set(r(#)f)).D >= r*(sup rng f)*vol(A) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let D be Element of divs A; assume that A1:f is_bounded_on A and A2:r <= 0; A3:dom(upper_sum_set(r(#)f))=divs A by INTEGRA1:def 11; r(#)f is total by RFUNCT_1:67; then A4: r(#)f is Function of A, REAL by FUNCT_2:131; A5:r(#)f is_bounded_on A by A1,RFUNCT_1:97; then A6:r(#)f is_bounded_below_on A & r(#) f is_bounded_above_on A by RFUNCT_1:def 11; f is_bounded_below_on A & f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A7:rng f is bounded_above by INTEGRA1:15; (upper_sum_set(r(#)f)).D = upper_sum(r(#)f,D) by A3,INTEGRA1:def 11; then A8:(upper_sum_set(r(#)f)).D >= lower_sum(r(#)f,D) by A4,A5,INTEGRA1:30; A9:lower_sum(r(#)f,D) >= (inf rng(r(#)f))*vol(A) by A4,A6,INTEGRA1:27; (inf rng(r(#)f))=inf (r*(rng f)) by Th17 .=r*(sup rng f) by A2,A7,Th14; hence thesis by A8,A9,AXIOMS:22; end; theorem Th21: for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r >= 0 holds (lower_sum_set(r(#)f)).D <= r*(sup rng f)*vol(A) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let D be Element of divs A; assume that A1:f is_bounded_on A and A2:r >= 0; A3:dom(lower_sum_set(r(#)f))=divs A by INTEGRA1:def 12; r(#)f is total by RFUNCT_1:67; then A4: r(#)f is Function of A, REAL by FUNCT_2:131; A5:r(#)f is_bounded_on A by A1,RFUNCT_1:97; then A6:r(#)f is_bounded_below_on A & r(#) f is_bounded_above_on A by RFUNCT_1:def 11; f is_bounded_below_on A & f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A7:rng f is bounded_above by INTEGRA1:15; (lower_sum_set(r(#)f)).D = lower_sum(r(#)f,D) by A3,INTEGRA1:def 12; then A8:(lower_sum_set(r(#)f)).D <= upper_sum(r(#)f,D) by A4,A5,INTEGRA1:30; A9:upper_sum(r(#)f,D) <= (sup rng(r(#)f))*vol(A) by A4,A6,INTEGRA1:29; (sup rng(r(#)f))=sup (r*(rng f)) by Th17 .=r*(sup rng f) by A2,A7,Th13; hence thesis by A8,A9,AXIOMS:22; end; theorem Th22: for A be closed-interval Subset of REAL, f be Function of A,REAL, D be Element of divs A st f is_bounded_on A & r <= 0 holds (lower_sum_set(r(#)f)).D <= r*(inf rng f)*vol(A) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let D be Element of divs A; assume that A1:f is_bounded_on A and A2:r <= 0; A3:dom(lower_sum_set(r(#)f))=divs A by INTEGRA1:def 12; r(#)f is total by RFUNCT_1:67; then A4: r(#)f is Function of A, REAL by FUNCT_2:131; A5:r(#)f is_bounded_on A by A1,RFUNCT_1:97; then A6:r(#)f is_bounded_below_on A & r(#) f is_bounded_above_on A by RFUNCT_1:def 11; f is_bounded_below_on A & f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A7:rng f is bounded_below by INTEGRA1:13; (lower_sum_set(r(#)f)).D = lower_sum(r(#)f,D) by A3,INTEGRA1:def 12; then A8:(lower_sum_set(r(#)f)).D <= upper_sum(r(#)f,D) by A4,A5,INTEGRA1:30; A9:upper_sum(r(#)f,D) <= (sup rng(r(#)f))*vol(A) by A4,A6,INTEGRA1:29; (sup rng(r(#)f))=sup (r*(rng f)) by Th17 .=r*(inf rng f) by A2,A7,Th16; hence thesis by A8,A9,AXIOMS:22; end; theorem Th23: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_above_on A & r >= 0 holds upper_volume(r(#)f,D).i = r*upper_volume(f,D).i proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; let i; assume that A1:i in Seg(len D) and A2:f is_bounded_above_on A and A3:r >= 0; i in dom D by A1,FINSEQ_1:def 3; then A4:divset(D,i) c= A by INTEGRA1:10; dom(f|divset(D,i)) = dom f /\ divset(D,i) by FUNCT_1:68 .= A /\ divset(D,i) by FUNCT_2:def 1 .= divset(D,i) by A4,XBOOLE_1:28; then A5:rng(f|divset(D,i)) is non empty by RELAT_1:65; A6:rng(f|divset(D,i)) c= rng f by FUNCT_1:76; rng f is bounded_above by A2,INTEGRA1:15; then A7:rng(f|divset(D,i)) is bounded_above by A6,RCOMP_1:4; upper_volume(r(#)f,D).i =(sup(rng((r(#)f)|divset(D,i))))*vol(divset(D,i)) by A1,INTEGRA1:def 7 .=(sup(rng(r(#)f|divset(D,i))))*vol(divset(D,i)) by RFUNCT_1:65 .=(sup(r*rng(f|divset(D,i))))*vol(divset(D,i)) by Th18 .=(r*sup(rng(f|divset(D,i))))*vol(divset(D,i)) by A3,A5,A7,Th13 .=r*(sup(rng(f|divset(D,i)))*vol(divset(D,i))) by XCMPLX_1:4 .=r*upper_volume(f,D).i by A1,INTEGRA1:def 7; hence thesis; end; theorem Th24: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_above_on A & r <= 0 holds lower_volume(r(#)f,D).i = r*upper_volume(f,D).i proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; let i; assume that A1:i in Seg(len D) and A2:f is_bounded_above_on A and A3:r <= 0; i in dom D by A1,FINSEQ_1:def 3; then A4:divset(D,i) c= A by INTEGRA1:10; dom(f|divset(D,i)) = dom f /\ divset(D,i) by FUNCT_1:68 .= A /\ divset(D,i) by FUNCT_2:def 1 .= divset(D,i) by A4,XBOOLE_1:28; then A5:rng(f|divset(D,i)) is non empty by RELAT_1:65; A6:rng(f|divset(D,i)) c= rng f by FUNCT_1:76; rng f is bounded_above by A2,INTEGRA1:15; then A7:rng(f|divset(D,i)) is bounded_above by A6,RCOMP_1:4; lower_volume(r(#)f,D).i =(inf(rng((r(#)f)|divset(D,i))))*vol(divset(D,i)) by A1,INTEGRA1:def 8 .=(inf(rng(r(#)f|divset(D,i))))*vol(divset(D,i)) by RFUNCT_1:65 .=(inf(r*rng(f|divset(D,i))))*vol(divset(D,i)) by Th18 .=(r*sup(rng(f|divset(D,i))))*vol(divset(D,i)) by A3,A5,A7,Th14 .=r*(sup(rng(f|divset(D,i)))*vol(divset(D,i))) by XCMPLX_1:4 .=r*upper_volume(f,D).i by A1,INTEGRA1:def 7; hence thesis; end; theorem Th25: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_below_on A & r >= 0 holds lower_volume(r(#)f,D).i = r*lower_volume(f,D).i proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; let i; assume that A1:i in Seg(len D) and A2:f is_bounded_below_on A and A3:r >= 0; i in dom D by A1,FINSEQ_1:def 3; then A4:divset(D,i) c= A by INTEGRA1:10; dom(f|divset(D,i)) = dom f /\ divset(D,i) by FUNCT_1:68 .= A /\ divset(D,i) by FUNCT_2:def 1 .= divset(D,i) by A4,XBOOLE_1:28; then A5:rng(f|divset(D,i)) is non empty by RELAT_1:65; A6:rng(f|divset(D,i)) c= rng f by FUNCT_1:76; rng f is bounded_below by A2,INTEGRA1:13; then A7:rng(f|divset(D,i)) is bounded_below by A6,RCOMP_1:3; lower_volume(r(#)f,D).i =(inf(rng((r(#)f)|divset(D,i))))*vol(divset(D,i)) by A1,INTEGRA1:def 8 .=(inf(rng(r(#)f|divset(D,i))))*vol(divset(D,i)) by RFUNCT_1:65 .=(inf(r*rng(f|divset(D,i))))*vol(divset(D,i)) by Th18 .=(r*inf(rng(f|divset(D,i))))*vol(divset(D,i)) by A3,A5,A7,Th15 .=r*(inf(rng(f|divset(D,i)))*vol(divset(D,i))) by XCMPLX_1:4 .=r*lower_volume(f,D).i by A1,INTEGRA1:def 8; hence thesis; end; theorem Th26: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S, i st i in Seg(len D) & f is_bounded_below_on A & r <= 0 holds upper_volume(r(#)f,D).i = r*lower_volume(f,D).i proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; let i; assume that A1:i in Seg(len D) and A2:f is_bounded_below_on A and A3:r <= 0; i in dom D by A1,FINSEQ_1:def 3; then A4:divset(D,i) c= A by INTEGRA1:10; dom(f|divset(D,i)) = dom f /\ divset(D,i) by FUNCT_1:68 .= A /\ divset(D,i) by FUNCT_2:def 1 .= divset(D,i) by A4,XBOOLE_1:28; then A5:rng(f|divset(D,i)) is non empty by RELAT_1:65; A6:rng(f|divset(D,i)) c= rng f by FUNCT_1:76; rng f is bounded_below by A2,INTEGRA1:13; then A7:rng(f|divset(D,i)) is bounded_below by A6,RCOMP_1:3; upper_volume(r(#)f,D).i =(sup(rng((r(#)f)|divset(D,i))))*vol(divset(D,i)) by A1,INTEGRA1:def 7 .=(sup(rng(r(#)f|divset(D,i))))*vol(divset(D,i)) by RFUNCT_1:65 .=(sup(r*rng(f|divset(D,i))))*vol(divset(D,i)) by Th18 .=(r*inf(rng(f|divset(D,i))))*vol(divset(D,i)) by A3,A5,A7,Th16 .=r*(inf(rng(f|divset(D,i)))*vol(divset(D,i))) by XCMPLX_1:4 .=r*lower_volume(f,D).i by A1,INTEGRA1:def 8; hence thesis; end; theorem Th27: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_above_on A & r >= 0 holds upper_sum(r(#)f,D) = r*upper_sum(f,D) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume that A1:f is_bounded_above_on A and A2:r >= 0; upper_volume(r(#)f,D)=r*upper_volume(f,D) proof A3: len upper_volume(r(#)f,D) = len D by INTEGRA1:def 7 .= len upper_volume(f,D) by INTEGRA1:def 7 .= len(r*upper_volume(f,D)) by NEWTON:6; for i st 1 <= i & i <= len upper_volume(r(#)f,D) holds upper_volume(r(#)f,D).i = (r*upper_volume(f,D)).i proof let i; assume 1 <= i & i <= len upper_volume(r(#)f,D); then i in Seg(len upper_volume(r(#)f,D)) by FINSEQ_1:3; then i in Seg(len D) by INTEGRA1:def 7; then upper_volume(r(#)f,D).i = r*upper_volume(f,D).i by A1,A2,Th23 .= (r*upper_volume(f,D)).i by RVSUM_1:66; hence thesis; end; hence thesis by A3,FINSEQ_1:18; end; then upper_sum(r(#)f,D) =Sum(r*upper_volume(f,D)) by INTEGRA1:def 9 .=r*Sum(upper_volume(f,D)) by RVSUM_1:117 .=r*upper_sum(f,D) by INTEGRA1:def 9; hence thesis; end; theorem Th28: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_above_on A & r <= 0 holds lower_sum(r(#)f,D) = r*upper_sum(f,D) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume that A1:f is_bounded_above_on A and A2:r <= 0; lower_volume(r(#)f,D)=r*upper_volume(f,D) proof A3: len lower_volume(r(#)f,D) = len D by INTEGRA1:def 8 .= len upper_volume(f,D) by INTEGRA1:def 7 .= len(r*upper_volume(f,D)) by NEWTON:6; for i st 1 <= i & i <= len lower_volume(r(#)f,D) holds lower_volume(r(#)f,D).i = (r*upper_volume(f,D)).i proof let i; assume 1 <= i & i <= len lower_volume(r(#)f,D); then i in Seg(len lower_volume(r(#)f,D)) by FINSEQ_1:3; then i in Seg(len D) by INTEGRA1:def 8; then lower_volume(r(#)f,D).i = r*upper_volume(f,D).i by A1,A2,Th24 .= (r*upper_volume(f,D)).i by RVSUM_1:66; hence thesis; end; hence thesis by A3,FINSEQ_1:18; end; then lower_sum(r(#)f,D) =Sum(r*upper_volume(f,D)) by INTEGRA1:def 10 .=r*Sum(upper_volume(f,D)) by RVSUM_1:117 .=r*upper_sum(f,D) by INTEGRA1:def 9; hence thesis; end; theorem Th29: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_below_on A & r >= 0 holds lower_sum(r(#)f,D) = r*lower_sum(f,D) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume that A1:f is_bounded_below_on A and A2:r >= 0; lower_volume(r(#)f,D)=r*lower_volume(f,D) proof A3: len lower_volume(r(#)f,D) = len D by INTEGRA1:def 8 .= len lower_volume(f,D) by INTEGRA1:def 8 .= len(r*lower_volume(f,D)) by NEWTON:6; for i st 1 <= i & i <= len lower_volume(r(#)f,D) holds lower_volume(r(#)f,D).i = (r*lower_volume(f,D)).i proof let i; assume 1 <= i & i <= len lower_volume(r(#)f,D); then i in Seg(len lower_volume(r(#)f,D)) by FINSEQ_1:3; then i in Seg(len D) by INTEGRA1:def 8; then lower_volume(r(#)f,D).i = r*lower_volume(f,D).i by A1,A2,Th25 .= (r*lower_volume(f,D)).i by RVSUM_1:66; hence thesis; end; hence thesis by A3,FINSEQ_1:18; end; then lower_sum(r(#)f,D) =Sum(r*lower_volume(f,D)) by INTEGRA1:def 10 .=r*Sum(lower_volume(f,D)) by RVSUM_1:117 .=r*lower_sum(f,D) by INTEGRA1:def 10; hence thesis; end; theorem Th30: for A be closed-interval Subset of REAL, f be Function of A,REAL, S be non empty Division of A, D be Element of S st f is_bounded_below_on A & r <= 0 holds upper_sum(r(#)f,D) = r*lower_sum(f,D) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; let S be non empty Division of A; let D be Element of S; assume that A1:f is_bounded_below_on A and A2:r <= 0; upper_volume(r(#)f,D)=r*lower_volume(f,D) proof A3: len upper_volume(r(#)f,D) = len D by INTEGRA1:def 7 .= len lower_volume(f,D) by INTEGRA1:def 8 .= len(r*lower_volume(f,D)) by NEWTON:6; for i st 1 <= i & i <= len upper_volume(r(#)f,D) holds upper_volume(r(#)f,D).i = (r*lower_volume(f,D)).i proof let i; assume 1 <= i & i <= len upper_volume(r(#)f,D); then i in Seg(len upper_volume(r(#)f,D)) by FINSEQ_1:3; then i in Seg(len D) by INTEGRA1:def 7; then upper_volume(r(#)f,D).i = r*lower_volume(f,D).i by A1,A2,Th26 .= (r*lower_volume(f,D)).i by RVSUM_1:66; hence thesis; end; hence thesis by A3,FINSEQ_1:18; end; then upper_sum(r(#)f,D) =Sum(r*lower_volume(f,D)) by INTEGRA1:def 9 .=r*Sum(lower_volume(f,D)) by RVSUM_1:117 .=r*lower_sum(f,D) by INTEGRA1:def 10; hence thesis; end; theorem Th31: for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds r(#)f is_integrable_on A & integral(r(#)f) = r*integral(f) proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; assume that A1:f is_bounded_on A and A2:f is_integrable_on A; A3:r(#)f is_upper_integrable_on A proof rng upper_sum_set(r(#)f) is bounded_below proof upper_sum_set(r(#)f) is_bounded_below_on divs A proof ex a st for D be Element of divs A st D in divs A /\ dom(upper_sum_set(r(#)f)) holds a <= (upper_sum_set(r(#)f)).D proof now per cases; suppose r>=0; then for D be Element of divs A st D in divs A /\ dom( upper_sum_set(r(#)f)) holds r*(inf rng f)*vol(A) <= (upper_sum_set(r(#)f)).D by A1,Th19; hence thesis; suppose r<0; then for D be Element of divs A st D in divs A /\ dom( upper_sum_set(r(#) f)) holds r*(sup rng f)*vol(A) <= (upper_sum_set(r(#)f)).D by A1,Th20; hence thesis; end; hence thesis; end; hence thesis by RFUNCT_1:def 10; end; hence thesis by INTEGRA1:13; end; hence thesis by INTEGRA1:def 13; end; A4:r(#)f is_lower_integrable_on A proof rng lower_sum_set(r(#)f) is bounded_above proof lower_sum_set(r(#)f) is_bounded_above_on divs A proof ex a st for D be Element of divs A st D in divs A /\ dom(lower_sum_set(r(#)f)) holds a >= (lower_sum_set(r(#)f)).D proof now per cases; suppose r>=0; then for D be Element of divs A st D in divs A /\ dom( lower_sum_set(r(#)f)) holds r*(sup rng f)*vol(A) >= (lower_sum_set(r(#)f)).D by A1,Th21; hence thesis; suppose r<0; then for D be Element of divs A st D in divs A /\ dom( lower_sum_set(r(#) f)) holds r*(inf rng f)*vol(A) >= (lower_sum_set(r(#)f)).D by A1,Th22; hence thesis; end; hence thesis; end; hence thesis by RFUNCT_1:def 9; end; hence thesis by INTEGRA1:15; end; hence thesis by INTEGRA1:def 14; end; upper_integral(r(#)f)=lower_integral(r(#)f) & upper_integral(r(#)f)=r*integral(f) proof A5:dom upper_sum_set(f) = divs A by INTEGRA1:def 11; then A6:upper_sum_set(f) is total by PARTFUN1:def 4; then A7: upper_sum_set(f) is Function of divs A,REAL by FUNCT_2:131; A8:rng(upper_sum_set(f)) is non empty by A5,RELAT_1:65; f is_upper_integrable_on A & f is_lower_integrable_on A by A2,INTEGRA1:def 17; then A9:rng(upper_sum_set(f)) is bounded_below & rng(lower_sum_set(f)) is bounded_above by INTEGRA1:def 13,def 14; A10:dom lower_sum_set(f) = divs A by INTEGRA1:def 12; then A11:lower_sum_set(f) is total by PARTFUN1:def 4; then A12: lower_sum_set(f) is Function of divs A,REAL by FUNCT_2:131; A13:rng(lower_sum_set(f)) is non empty by A10,RELAT_1:65; A14:f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; now per cases; suppose A15:r >= 0; A16: upper_sum_set(r(#)f) = r(#)upper_sum_set(f) proof A17: divs A = dom upper_sum_set(r(#)f) by INTEGRA1:def 11; A18: divs A = dom(upper_sum_set(f)) by INTEGRA1:def 11 .= dom(r(#)upper_sum_set(f)) by SEQ_1:def 6; for D be set st D in divs A holds (upper_sum_set(r(#)f)).D = (r(#)(upper_sum_set(f))).D proof let D be set; assume A19:D in divs A; then reconsider D as Element of divs A; A20: D in dom upper_sum_set(r(#)f) by A19,INTEGRA1:def 11; A21: D in dom upper_sum_set(f) by A19,INTEGRA1:def 11; (upper_sum_set(r(#)f)).D = upper_sum(r(#) f,D) by A20,INTEGRA1:def 11 .= r*upper_sum(f,D) by A14,A15,Th27 .= r*(upper_sum_set(f)).D by A21,INTEGRA1:def 11 .= (r(#)(upper_sum_set(f))).D by A6,RFUNCT_1:73; hence thesis; end; hence thesis by A17,A18,FUNCT_1:9; end; A22: lower_sum_set(r(#)f) = r(#)lower_sum_set(f) proof A23: divs A = dom lower_sum_set(r(#)f) by INTEGRA1:def 12; A24: divs A = dom(lower_sum_set(f)) by INTEGRA1:def 12 .= dom(r(#)lower_sum_set(f)) by SEQ_1:def 6; for D be set st D in divs A holds (lower_sum_set(r(#)f)).D = (r(#)(lower_sum_set(f))).D proof let D be set; assume A25:D in divs A; then reconsider D as Element of divs A; A26: D in dom lower_sum_set(r(#)f) by A25,INTEGRA1:def 12; A27: D in dom lower_sum_set(f) by A25,INTEGRA1:def 12; (lower_sum_set(r(#)f)).D = lower_sum(r(#) f,D) by A26,INTEGRA1:def 12 .= r*lower_sum(f,D) by A14,A15,Th29 .= r*(lower_sum_set(f)).D by A27,INTEGRA1:def 12 .= (r(#)(lower_sum_set(f))).D by A11,RFUNCT_1:73; hence thesis; end; hence thesis by A23,A24,FUNCT_1:9; end; A28: upper_integral(r(#)f) = inf rng(r(#) upper_sum_set(f)) by A16,INTEGRA1:def 15 .= inf(r*(rng(upper_sum_set(f)))) by A7,Th17 .= r*inf(rng(upper_sum_set(f))) by A8,A9,A15,Th15 .= r*upper_integral(f) by INTEGRA1:def 15; lower_integral(r(#)f) = sup rng(r(#) lower_sum_set(f)) by A22,INTEGRA1:def 16 .= sup(r*(rng(lower_sum_set(f)))) by A12,Th17 .= r*sup(rng(lower_sum_set(f))) by A9,A13,A15,Th13 .= r*lower_integral(f) by INTEGRA1:def 16 .= r*upper_integral(f) by A2,INTEGRA1:def 17; hence upper_integral(r(#)f) = lower_integral(r(#)f) by A28; thus upper_integral(r(#)f) = r*integral(f) by A28,INTEGRA1:def 18; suppose A29:r < 0; A30: upper_sum_set(r(#)f) = r(#)lower_sum_set(f) proof A31: divs A = dom upper_sum_set(r(#)f) by INTEGRA1:def 11; A32: divs A = dom(lower_sum_set(f)) by INTEGRA1:def 12 .= dom(r(#)lower_sum_set(f)) by SEQ_1:def 6; for D be set st D in divs A holds (upper_sum_set(r(#)f)).D = (r(#)(lower_sum_set(f))).D proof let D be set; assume A33:D in divs A; then reconsider D as Element of divs A; A34: D in dom upper_sum_set(r(#)f) by A33,INTEGRA1:def 11; A35: D in dom lower_sum_set(f) by A33,INTEGRA1:def 12; (upper_sum_set(r(#)f)).D=upper_sum(r(#)f,D) by A34,INTEGRA1:def 11 .= r*lower_sum(f,D) by A14,A29,Th30 .= r*(lower_sum_set(f)).D by A35,INTEGRA1:def 12 .= (r(#)(lower_sum_set(f))).D by A11,RFUNCT_1:73; hence thesis; end; hence thesis by A31,A32,FUNCT_1:9; end; A36: lower_sum_set(r(#)f) = r(#)upper_sum_set(f) proof A37: divs A = dom lower_sum_set(r(#)f) by INTEGRA1:def 12; A38: divs A = dom(upper_sum_set(f)) by INTEGRA1:def 11 .= dom(r(#)upper_sum_set(f)) by SEQ_1:def 6; for D be set st D in divs A holds (lower_sum_set(r(#)f)).D = (r(#)(upper_sum_set(f))).D proof let D be set; assume A39:D in divs A; then reconsider D as Element of divs A; A40: D in dom lower_sum_set(r(#)f) by A39,INTEGRA1:def 12; A41: D in dom upper_sum_set(f) by A39,INTEGRA1:def 11; (lower_sum_set(r(#)f)).D=lower_sum(r(#)f,D) by A40,INTEGRA1:def 12 .= r*upper_sum(f,D) by A14,A29,Th28 .= r*(upper_sum_set(f)).D by A41,INTEGRA1:def 11 .= (r(#)(upper_sum_set(f))).D by A6,RFUNCT_1:73; hence thesis; end; hence thesis by A37,A38,FUNCT_1:9; end; A42: upper_integral(r(#)f) = inf rng(r(#) lower_sum_set(f)) by A30,INTEGRA1:def 15 .= inf(r*(rng(lower_sum_set(f)))) by A12,Th17 .= r*sup(rng(lower_sum_set(f))) by A9,A13,A29,Th14 .= r*lower_integral(f) by INTEGRA1:def 16; lower_integral(r(#)f) = sup rng(r(#) upper_sum_set(f)) by A36,INTEGRA1:def 16 .= sup(r*(rng(upper_sum_set(f)))) by A7,Th17 .= r*inf(rng(upper_sum_set(f))) by A8,A9,A29,Th16 .= r*upper_integral(f) by INTEGRA1:def 15 .= r*lower_integral(f) by A2,INTEGRA1:def 17; hence upper_integral(r(#)f) = lower_integral(r(#)f) by A42; upper_integral(r(#)f) = r*upper_integral(f) by A2,A42,INTEGRA1:def 17 .= r*integral(f) by INTEGRA1:def 18; hence upper_integral(r(#)f) = r*integral(f); end; hence thesis; end; hence thesis by A3,A4,INTEGRA1:def 17,def 18; end; begin :: Monotonicity of Integral theorem Th32:for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A & f is_integrable_on A &(for x st x in A holds f.x >= 0) holds integral(f) >= 0 proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; assume A1:f is_bounded_on A & f is_integrable_on A & (for x st x in A holds f.x >= 0); A2:upper_integral(f) = inf rng upper_sum_set(f) by INTEGRA1:def 15; dom upper_sum_set(f) is non empty by INTEGRA1:def 11; then A3:rng upper_sum_set(f) is non empty by RELAT_1:65; for a be real number st a in rng upper_sum_set(f) holds a >= 0 proof let a be real number; assume a in rng upper_sum_set(f); then consider D being Element of divs A such that A4: D in dom upper_sum_set(f) & a=(upper_sum_set(f)).D by PARTFUN1:26; A5: a = upper_sum(f,D) by A4,INTEGRA1:def 11 .= Sum(upper_volume(f,D)) by INTEGRA1:def 9; for i st i in dom upper_volume(f,D) holds 0 <= upper_volume(f,D).i proof let i; set r = upper_volume(f,D).i; assume i in dom upper_volume(f,D); then i in Seg len upper_volume(f,D) by FINSEQ_1:def 3; then A6: i in Seg len D by INTEGRA1:def 7; then A7: r = (sup (rng (f|divset(D,i))))*vol(divset(D,i)) by INTEGRA1:def 7; A8: vol(divset(D,i)) >= 0 by INTEGRA1:11; sup (rng(f|divset(D,i))) >= 0 proof A9: dom(f|divset(D,i)) is non empty Subset of REAL proof A10: dom(f|divset(D,i)) = dom f /\ divset(D,i) by RELAT_1:90; A11: i in dom D by A6,FINSEQ_1:def 3; dom f = A by FUNCT_2:def 1; then divset(D,i) c= dom f by A11,INTEGRA1:10; hence thesis by A10,XBOOLE_1:28; end; A12: rng(f|divset(D,i)) is bounded_above proof f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A13: rng f is bounded_above by INTEGRA1:15; rng(f|divset(D,i)) c= rng f by FUNCT_1:76; hence thesis by A13,RCOMP_1:4; end; consider x such that A14: x in dom(f|divset(D,i)) by A9,SUBSET_1:10; f.x >= 0 by A1,A14; then A15: (f|divset(D,i)).x >= 0 by A14,FUNCT_1:70; (f|divset(D,i)).x in rng(f|divset(D,i)) by A14,FUNCT_1:def 5; hence thesis by A12,A15,SEQ_4:def 4; end; hence thesis by A7,A8,REAL_2:121; end; hence thesis by A5,RVSUM_1:114; end; then upper_integral(f) >= 0 by A2,A3,PSCOMP_1:8; hence thesis by INTEGRA1:def 18; end; theorem Th33:for A be closed-interval Subset of REAL, f,g be Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A holds f-g is_integrable_on A & integral(f-g) = integral(f)-integral(g) proof let A be closed-interval Subset of REAL; let f,g be Function of A,REAL; assume A1:f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A; -g is total by RFUNCT_1:68; then A2: -g is Function of A,REAL by FUNCT_2:131; A3: -g is_bounded_on A by A1,RFUNCT_1:99; -g = (-1)(#)g by RFUNCT_1:38; then A4: -g is_integrable_on A & integral(-g) = (-1)*integral(g) by A1,Th31; A5:f-g = f+-g by RFUNCT_1:40; hence f-g is_integrable_on A by A1,A2,A3,A4,INTEGRA1:59; integral(f-g)=integral(f)+(-1)*integral(g) by A1,A2,A3,A4,A5,INTEGRA1:59 .=integral(f)+-integral(g) by XCMPLX_1:180; hence thesis by XCMPLX_0:def 8; end; theorem for A be closed-interval Subset of REAL, f,g be Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A & (for x st x in A holds f.x >= g.x) holds integral(f) >= integral(g) proof let A be closed-interval Subset of REAL; let f,g be Function of A,REAL; assume A1:f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A & (for x st x in A holds f.x >= g.x); then A2:f-g is_integrable_on A & integral(f-g)=integral(f)-integral(g) by Th33; A3:dom g = A by FUNCT_2:def 1; A4:dom (f-g)=dom f /\ dom g by SEQ_1:def 4 .= A /\ A by A3,FUNCT_2:def 1 .= A; A5:for x st x in A holds (f-g).x >= 0 proof let x; assume A6:x in A; then A7: (f-g).x = f.x - g.x by A4,SEQ_1:def 4; f.x >= g.x by A1,A6; hence thesis by A7,SQUARE_1:12; end; f-g is total by RFUNCT_1:66; then A8: f-g is Function of A,REAL by FUNCT_2:131; f-g is_bounded_on A /\ A by A1,RFUNCT_1:101; then integral(f)-integral(g) >= 0 by A2,A5,A8,Th32; hence thesis by REAL_2:105; end; begin :: Definition of Division Sequence theorem for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A holds rng upper_sum_set(f) is bounded_below proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; assume that A1:f is_bounded_on A; consider D1 be Element of divs A; for a be real number st a in rng upper_sum_set(f) holds a >= lower_sum(f, D1 ) proof let a be real number; assume a in rng upper_sum_set(f); then consider D be Element of divs A such that A2: D in dom upper_sum_set(f) & a = (upper_sum_set(f)).D by PARTFUN1:26; a = upper_sum(f,D) by A2,INTEGRA1:def 11; hence thesis by A1,INTEGRA1:50; end; hence thesis by SEQ_4:def 2; end; theorem for A be closed-interval Subset of REAL, f be Function of A,REAL st f is_bounded_on A holds rng lower_sum_set(f) is bounded_above proof let A be closed-interval Subset of REAL; let f be Function of A,REAL; assume that A1:f is_bounded_on A; consider D1 be Element of divs A; for a be real number st a in rng lower_sum_set(f) holds a <= upper_sum(f, D1 ) proof let a be real number; assume a in rng lower_sum_set(f); then consider D be Element of divs A such that A2: D in dom lower_sum_set(f) & a = (lower_sum_set(f)).D by PARTFUN1:26; a = lower_sum(f,D) by A2,INTEGRA1:def 12; hence thesis by A1,INTEGRA1:50; end; hence thesis by SEQ_4:def 1; end; definition let A be closed-interval Subset of REAL; mode DivSequence of A is Function of NAT,divs A; end; definition let A be closed-interval Subset of REAL, T be DivSequence of A; func delta(T) -> Real_Sequence means for i holds it.i = delta(T.i); existence proof deffunc F(Nat)=delta(T.$1); thus ex IT being Real_Sequence st for i holds IT.i = F(i) from ExRealSeq; end; uniqueness proof let F1,F2 be Real_Sequence such that A1:for i holds F1.i = delta(T.i) and A2:for i holds F2.i = delta(T.i); for i holds F1.i = F2.i proof let i; F1.i = delta(T.i) by A1 .= F2.i by A2; hence thesis; end; hence thesis by FUNCT_2:113; end; end; definition let A be closed-interval Subset of REAL, f be PartFunc of A,REAL, T be DivSequence of A; func upper_sum(f,T) -> Real_Sequence means for i holds it.i = upper_sum(f,T.i); existence proof deffunc F(Nat)=upper_sum(f,T.$1); thus ex IT being Real_Sequence st for i holds IT.i = F(i) from ExRealSeq; end; uniqueness proof let F1,F2 be Real_Sequence such that A1:for i holds F1.i = upper_sum(f,T.i) and A2:for i holds F2.i = upper_sum(f,T.i); for i holds F1.i = F2.i proof let i; F1.i = upper_sum(f,T.i) by A1 .= F2.i by A2; hence thesis; end; hence thesis by FUNCT_2:113; end; func lower_sum(f,T) -> Real_Sequence means for i holds it.i = lower_sum(f,T.i); existence proof deffunc F(Nat)=lower_sum(f,T.$1); thus ex IT being Real_Sequence st for i holds IT.i = F(i) from ExRealSeq; end; uniqueness proof let F1,F2 be Real_Sequence such that A3:for i holds F1.i = lower_sum(f,T.i) and A4:for i holds F2.i = lower_sum(f,T.i); for i holds F1.i = F2.i proof let i; F1.i = lower_sum(f,T.i) by A3 .= F2.i by A4; hence thesis; end; hence thesis by FUNCT_2:113; end; end; theorem Th37:for A be closed-interval Subset of REAL, D1,D2 be Element of divs A st D1 <= D2 holds (for j st j in dom D2 holds ex i st i in dom D1 & divset(D2,j) c= divset(D1,i)) proof let A be closed-interval Subset of REAL; let D1,D2 be Element of divs A; assume A1:D1 <= D2; let j; assume A2:j in dom D2; defpred P[set] means D2.$1 in rng D1 & D2.$1 >= D2.j; consider X being Subset of dom D2 such that A3:for x1 holds x1 in X iff x1 in dom D2 & P[x1] from Subset_Ex; reconsider X as Subset of NAT by XBOOLE_1:1; X is non empty proof ex n st n in dom D2 & D2.n in rng D1 & D2.n >= D2.j proof A4: len D2 in dom D2 & D2.(len D2) in rng D1 & D2.(len D2) >= D2.j proof len D2 <> 0 by FINSEQ_1:25; then len D2 in Seg len D2 by FINSEQ_1:5; hence A5:len D2 in dom D2 by FINSEQ_1:def 3; len D1 <> 0 by FINSEQ_1:25; then len D1 in Seg len D1 by FINSEQ_1:5; then A6: len D1 in dom D1 by FINSEQ_1:def 3; D2.(len D2) = sup A by INTEGRA1:def 2; then D1.(len D1) = D2.(len D2) by INTEGRA1:def 2; hence D2.(len D2) in rng D1 by A6,FUNCT_1:def 5; j in Seg len D2 by A2,FINSEQ_1:def 3; then j <= len D2 by FINSEQ_1:3; hence thesis by A2,A5,GOBOARD2:18; end; take len D2; thus thesis by A4; end; hence thesis by A3; end; then reconsider X as non empty Subset of NAT; A7:min X in X by CQC_SIM1:def 8; then A8:min X in dom D2 & D2.(min X) in rng D1 & D2.(min X) >= D2.j by A3; then consider i such that A9:i in dom D1 & D2.(min X)=D1.i by PARTFUN1:26; A10:D1.i >= D2.j by A3,A7,A9; A11:divset(D2,j) c= divset(D1,i) proof now per cases; suppose i=1; then inf divset(D1,i) = inf A & sup divset(D1,i) = D1.i by A9,INTEGRA1:def 5; then A12: divset(D1,i) = [.inf A,D1.i .] by INTEGRA1:5; now per cases; suppose j=1; then inf divset(D2,j) = inf A & sup divset(D2,j) = D2.j by A2,INTEGRA1:def 5; then A13: divset(D2,j) = [.inf A,D2.j .] by INTEGRA1:5; A14: inf A in [.inf A,D1.i .] proof A15: D1.i in rng D1 by A9,FUNCT_1:def 5; rng D1 c= A by INTEGRA1:def 2; then A16: D1.i in A by A15; A = [.inf A,sup A.] by INTEGRA1:5; then D1.i in {r:inf A<=r & r<=sup A} by A16,RCOMP_1:def 1; then ex x st x=D1.i & inf A<=x & x<=sup A; then inf A in {r:inf A <= r & r <= D1.i}; hence thesis by RCOMP_1:def 1; end; D2.j in [.inf A,D1.i .] proof A17: D2.j in rng D2 by A2,FUNCT_1:def 5; rng D2 c= A by INTEGRA1:def 2; then A18: D2.j in A by A17; A = [.inf A,sup A.] by INTEGRA1:5; then D2.j in {r:inf A<=r & r<=sup A} by A18,RCOMP_1:def 1; then ex x st x=D2.j & inf A<=x & x<=sup A; then D2.j in {r:inf A <= r & r <= D1.i} by A8,A9; hence thesis by RCOMP_1:def 1; end; hence thesis by A12,A13,A14,RCOMP_1:16; suppose A19:j<>1; then inf divset(D2,j) = D2.(j-1) & sup divset(D2,j) = D2.j by A2,INTEGRA1:def 5; then A20: divset(D2,j) = [. D2.(j-1),D2.j .] by INTEGRA1:5; A21: D2.(j-1) in [.inf A,D1.i .] proof A22: j-1 in dom D2 by A2,A19,INTEGRA1:9; then A23: D2.(j-1) in rng D2 by FUNCT_1:def 5; A = [.inf A,sup A.] by INTEGRA1:5; then A24: A = {r:inf A<=r & r<=sup A} by RCOMP_1:def 1; rng D2 c= A by INTEGRA1:def 2; then D2.(j-1) in {r:inf A<=r & r<=sup A} by A23,A24; then A25: ex x st x=D2.(j-1) & inf A <= x & x <= sup A; j <= j+1 by NAT_1:29; then j-1 <= j by REAL_1:86; then D2.(j-1) <= D2.j by A2,A22,GOBOARD2:18; then inf A <= D2.(j-1) & D2.(j-1) <= D1.i by A8,A9,A25,AXIOMS:22; then D2.(j-1) in {r:inf A <= r & r <= D1.i}; hence thesis by RCOMP_1:def 1; end; D2.j in [.inf A,D1.i .] proof A26: D2.j in rng D2 by A2,FUNCT_1:def 5; A = [.inf A,sup A.] by INTEGRA1:5; then A27: A = {r:inf A<=r & r<=sup A} by RCOMP_1:def 1; rng D2 c= A by INTEGRA1:def 2; then D2.j in {r:inf A<=r & r<=sup A} by A26,A27; then ex x st x=D2.j & inf A <= x & x <= sup A; then D2.j in {r:inf A <= r & r <= D1.i} by A8,A9; hence thesis by RCOMP_1:def 1; end; hence thesis by A12,A20,A21,RCOMP_1:16; end; hence thesis; suppose A28:i<>1; then inf divset(D1,i) = D1.(i-1) & sup divset(D1,i) = D1.i by A9,INTEGRA1:def 5; then A29: divset(D1,i) = [. D1.(i-1),D1.i .] by INTEGRA1:5; A30: j <> 1 proof assume A31:j=1; i in Seg len D1 by A9,FINSEQ_1:def 3; then A32: 1 <= i & i <= len D1 by FINSEQ_1:3; then A33: i > 1 by A28,REAL_1:def 5; 1 <= 1 & 1 <= len D1 by A32,AXIOMS:22; then 1 in Seg len D1 by FINSEQ_1:3; then A34: 1 in dom D1 by FINSEQ_1:def 3; then A35: D1.1 in rng D1 by FUNCT_1:def 5; rng D1 c= rng D2 by A1,INTEGRA1:def 20; then consider n such that A36: n in dom D2 & D1.1 = D2.n by A35,PARTFUN1:26; n in Seg len D2 by A36,FINSEQ_1:def 3; then A37: 1 <= n & n <= len D2 by FINSEQ_1:3; then 1 <= len D2 by AXIOMS:22; then 1 in Seg len D2 by FINSEQ_1:3; then 1 in dom D2 by FINSEQ_1:def 3; then D2.j <= D2.n by A31,A36,A37,GOBOARD2:18; then n in X by A3,A35,A36; then n >= min X by CQC_SIM1:def 8; then D1.1 >= D1.i by A7,A9,A36,GOBOARD2:18; hence contradiction by A9,A33,A34,GOBOARD1:def 1; end; then inf divset(D2,j) = D2.(j-1) & sup divset(D2,j) = D2.j by A2,INTEGRA1:def 5; then A38: divset(D2,j) = [. D2.(j-1),D2.j .] by INTEGRA1:5; A39: j-1 in dom D2 by A2,A30,INTEGRA1:9; j <= j+1 by NAT_1:29; then j-1 <= j by REAL_1:86; then A40: D2.(j-1) <= D2.j by A2,A39,GOBOARD2:18; then A41: D2.(j-1) <= D1.i by A10,AXIOMS:22; A42: D1.(i-1) <= D2.(j-1) proof assume A43:D1.(i-1) > D2.(j-1); A44: rng D1 c= rng D2 by A1,INTEGRA1:def 20; A45: i-1 in dom D1 by A9,A28,INTEGRA1:9; then A46: D1.(i-1) in rng D1 by FUNCT_1:def 5; then consider n such that A47: n in dom D2 & D1.(i-1) = D2.n by A44,PARTFUN1:26; n > j-1 by A39,A43,A47,GOBOARD2:18; then n+1 > j by REAL_1:84; then n >= j by NAT_1:38; then D1.(i-1) >= D2.j by A2,A47,GOBOARD2:18; then n in X by A3,A46,A47; then n >= min X by CQC_SIM1:def 8; then D1.(i-1) >= D1.i by A7,A9,A47,GOBOARD2:18; then i-1 >= i by A9,A45,GOBOARD1:def 1; then A48: i >= i+1 by REAL_1:84; i <= i+1 by NAT_1:29; then i = i+1 by A48,AXIOMS:21; then i-i=1 by XCMPLX_1:26; hence contradiction by XCMPLX_1:14; end; then D2.(j-1) in {r:D1.(i-1)<=r & r<=D1.i} by A41; then A49: D2.(j-1) in [. D1.(i-1),D1.i .] by RCOMP_1:def 1; D1.(i-1) <= D2.j & D2.j <= D1.i by A3,A7,A9,A40,A42,AXIOMS:22; then D2.j in {r:D1.(i-1) <= r & r <= D1.i}; then D2.j in [. D1.(i-1),D1.i .] by RCOMP_1:def 1; hence thesis by A29,A38,A49,RCOMP_1:16; end; hence thesis; end; take i; thus thesis by A9,A11; end; theorem for X,Y be finite non empty Subset of REAL st X c= Y holds max X <= max Y proof let X,Y be finite non empty Subset of REAL; assume A1:X c= Y; max X in X by PRE_CIRC:def 1; hence thesis by A1,PRE_CIRC:def 1; end; theorem Th39:for X,Y be finite non empty Subset of REAL st (ex y st y in Y & max X <= y) holds max X <= max Y proof let X,Y be finite non empty Subset of REAL; given y such that A1:y in Y & max X <= y; y <= max Y by A1,PRE_CIRC:def 1; hence thesis by A1,AXIOMS:22; end; theorem Th40:for A,B be closed-interval Subset of REAL st A c= B holds vol(A) <= vol(B) proof let A,B be closed-interval Subset of REAL; assume A1:A c= B; B is bounded_above & B is bounded_below by INTEGRA1:3; then A2:inf A >= inf B & sup A <= sup B by A1,PSCOMP_1:12,13; vol(A) = sup A - inf A by INTEGRA1:def 6; then sup B >= vol(A) + inf A by A2,XCMPLX_1:27; then sup B - vol(A) >= inf A by REAL_1:84; then sup B - vol(A) >= inf B by A2,AXIOMS:22; then sup B - inf B >= vol(A) by REAL_2:165; hence thesis by INTEGRA1:def 6; end; theorem for A be closed-interval Subset of REAL, D1,D2 be Element of divs A st D1 <= D2 holds delta(D1) >= delta(D2) proof let A be closed-interval Subset of REAL; let D1,D2 be Element of divs A; assume A1:D1 <= D2; A2:delta(D2) = max rng upper_volume(chi(A,A),D2) by INTEGRA1:def 19; then delta(D2) in rng upper_volume(chi(A,A),D2) by PRE_CIRC:def 1; then consider j such that A3:j in dom upper_volume(chi(A,A),D2) & delta(D2) = upper_volume(chi(A,A),D2).j by PARTFUN1:26; j in Seg len upper_volume(chi(A,A),D2) by A3,FINSEQ_1:def 3; then A4:j in Seg len D2 by INTEGRA1:def 7; then A5:j in dom D2 by FINSEQ_1:def 3; A6:delta(D2) = vol(divset(D2,j)) by A3,A4,INTEGRA1:22; consider i such that A7:i in dom D1 & divset(D2,j) c= divset(D1,i) by A1,A5,Th37; A8:i in Seg len D1 by A7,FINSEQ_1:def 3; then i in Seg len upper_volume(chi(A,A),D1) by INTEGRA1:def 7; then A9:i in dom upper_volume(chi(A,A),D1) by FINSEQ_1:def 3; A10:delta(D2) <= vol(divset(D1,i)) by A6,A7,Th40; vol(divset(D1,i)) = upper_volume(chi(A,A),D1).i by A8,INTEGRA1:22; then vol(divset(D1,i)) in rng upper_volume(chi(A,A),D1) by A9,FUNCT_1:def 5; then delta(D2) <= max rng upper_volume(chi(A,A),D1) by A2,A10,Th39; hence thesis by INTEGRA1:def 19; end;