Copyright (c) 2000 Association of Mizar Users
environ vocabulary INTEGRA1, MEASURE5, FINSEQ_1, ORDINAL2, ARYTM_1, RELAT_1, BOOLE, FUNCT_1, FUNCT_3, RLVECT_1, PARTFUN2, LATTICES, SEQ_2, PARTFUN1, SEQ_1, RFUNCT_1, RCOMP_1, ARYTM_3, INTEGRA2, SQUARE_1, FINSEQ_2, FDIFF_1, SEQM_3, ABSVALUE, INT_1, RFUNCT_3, INTEGRA4, FINSEQ_4, REALSET1, ARYTM; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, INT_1, REALSET1, FUNCT_1, PSCOMP_1, RELSET_1, FINSEQ_1, SEQ_1, PARTFUN2, RFUNCT_1, FINSEQ_2, SEQ_2, SEQM_3, SEQ_4, PRE_CIRC, RCOMP_1, FDIFF_1, ABSVALUE, GOBOARD1, SQUARE_1, FINSEQ_4, RVSUM_1, INTEGRA1, INTEGRA2, RFUNCT_3, PARTFUN1, FUNCT_2; constructors REAL_1, REALSET1, FINSEQOP, PARTFUN2, PRE_CIRC, SFMASTR3, FDIFF_1, FINSEQ_4, INTEGRA2, SEQM_3, RFUNCT_3, ABSVALUE, PSCOMP_1, NAT_1; clusters XREAL_0, RELSET_1, FINSEQ_2, GOBOARD1, INT_1, INTEGRA1, FUNCT_2, SEQ_1, NAT_1, MEMBERED, NUMBERS, ORDINAL2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; definitions TARSKI; theorems AXIOMS, REAL_1, SEQ_4, SUBSET_1, REAL_2, PARTFUN1, PSCOMP_1, INTEGRA1, RFUNCT_1, FUNCT_1, FINSEQ_1, RVSUM_1, SEQ_1, SEQ_2, FDIFF_1, ABSVALUE, PRE_CIRC, NAT_1, TARSKI, GOBOARD1, SQUARE_1, FINSEQ_3, FINSEQ_4, INTEGRA2, INTEGRA3, FINSEQ_2, SEQM_3, PARTFUN2, NAT_2, INT_1, CATALG_1, RCOMP_1, RFUNCT_3, RELAT_1, XREAL_0, FUNCT_2, XBOOLE_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; schemes FINSEQ_2, FUNCT_2; begin :: Basic integrable functions and first mean value theorem reserve i,j,k,n,n1,n2,m for Nat; reserve a,b,d,r,x,y for Real; reserve A for closed-interval Subset of REAL; reserve C for non empty set; reserve c for Element of C; reserve X for set; theorem Th1: for D being Element of divs A st vol(A)=0 holds len D=1 proof let D be Element of divs A; assume that A1:vol(A)=0 and A2:len D<>1; sup A-inf A=0 by A1,INTEGRA1:def 6; then A3:sup A=inf A by XCMPLX_1:15; rng D <> {}; then A4:1 in dom D by FINSEQ_3:34; then A5:1 <= len D by FINSEQ_3:27; then A6:len D in dom D by FINSEQ_3:27; 1 < len D by A2,A5,REAL_1:def 5; then A7:D.1 < D.(len D) by A4,A6,GOBOARD1:def 1; D.1 in A by A4,INTEGRA1:8; then inf A <= D.1 by INTEGRA2:1; hence contradiction by A3,A7,INTEGRA1:def 2; end; theorem Th2: chi(A,A) is_integrable_on A & integral(chi(A,A))=vol(A) proof divs A /\ dom upper_sum_set(chi(A,A))=divs A /\ divs A by INTEGRA1:def 11; then A1:divs A meets dom upper_sum_set(chi(A,A)) by XBOOLE_0:def 7; A2:for D1 being Element of divs A st D1 in divs A /\ dom upper_sum_set(chi(A,A)) holds (upper_sum_set(chi(A,A)))/.D1=vol(A) proof let D1 be Element of divs A; assume D1 in divs A /\ dom upper_sum_set(chi(A,A)); then A3: D1 in dom upper_sum_set(chi(A,A)) by XBOOLE_0:def 3; then (upper_sum_set(chi(A,A)))/.D1=(upper_sum_set(chi(A,A))).D1 by FINSEQ_4:def 4 .=upper_sum(chi(A,A),D1) by A3,INTEGRA1:def 11 .=Sum(upper_volume(chi(A,A),D1)) by INTEGRA1:def 9; hence thesis by INTEGRA1:26; end; then upper_sum_set(chi(A,A)) is_constant_on divs A by PARTFUN2:def 3; then consider x being Element of REAL such that A4:rng((upper_sum_set(chi(A,A)))|(divs A))={x} by A1,PARTFUN2:56; A5:rng((upper_sum_set(chi(A,A)))|(divs A)) c= rng(upper_sum_set(chi(A,A))) by FUNCT_1:76; A6:rng(upper_sum_set(chi(A,A))) c= rng((upper_sum_set(chi(A,A)))|(divs A)) proof let x1 be set; x1 in rng upper_sum_set(chi(A,A)) implies x1 in rng ((upper_sum_set(chi(A,A)))|(divs A)) proof assume x1 in rng upper_sum_set(chi(A,A)); then consider D1 being Element of divs A such that A7: D1 in dom upper_sum_set(chi(A,A)) & (upper_sum_set(chi(A,A))).D1=x1 by PARTFUN1:26; D1 in divs A /\ dom upper_sum_set(chi(A,A)) by A7,XBOOLE_1:28; then A8: D1 in dom ((upper_sum_set(chi(A,A)))|(divs A)) by RELAT_1:90; then ((upper_sum_set(chi(A,A)))|(divs A)).D1=(upper_sum_set(chi(A,A))).D1 by FUNCT_1:68; hence thesis by A7,A8,FUNCT_1:def 5; end; hence thesis; end; then A9:rng upper_sum_set(chi(A,A))={x} by A4,A5,XBOOLE_0:def 10; then rng upper_sum_set(chi(A,A)) is bounded by SEQ_4:15; then rng upper_sum_set(chi(A,A)) is bounded_below by SEQ_4:def 3; then A10:chi(A,A) is_upper_integrable_on A by INTEGRA1:def 13; x=vol(A) proof vol(A) in rng upper_sum_set(chi(A,A)) proof consider D1 being Element of divs A; D1 in divs A; then A11: D1 in dom upper_sum_set(chi(A,A)) by INTEGRA1:def 11; then A12: D1 in divs A /\ dom upper_sum_set(chi(A,A)) by XBOOLE_0:def 3; A13: (upper_sum_set(chi(A,A))).D1 in rng upper_sum_set(chi(A,A)) by A11,FUNCT_1:def 5; (upper_sum_set(chi(A,A))).D1 = (upper_sum_set(chi(A,A)))/.D1 by A11,FINSEQ_4:def 4; hence thesis by A2,A12,A13; end; hence thesis by A4,A6,TARSKI:def 1; end; then inf rng upper_sum_set(chi(A,A))=vol(A) by A9,SEQ_4:22; then A14:upper_integral(chi(A,A))=vol(A) by INTEGRA1:def 15; divs A /\ dom lower_sum_set(chi(A,A))=divs A /\ divs A by INTEGRA1:def 12; then A15:divs A meets dom lower_sum_set(chi(A,A)) by XBOOLE_0:def 7; A16:for D1 being Element of divs A st D1 in divs A /\ dom lower_sum_set(chi(A,A)) holds (lower_sum_set(chi(A,A)))/.D1=vol(A) proof let D1 be Element of divs A; assume D1 in divs A /\ dom lower_sum_set(chi(A,A)); then A17: D1 in dom lower_sum_set(chi(A,A)) by XBOOLE_0:def 3; then (lower_sum_set(chi(A,A)))/.D1=(lower_sum_set(chi(A,A))).D1 by FINSEQ_4:def 4 .=lower_sum(chi(A,A),D1) by A17,INTEGRA1:def 12 .=Sum(lower_volume(chi(A,A),D1)) by INTEGRA1:def 10; hence thesis by INTEGRA1:25; end; then lower_sum_set(chi(A,A)) is_constant_on divs A by PARTFUN2:def 3; then consider x being Element of REAL such that A18:rng((lower_sum_set(chi(A,A)))|(divs A))={x} by A15,PARTFUN2:56; A19:rng((lower_sum_set(chi(A,A)))|(divs A)) c= rng(lower_sum_set(chi(A,A))) by FUNCT_1:76; A20:rng(lower_sum_set(chi(A,A))) c= rng((lower_sum_set(chi(A,A)))|(divs A)) proof let x1 be set; x1 in rng lower_sum_set(chi(A,A)) implies x1 in rng ((lower_sum_set(chi(A,A)))|(divs A)) proof assume x1 in rng lower_sum_set(chi(A,A)); then consider D1 being Element of divs A such that A21: D1 in dom lower_sum_set(chi(A,A)) & (lower_sum_set(chi(A,A))).D1=x1 by PARTFUN1:26; D1 in divs A /\ dom lower_sum_set(chi(A,A)) by A21,XBOOLE_1:28; then A22: D1 in dom ((lower_sum_set(chi(A,A)))|(divs A)) by RELAT_1:90; then ((lower_sum_set(chi(A,A)))|(divs A)).D1=(lower_sum_set(chi(A,A))).D1 by FUNCT_1:68; hence thesis by A21,A22,FUNCT_1:def 5; end; hence thesis; end; then A23:rng lower_sum_set(chi(A,A))={x} by A18,A19,XBOOLE_0:def 10; then rng lower_sum_set(chi(A,A)) is bounded by SEQ_4:15; then rng lower_sum_set(chi(A,A)) is bounded_above by SEQ_4:def 3; then A24:chi(A,A) is_lower_integrable_on A by INTEGRA1:def 14; x=vol(A) proof vol(A) in rng lower_sum_set(chi(A,A)) proof consider D1 being Element of divs A; D1 in divs A; then A25: D1 in dom lower_sum_set(chi(A,A)) by INTEGRA1:def 12; then A26: D1 in divs A /\ dom lower_sum_set(chi(A,A)) by XBOOLE_0:def 3; A27: (lower_sum_set(chi(A,A))).D1 in rng lower_sum_set(chi(A,A)) by A25,FUNCT_1:def 5; (lower_sum_set(chi(A,A))).D1 = (lower_sum_set(chi(A,A)))/.D1 by A25,FINSEQ_4:def 4; hence thesis by A16,A26,A27; end; hence thesis by A18,A20,TARSKI:def 1; end; then sup rng lower_sum_set(chi(A,A))=vol(A) by A23,SEQ_4:22; then lower_integral(chi(A,A))=vol(A) by INTEGRA1:def 16; hence thesis by A10,A14,A24,INTEGRA1:def 17,def 18; end; theorem Th3: for f being PartFunc of A,REAL, r holds f is total & rng f = {r} iff f=r(#)chi(A,A) proof let f be PartFunc of A,REAL; let r; A1:f is total & rng f={r} implies f=r(#)chi(A,A) proof assume A2:f is total; assume A3:rng f = {r}; reconsider g=r(#)chi(A,A) as PartFunc of A,REAL; A4: chi(A,A) is total by RFUNCT_1:78; A5: dom g = dom chi(A,A) by SEQ_1:def 6 .= A by A4,PARTFUN1:def 4; then A6: dom f = dom g by A2,PARTFUN1:def 4; for x being Element of A st x in dom f holds f/.x=g/.x proof let x be Element of A; assume A7:x in dom f; then f/.x=f.x by FINSEQ_4:def 4; then A8: f/.x in rng f by A7,FUNCT_1:def 5; g/.x=g.x by A5,FINSEQ_4:def 4 .= r*chi(A,A).x by A5,SEQ_1:def 6 .= r*1 by RFUNCT_1:79 .= r; hence thesis by A3,A8,TARSKI:def 1; end; hence thesis by A6,PARTFUN2:3; end; f=r(#)chi(A,A) implies f is total & rng f={r} proof assume A9:f=r(#)chi(A,A); then dom f = dom chi(A,A) & chi(A,A) is total by RFUNCT_1:78,SEQ_1:def 6; then A10:dom f = A by PARTFUN1:def 4; hence f is total by PARTFUN1:def 4; for x being set st x in rng f holds x in {r} proof let x be set; assume x in rng f; then consider a being Element of A such that A11: a in dom f & f.a=x by PARTFUN1:26; chi(A,A).a = 1 by RFUNCT_1:79; then x = r*1 by A9,A11,SEQ_1:def 6 .= r; hence thesis by TARSKI:def 1; end; then A12:rng f c= {r} by TARSKI:def 3; for x being set st x in {r} holds x in rng f proof let x be set; assume x in {r}; then A13: x = r by TARSKI:def 1; consider a such that A14: a in dom f by A10,SUBSET_1:10; chi(A,A).a = 1 by A14,RFUNCT_1:79; then f.a = r*1 by A9,A14,SEQ_1:def 6; hence thesis by A13,A14,FUNCT_1:def 5; end; then {r} c= rng f by TARSKI:def 3; hence thesis by A12,XBOOLE_0:def 10; end; hence thesis by A1; end; theorem Th4: for f being Function of A,REAL, r st rng f = {r} holds f is_integrable_on A & integral(f)=r*vol(A) proof let f be Function of A,REAL; let r; assume A1: rng f={r}; A2:f=r(#)chi(A,A) by A1,Th3; A3:chi(A,A) is_integrable_on A & integral(chi(A,A))=vol(A) by Th2; chi(A,A) is total by RFUNCT_1:78; then A4: chi(A,A) is Function of A, REAL by FUNCT_2:131; rng chi(A,A)={1} by INTEGRA1:19; then rng chi(A,A) is bounded by SEQ_4:15; then rng chi(A,A) is bounded_above & rng chi(A,A) is bounded_below by SEQ_4:def 3; then chi(A,A) is_bounded_above_on A & chi(A,A) is_bounded_below_on A by INTEGRA1:14,16; then chi(A,A) is_bounded_on A by RFUNCT_1:def 11; hence thesis by A2,A3,A4,INTEGRA2:31; end; theorem Th5: for r holds ex f being Function of A,REAL st rng f = {r} & f is_bounded_on A proof let r; r(#)chi(A,A) is total by Th3; then reconsider f=r(#)chi(A,A) as Function of A,REAL by FUNCT_2:131; A1:f is total & rng f = {r} by Th3; then rng f is bounded by SEQ_4:15; then rng f is bounded_above & rng f is bounded_below by SEQ_4:def 3; then f is_bounded_above_on A & f is_bounded_below_on A by INTEGRA1:14,16 ; then f is_bounded_on A by RFUNCT_1:def 11; hence thesis by A1; end; Lm1: for f being PartFunc of A,REAL, D being Element of divs A st vol(A)=0 holds f is_upper_integrable_on A & upper_integral(f)=0 proof let f be PartFunc of A,REAL; let D be Element of divs A; assume A1:vol(A)=0; divs A /\ dom upper_sum_set(f)=divs A /\ divs A by INTEGRA1:def 11; then A2: divs A meets dom upper_sum_set(f) by XBOOLE_0:def 7; A3:for D1 being Element of divs A st D1 in divs A /\ dom upper_sum_set(f) holds (upper_sum_set(f))/.D1=0 proof let D1 be Element of divs A; assume D1 in divs A /\ dom upper_sum_set(f); then A4: D1 in dom upper_sum_set(f) by XBOOLE_0:def 3; then A5: (upper_sum_set(f))/.D1=(upper_sum_set(f)).D1 by FINSEQ_4:def 4 .=upper_sum(f,D1) by A4,INTEGRA1:def 11 .=Sum(upper_volume(f,D1)) by INTEGRA1:def 9; upper_volume(f,D1)=<*(0 qua Real)*> proof A6: len upper_volume(f,D1)=len D1 by INTEGRA1:def 7 .= 1 by A1,Th1; rng D1 <> {}; then A7: len D1 = 1 & 1 in dom D1 by A1,Th1,FINSEQ_3:34; A8: divset(D1,1)=A proof A9: sup divset(D1,len D1)=D1.len D1 by A7,INTEGRA1:def 5 .= sup A by INTEGRA1:def 2; divset(D1,1)=[.inf divset(D1,len D1),sup divset(D1,len D1).] by A7,INTEGRA1:5 .=[.inf A, sup A.] by A7,A9,INTEGRA1:def 5; hence thesis by INTEGRA1:5; end; 1 in Seg len D1 by A7,FINSEQ_1:3; then upper_volume(f,D1).1=(sup rng(f|divset(D1,1)))*vol(A) by A8,INTEGRA1: def 7 .=0 by A1; hence thesis by A6,FINSEQ_1:57; end; hence thesis by A5,RVSUM_1:103; end; then upper_sum_set(f) is_constant_on divs A by PARTFUN2:def 3; then consider x being Element of REAL such that A10:rng((upper_sum_set(f))|(divs A))={x} by A2,PARTFUN2:56; A11:rng((upper_sum_set(f))|(divs A)) c= rng(upper_sum_set(f)) by FUNCT_1:76; A12:rng(upper_sum_set(f)) c= rng((upper_sum_set(f))|(divs A)) proof let x1 be set; x1 in rng upper_sum_set(f) implies x1 in rng ((upper_sum_set(f))|(divs A) ) proof assume x1 in rng upper_sum_set(f); then consider D1 being Element of divs A such that A13: D1 in dom upper_sum_set(f) & (upper_sum_set(f)).D1=x1 by PARTFUN1:26; D1 in divs A /\ dom upper_sum_set(f) by A13,XBOOLE_1:28; then A14: D1 in dom ((upper_sum_set(f))|(divs A)) by RELAT_1:90; then ((upper_sum_set(f))|(divs A)).D1=(upper_sum_set(f)).D1 by FUNCT_1:68 ; hence thesis by A13,A14,FUNCT_1:def 5; end; hence thesis; end; then A15:rng upper_sum_set(f)={x} by A10,A11,XBOOLE_0:def 10; then rng upper_sum_set(f) is bounded by SEQ_4:15; then rng upper_sum_set(f) is bounded_below by SEQ_4:def 3; hence f is_upper_integrable_on A by INTEGRA1:def 13; x=0 proof 0 in rng upper_sum_set(f) proof consider D1 being Element of divs A; D1 in divs A; then A16: D1 in dom upper_sum_set(f) by INTEGRA1:def 11; then A17: D1 in divs A /\ dom upper_sum_set(f) by XBOOLE_0:def 3; A18: (upper_sum_set(f)).D1 in rng upper_sum_set(f) by A16,FUNCT_1:def 5; (upper_sum_set(f)).D1 = (upper_sum_set(f))/.D1 by A16,FINSEQ_4:def 4; hence thesis by A3,A17,A18; end; hence thesis by A10,A12,TARSKI:def 1; end; then inf rng upper_sum_set(f)=0 by A15,SEQ_4:22; hence thesis by INTEGRA1:def 15; end; Lm2: for f being PartFunc of A,REAL, D being Element of divs A st vol(A)=0 holds f is_lower_integrable_on A & lower_integral(f)=0 proof let f be PartFunc of A,REAL; let D be Element of divs A; assume A1:vol(A)=0; divs A /\ dom lower_sum_set(f)=divs A /\ divs A by INTEGRA1:def 12; then A2: divs A meets dom lower_sum_set(f) by XBOOLE_0:def 7; A3:for D1 being Element of divs A st D1 in divs A /\ dom lower_sum_set(f) holds (lower_sum_set(f))/.D1=0 proof let D1 be Element of divs A; assume D1 in divs A /\ dom lower_sum_set(f); then A4: D1 in dom lower_sum_set(f) by XBOOLE_0:def 3; then A5: (lower_sum_set(f))/.D1=(lower_sum_set(f)).D1 by FINSEQ_4:def 4 .=lower_sum(f,D1) by A4,INTEGRA1:def 12 .=Sum(lower_volume(f,D1)) by INTEGRA1:def 10; lower_volume(f,D1)=<*(0 qua Real)*> proof A6: len lower_volume(f,D1)=len D1 by INTEGRA1:def 8 .= 1 by A1,Th1; rng D1 <> {}; then A7: len D1 = 1 & 1 in dom D1 by A1,Th1,FINSEQ_3:34; A8: divset(D1,1)=A proof A9: sup divset(D1,len D1)=D1.len D1 by A7,INTEGRA1:def 5 .= sup A by INTEGRA1:def 2; divset(D1,1)=[.inf divset(D1,len D1),sup divset(D1,len D1).] by A7,INTEGRA1:5 .=[.inf A, sup A.] by A7,A9,INTEGRA1:def 5; hence thesis by INTEGRA1:5; end; 1 in Seg len D1 by A7,FINSEQ_1:3; then lower_volume(f,D1).1=(inf rng(f|divset(D1,1)))*vol(A) by A8,INTEGRA1: def 8 .=0 by A1; hence thesis by A6,FINSEQ_1:57; end; hence thesis by A5,RVSUM_1:103; end; then lower_sum_set(f) is_constant_on divs A by PARTFUN2:def 3; then consider x being Element of REAL such that A10:rng((lower_sum_set(f))|(divs A))={x} by A2,PARTFUN2:56; A11:rng((lower_sum_set(f))|(divs A)) c= rng(lower_sum_set(f)) by FUNCT_1:76; A12:rng(lower_sum_set(f)) c= rng((lower_sum_set(f))|(divs A)) proof let x1 be set; x1 in rng lower_sum_set(f) implies x1 in rng ((lower_sum_set(f))|(divs A) ) proof assume x1 in rng lower_sum_set(f); then consider D1 being Element of divs A such that A13: D1 in dom lower_sum_set(f) & (lower_sum_set(f)).D1=x1 by PARTFUN1:26; D1 in divs A /\ dom lower_sum_set(f) by A13,XBOOLE_1:28; then A14: D1 in dom ((lower_sum_set(f))|(divs A)) by RELAT_1:90; then ((lower_sum_set(f))|(divs A)).D1=(lower_sum_set(f)).D1 by FUNCT_1:68 ; hence thesis by A13,A14,FUNCT_1:def 5; end; hence thesis; end; then A15:rng lower_sum_set(f)={x} by A10,A11,XBOOLE_0:def 10; then rng lower_sum_set(f) is bounded by SEQ_4:15; then rng lower_sum_set(f) is bounded_above by SEQ_4:def 3; hence f is_lower_integrable_on A by INTEGRA1:def 14; x=0 proof 0 in rng lower_sum_set(f) proof consider D1 being Element of divs A; D1 in divs A; then A16: D1 in dom lower_sum_set(f) by INTEGRA1:def 12; then A17: D1 in divs A /\ dom lower_sum_set(f) by XBOOLE_0:def 3; A18: (lower_sum_set(f)).D1 in rng lower_sum_set(f) by A16,FUNCT_1:def 5; (lower_sum_set(f)).D1 = (lower_sum_set(f))/.D1 by A16,FINSEQ_4:def 4; hence thesis by A3,A17,A18; end; hence thesis by A10,A12,TARSKI:def 1; end; then sup rng lower_sum_set(f)=0 by A15,SEQ_4:22; hence thesis by INTEGRA1:def 16; end; theorem Th6: for f being PartFunc of A,REAL, D being Element of divs A st vol(A)=0 holds f is_integrable_on A & integral(f)=0 proof let f be PartFunc of A,REAL; let D be Element of divs A; assume vol(A)=0; then f is_upper_integrable_on A & upper_integral(f)=0 & f is_lower_integrable_on A & lower_integral(f)=0 by Lm1,Lm2; hence thesis by INTEGRA1:def 17,def 18; end; theorem for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds ex a st inf rng f <= a & a <= sup rng f & integral(f)=a*vol(A) proof let f be Function of A,REAL; assume A1:f is_bounded_on A; assume A2:f is_integrable_on A; A3:for x st x in dom f holds inf rng f <= f.x & f.x <= sup rng f proof let x; assume A4:x in dom f; (f is_bounded_above_on A) & (f is_bounded_below_on A) by A1,RFUNCT_1:def 11; then A5: rng f is bounded_above & rng f is bounded_below by INTEGRA1:13,15; f.x in rng f by A4,FUNCT_1:def 5; hence thesis by A5,SEQ_4:def 4,def 5; end; consider g being Function of A,REAL such that A6:rng g = {inf rng f} & g is_bounded_on A by Th5; A7:g is_integrable_on A & integral(g)=(inf rng f)*vol(A) by A6,Th4; consider h being Function of A,REAL such that A8:rng h = {sup rng f} & h is_bounded_on A by Th5; A9:h is_integrable_on A & integral(h)=(sup rng f)*vol(A) by A8,Th4; A10:for x st x in A holds g.x <= f.x proof let x; assume A11:x in A; dom f = A by FUNCT_2:def 1; then A12: inf rng f <= f.x by A3,A11; dom g = A by FUNCT_2:def 1; then g.x in rng g by A11,FUNCT_1:def 5; hence thesis by A6,A12,TARSKI:def 1; end; for x st x in A holds f.x <= h.x proof let x; assume A13:x in A; dom f = A by FUNCT_2:def 1; then A14: f.x <= sup rng f by A3,A13; dom h = A by FUNCT_2:def 1; then h.x in rng h by A13,FUNCT_1:def 5; hence thesis by A8,A14,TARSKI:def 1; end; then A15:(inf rng f)*vol(A) <= integral(f) & integral(f) <= (sup rng f)*vol(A) by A1,A2,A6,A7,A8,A9,A10,INTEGRA2:34; now per cases; suppose A16:vol(A)<>0; vol(A) >= 0 by INTEGRA1:11; then A17:(inf rng f) <= integral(f)/vol(A) & integral(f)/vol(A) <= (sup rng f) by A15,A16,REAL_2:177; reconsider a=integral(f)/vol(A) as Real; integral(f)=a*vol(A) by A16,XCMPLX_1:88; hence ex a st inf rng f<=a & a<=sup rng f & integral(f)=a*vol(A) by A17; suppose vol(A)=0; then A18:integral(f)=(inf rng f)*vol(A) by Th6; inf rng f <= sup rng f proof dom f = A by FUNCT_2:def 1; then consider x such that A19: x in dom f by SUBSET_1:10; inf rng f <= f.x & f.x <= sup rng f by A3,A19; hence thesis by AXIOMS:22; end; hence ex a st inf rng f<=a & a<=sup rng f & integral(f)=a*vol(A) by A18; end; hence thesis; end; begin :: Integrability of Bounded Total Functions theorem Th8: for f being Function of A,REAL, T being DivSequence of A st f is_bounded_on A & delta(T) is convergent & lim delta(T)=0 holds lower_sum(f,T) is convergent & lim lower_sum(f,T) = lower_integral(f) proof let f be Function of A,REAL; let T be DivSequence of A; assume A1:f is_bounded_on A; assume A2:delta(T) is convergent; assume A3:lim delta(T)=0; now per cases; suppose A4:vol(A)<>0; for n holds (delta(T)).n<>0 proof let n; assume (delta(T)).n=0; then delta(T.n)=0 by INTEGRA2:def 3; then A5: max rng upper_volume(chi(A,A),T.n)=0 by INTEGRA1:def 19; reconsider D=T.n as Element of divs A; A6: for k being Nat st k in dom D holds vol(divset(D,k))=0 proof let k be Nat; assume k in dom D; then A7: k in Seg len D by FINSEQ_1:def 3; then k in Seg len upper_volume(chi(A,A),D) by INTEGRA1:def 7; then k in dom upper_volume(chi(A,A),D) by FINSEQ_1:def 3; then upper_volume(chi(A,A),D).k in rng upper_volume(chi(A,A),D) by FUNCT_1:def 5; then upper_volume(chi(A,A),D).k <= 0 by A5,PRE_CIRC:def 1; then vol(divset(D,k))<=0 by A7,INTEGRA1:22; hence thesis by INTEGRA1:11; end; upper_volume(chi(A,A),D)=((len D) |-> (0 qua Real)) proof len upper_volume(chi(A,A),D)=len D by INTEGRA1:def 7; then A8: len upper_volume(chi(A,A),D)=len ((len D)|->(0 qua Real)) by FINSEQ_2:69; 1 <= j & j <= len upper_volume(chi(A,A),D) implies (upper_volume(chi(A,A),D)).j=((len D)|->(0 qua Real)).j proof assume 1<=j & j<=len upper_volume(chi(A,A),D); then j in Seg len upper_volume(chi(A,A),D) by FINSEQ_1:3; then A9: j in Seg len D by INTEGRA1:def 7; then A10: upper_volume(chi(A,A),D).j=vol(divset(D,j)) by INTEGRA1:22; j in dom D by A9,FINSEQ_1:def 3; then upper_volume(chi(A,A),D).j=0 by A6,A10; hence thesis by A9,FINSEQ_2:70; end; hence thesis by A8,FINSEQ_1:18; end; then Sum(upper_volume(chi(A,A),D))=0 by RVSUM_1:111; hence contradiction by A4,INTEGRA1:26; end; then delta(T) is_not_0 by SEQ_1:7; then delta(T) is convergent_to_0 by A2,A3,FDIFF_1:def 1; hence lower_sum(f,T) is convergent & lim lower_sum(f,T)=lower_integral(f) by A1,A4,INTEGRA3:19; suppose A11:vol(A)=0; A12:for n holds lower_sum(f,T).n = 0 proof let n; reconsider D=T.n as Element of divs A; lower_sum(f,D)=0 proof rng D <> {}; then A13: len D=1 & 1 in dom D by A11,Th1,FINSEQ_3:34; then A14: len lower_volume(f,D)=1 by INTEGRA1:def 8; A15: divset(D,1)=A proof A16: sup divset(D,len D)=D.(len D) by A13,INTEGRA1:def 5 .= sup A by INTEGRA1:def 2; divset(D,1)=[.inf divset(D,len D),sup divset(D,len D).] by A13,INTEGRA1:5 .=[.inf A, sup A.] by A13,A16,INTEGRA1:def 5; hence thesis by INTEGRA1:5; end; 1 in Seg len D by A13,FINSEQ_1:3; then lower_volume(f,D).1=(inf rng(f|divset(D,1)))*vol(A) by A15,INTEGRA1: def 8 .=0 by A11; then lower_volume(f,D)=<*(0 qua Real)*> by A14,FINSEQ_1:57; then Sum(lower_volume(f,D))=0 by RVSUM_1:103; hence thesis by INTEGRA1:def 10; end; hence thesis by INTEGRA2:def 5; end; then A17:lower_sum(f,T) is constant by SEQM_3:def 6; hence lower_sum(f,T) is convergent by SEQ_4:39; lower_sum(f,T).1 = 0 by A12; then lim lower_sum(f,T)=0 by A17,SEQ_4:40; hence lim lower_sum(f,T)=lower_integral(f) by A11,Lm2; end; hence thesis; end; theorem Th9: for f being Function of A,REAL, T being DivSequence of A st f is_bounded_on A & delta(T) is convergent & lim delta(T)=0 holds upper_sum(f,T) is convergent & lim upper_sum(f,T) = upper_integral(f) proof let f be Function of A,REAL; let T be DivSequence of A; assume A1:f is_bounded_on A; assume A2:delta(T) is convergent; assume A3:lim delta(T)=0; now per cases; suppose A4:vol(A)<>0; for n holds (delta(T)).n<>0 proof let n; assume (delta(T)).n=0; then delta(T.n)=0 by INTEGRA2:def 3; then A5: max rng upper_volume(chi(A,A),T.n)=0 by INTEGRA1:def 19; reconsider D=T.n as Element of divs A; A6: for k being Nat st k in dom D holds vol(divset(D,k))=0 proof let k be Nat; assume k in dom D; then A7: k in Seg len D by FINSEQ_1:def 3; then k in Seg len upper_volume(chi(A,A),D) by INTEGRA1:def 7; then k in dom upper_volume(chi(A,A),D) by FINSEQ_1:def 3; then upper_volume(chi(A,A),D).k in rng upper_volume(chi(A,A),D) by FUNCT_1:def 5; then upper_volume(chi(A,A),D).k <= 0 by A5,PRE_CIRC:def 1; then vol(divset(D,k))<=0 by A7,INTEGRA1:22; hence thesis by INTEGRA1:11; end; upper_volume(chi(A,A),D)=((len D) |-> (0 qua Real)) proof len upper_volume(chi(A,A),D)=len D by INTEGRA1:def 7; then A8: len upper_volume(chi(A,A),D)=len ((len D)|->(0 qua Real)) by FINSEQ_2:69; 1 <= j & j <= len upper_volume(chi(A,A),D) implies (upper_volume(chi(A,A),D)).j=((len D)|->(0 qua Real)).j proof assume 1<=j & j<=len upper_volume(chi(A,A),D); then j in Seg len upper_volume(chi(A,A),D) by FINSEQ_1:3; then A9: j in Seg len D by INTEGRA1:def 7; then A10: upper_volume(chi(A,A),D).j=vol(divset(D,j)) by INTEGRA1:22; j in dom D by A9,FINSEQ_1:def 3; then upper_volume(chi(A,A),D).j=0 by A6,A10; hence thesis by A9,FINSEQ_2:70; end; hence thesis by A8,FINSEQ_1:18; end; then Sum(upper_volume(chi(A,A),D))=0 by RVSUM_1:111; hence contradiction by A4,INTEGRA1:26; end; then delta(T) is_not_0 by SEQ_1:7; then delta(T) is convergent_to_0 by A2,A3,FDIFF_1:def 1; hence upper_sum(f,T) is convergent & lim upper_sum(f,T)=upper_integral(f) by A1,A4,INTEGRA3:20; suppose A11:vol(A)=0; A12:for n holds upper_sum(f,T).n = 0 proof let n; reconsider D=T.n as Element of divs A; upper_sum(f,D)=0 proof rng D <> {}; then A13: len D=1 & 1 in dom D by A11,Th1,FINSEQ_3:34; then A14: len upper_volume(f,D)=1 by INTEGRA1:def 7; A15: divset(D,1)=A proof A16: sup divset(D,len D)=D.(len D) by A13,INTEGRA1:def 5 .= sup A by INTEGRA1:def 2; divset(D,1)=[.inf divset(D,len D),sup divset(D,len D).] by A13,INTEGRA1:5 .=[.inf A, sup A.] by A13,A16,INTEGRA1:def 5; hence thesis by INTEGRA1:5; end; 1 in Seg len D by A13,FINSEQ_1:3; then upper_volume(f,D).1=(sup rng(f|divset(D,1)))*vol(A) by A15,INTEGRA1: def 7 .=0 by A11; then upper_volume(f,D)=<*(0 qua Real)*> by A14,FINSEQ_1:57; then Sum(upper_volume(f,D))=0 by RVSUM_1:103; hence thesis by INTEGRA1:def 9; end; hence thesis by INTEGRA2:def 4; end; then A17:upper_sum(f,T) is constant by SEQM_3:def 6; hence upper_sum(f,T) is convergent by SEQ_4:39; upper_sum(f,T).1 = 0 by A12; then lim upper_sum(f,T)=0 by A17,SEQ_4:40; hence lim upper_sum(f,T)=upper_integral(f) by A11,Lm1; end; hence thesis; end; theorem Th10: for f being Function of A,REAL st f is_bounded_on A holds f is_upper_integrable_on A & f is_lower_integrable_on A proof let f be Function of A,REAL; assume A1:f is_bounded_on A; then A2:f is_bounded_above_on A & f is_bounded_below_on A by RFUNCT_1:def 11; for r be real number st r in rng upper_sum_set(f) holds (inf rng f)*vol(A)<=r proof let r be real number; assume r in rng upper_sum_set(f); then consider D being Element of divs A such that A3: D in dom upper_sum_set(f) & (upper_sum_set(f)).D=r by PARTFUN1:26; r = upper_sum(f,D) by A3,INTEGRA1:def 11; then A4: lower_sum(f,D) <= r by A1,INTEGRA1:30; (inf rng f)*vol(A)<=lower_sum(f,D) by A2,INTEGRA1:27; hence thesis by A4,AXIOMS:22; end; then rng upper_sum_set(f) is bounded_below by SEQ_4:def 2; hence f is_upper_integrable_on A by INTEGRA1:def 13; for r be real number st r in rng lower_sum_set(f) holds (sup rng f)*vol(A)>=r proof let r be real number; assume r in rng lower_sum_set(f); then consider D being Element of divs A such that A5: D in dom lower_sum_set(f) & (lower_sum_set(f)).D=r by PARTFUN1:26; r = lower_sum(f,D) by A5,INTEGRA1:def 12; then A6: upper_sum(f,D) >= r by A1,INTEGRA1:30; (sup rng f)*vol(A)>=upper_sum(f,D) by A2,INTEGRA1:29; hence thesis by A6,AXIOMS:22; end; then rng lower_sum_set(f) is bounded_above by SEQ_4:def 1; hence thesis by INTEGRA1:def 14; end; definition let A be closed-interval Subset of REAL, IT be Element of divs A, n; pred IT divide_into_equal n means :Def1:len IT = n & for i st i in dom IT holds IT.i=inf A + vol(A)/(len IT)*i; end; Lm3: for n st n > 0 & vol(A)>0 holds ex D being Element of divs A st len D = n & for i st i in dom D holds D.i=inf A + vol(A)/n*i proof let n; assume that A1:n>0 and A2:vol(A)>0; deffunc F(Nat)=inf A + vol(A)/n*$1; consider D being FinSequence of REAL such that A3:len D = n & for i st i in Seg n holds D.i=F(i) from SeqLambdaD; for i,j st i in dom D & j in dom D & i<j holds D.i < D.j proof let i,j; assume that A4:i in dom D and A5:j in dom D and A6:i<j; A7: i in Seg n & j in Seg n by A3,A4,A5,FINSEQ_1:def 3; vol(A)/n > 0 by A1,A2,REAL_2:127; then vol(A)/n*i < vol(A)/n*j by A6,REAL_1:70; then inf A + vol(A)/n*i < inf A + vol(A)/n*j by REAL_1:53; then D.i < inf A + vol(A)/n*j by A3,A7; hence thesis by A3,A7; end; then reconsider D as non empty increasing FinSequence of REAL by A1,A3,FINSEQ_1:25,GOBOARD1:def 1; A8:rng D c= A proof for x1 being set st x1 in rng D holds x1 in A proof let x1 be set; assume A9:x1 in rng D; then reconsider x1 as Real; consider i such that A10: i in dom D & D.i=x1 by A9,PARTFUN1:26; i in Seg n by A3,A10,FINSEQ_1:def 3; then A11: x1 = inf A + vol(A)/n*i by A3,A10; 0<vol(A)/n*i & vol(A)/n*i<=vol(A) proof A12: 1 <= i & i <= len D by A10,FINSEQ_3:27; then A13: i > 0 & i <= n by A3,AXIOMS:22; A14: vol(A)/n>0 by A1,A2,REAL_2:127; hence vol(A)/n*i>0 by A13,REAL_2:122; vol(A)/n*i <= vol(A)/n*n by A3,A12,A14,AXIOMS:25; hence vol(A)/n*i <= vol(A) by A1,XCMPLX_1:88; end; then A15: inf A <= inf A + vol(A)/n*i & inf A + vol(A)/n*i <= inf A+vol(A) by AXIOMS:24,REAL_1:69; inf A + vol(A)=inf A + (sup A - inf A) by INTEGRA1:def 6 .=inf A - (inf A - sup A) by XCMPLX_1:38 .= sup A by XCMPLX_1:18; hence thesis by A11,A15,INTEGRA2:1; end; hence thesis by TARSKI:def 3; end; D.(len D)=sup A proof len D in Seg n by A1,A3,FINSEQ_1:5; then D.(len D)=inf A + vol(A)/n*n by A3; then A16:D.(len D)=inf A + vol(A) by A1,XCMPLX_1:88; vol(A)=sup A-inf A by INTEGRA1:def 6; then D.(len D)=inf A - (inf A - sup A) by A16,XCMPLX_1:38; hence thesis by XCMPLX_1:18; end; then D is DivisionPoint of A by A8,INTEGRA1:def 2; then reconsider D as Element of divs A by INTEGRA1:def 3; A17:for i st i in dom D holds D.i=inf A+vol(A)/n*i proof let i; assume i in dom D; then i in Seg n by A3,FINSEQ_1:def 3; hence thesis by A3; end; take D; thus thesis by A3,A17; end; Lm4: a+b-(a+d)=b-d proof a+b-(a+d)=b+(a-(a+d)) by XCMPLX_1:29 .=b+(a-a-d) by XCMPLX_1:36 .=b+(0-d) by XCMPLX_1:14 .=b+-d by XCMPLX_1:150; hence thesis by XCMPLX_0:def 8; end; Lm5: vol(A)>0 implies ex T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 proof assume A1:vol(A)>0; defpred P[Nat, Element of divs A] means $2 divide_into_equal $1+1; A2:for n ex D being Element of divs A st P[n,D] proof let n; n+1>0 by NAT_1:19; then consider D being Element of divs A such that A3: len D = n+1 & for i st i in dom D holds D.i=inf A+vol(A)/(n+1)*i by A1,Lm3; D divide_into_equal n+1 by A3,Def1; hence thesis; end; consider T being Function of NAT,divs A such that A4:for n holds P[n,T.n] from FuncExD(A2); reconsider T as DivSequence of A; A5:for i holds (delta(T)).i >= 0 proof let i; (delta(T)).i = delta(T.i) by INTEGRA2:def 3; hence thesis by INTEGRA3:8; end; A6:for i holds (delta(T)).i = vol(A)/(i+1) proof let i; (delta(T)).i = delta(T.i) by INTEGRA2:def 3; then A7: (delta(T)).i = max rng upper_volume(chi(A,A),(T.i)) by INTEGRA1:def 19 ; rng upper_volume(chi(A,A),(T.i))={vol(A)/(i+1)} proof for x1 being set st x1 in rng upper_volume(chi(A,A),(T.i)) holds x1 in {vol(A)/(i+1)} proof let x1 be set; assume x1 in rng upper_volume(chi(A,A),(T.i)); then consider k such that A8: k in dom upper_volume(chi(A,A),(T.i))& (upper_volume(chi(A,A),(T.i))).k=x1 by PARTFUN1:26; reconsider D = T.i as Element of divs A; k in Seg len upper_volume(chi(A,A),(T.i)) by A8,FINSEQ_1:def 3; then A9: k in Seg len D by INTEGRA1:def 7; then x1=vol(divset(D,k)) by A8,INTEGRA1:22; then A10: x1=sup divset(D,k) - inf divset(D,k) by INTEGRA1:def 6; sup divset(D,k)-inf divset(D,k)=vol(A)/(i+1) proof A11: 1 <= k by A8,FINSEQ_3:27; now per cases by A11,REAL_1:def 5; suppose A12:k=1; then A13: 1 in dom D by A9,FINSEQ_1:def 3; then A14: inf divset(D,k)=inf A & sup divset(D,k)=D.1 by A12,INTEGRA1:def 5 ; D divide_into_equal i+1 by A4; then len D = i+1 & for j st j in dom D holds D.j=inf A + vol(A)/(len D )*j by Def1; then sup divset(D,k)=inf A+vol(A)/(i+1)*1 by A13,A14; then sup divset(D,k)-inf divset(D,k)=inf A+vol(A)/(i+1)-inf A by A12,A13,INTEGRA1:def 5 .=vol(A)/(i+1)-inf A+inf A by XCMPLX_1:29 .=vol(A)/(i+1)-(inf A-inf A) by XCMPLX_1:37; hence sup divset(D,k)-inf divset(D,k)=vol(A)/(i+1) by XCMPLX_1:17; suppose A15:k>1; A16: k in dom D by A9,FINSEQ_1:def 3; then A17: inf divset(D,k)=D.(k-1) & sup divset(D,k)=D.k by A15,INTEGRA1:def 5; A18: k-1 in dom D & k-1 in NAT by A15,A16,INTEGRA1:9; A19: D divide_into_equal i+1 by A4; then A20: len D = i+1 & for j st j in dom D holds D.j=inf A+vol(A)/(len D)*j by Def1; D.(k-1)=inf A + vol(A)/(len D)*(k-1) & D.k = inf A + vol(A)/(len D)*k by A16,A18,A19,Def1; then sup divset(D,k)-inf divset(D,k) =vol(A)/(len D)*k - vol(A)/(len D)*(k-1) by A17,Lm4 .=vol(A)/(len D)*k - (vol(A)/(len D)*k-vol(A)/(len D)*1) by XCMPLX_1:40 ; hence sup divset(D,k)-inf divset(D,k)=vol(A)/(i+1) by A20,XCMPLX_1:18; end; hence thesis; end; hence thesis by A10,TARSKI:def 1; end; then A21: rng upper_volume(chi(A,A),(T.i)) c= {vol(A)/(i+1)} by TARSKI:def 3; for x1 being set st x1 in {vol(A)/(i+1)} holds x1 in rng upper_volume(chi(A,A),(T.i)) proof let x1 be set; assume x1 in {vol(A)/(i+1)}; then A22: x1 = vol(A)/(i+1) by TARSKI:def 1; reconsider D = T.i as Element of divs A; rng D <> {}; then A23: 1 in dom D by FINSEQ_3:34; then A24: 1 in Seg len D by FINSEQ_1:def 3; then 1 in Seg len upper_volume(chi(A,A),D) by INTEGRA1:def 7; then 1 in dom upper_volume(chi(A,A),D) by FINSEQ_1:def 3; then A25: (upper_volume(chi(A,A),D)).1 in rng upper_volume(chi(A,A),D) by FUNCT_1:def 5; A26: (upper_volume(chi(A,A),D)).1 = vol(divset(D,1)) by A24,INTEGRA1:22; A27: vol(divset(D,1))=sup divset(D,1) - inf divset(D,1) by INTEGRA1:def 6; A28: sup divset(D,1)=D.1 & inf divset(D,1)=inf A by A23,INTEGRA1:def 5; A29: D divide_into_equal i+1 by A4; then sup divset(D,1)=inf A+vol(A)/(len D)*1 by A23,A28,Def1; then vol(divset(D,1))=inf A+vol(A)/(len D)-inf A by A23,A27,INTEGRA1:def 5 .=vol(A)/(len D)-inf A + inf A by XCMPLX_1:29 .=vol(A)/(len D)-(inf A-inf A) by XCMPLX_1:37 .=vol(A)/(len D) by XCMPLX_1:17; hence thesis by A22,A25,A26,A29,Def1; end; then {vol(A)/(i+1)} c= rng upper_volume(chi(A,A),(T.i)) by TARSKI:def 3; hence thesis by A21,XBOOLE_0:def 10; end; then (delta(T)).i in {vol(A)/(i+1)} by A7,PRE_CIRC:def 1; hence thesis by TARSKI:def 1; end; A30:for i,j st i <= j holds (delta(T)).i >= (delta(T)).j proof let i,j; assume i <= j; then A31: i+1 <= j+1 by AXIOMS:24; A32: vol(A) >= 0 by INTEGRA1:11; 0 <> i+1 & 0 <= i+1 by NAT_1:18; then vol(A)/(i+1) >= vol(A)/(j+1) by A31,A32,REAL_2:201; then (delta(T)).i >= vol(A)/(j+1) by A6; hence thesis by A6; end; A33:for a st 0<a ex i st abs((delta(T)).i-0)<a proof let a; assume A34:0<a; A35: vol(A) >= 0 by INTEGRA1:11; then A36: vol(A)/a >= 0 by A34,REAL_2:125; A37: vol(A)/a<[\vol(A)/a/]+1 by NAT_2:1; A38: [\vol(A)/a/]+1>0 by A36,NAT_2:1; reconsider i1=[\vol(A)/a/]+1 as Integer; reconsider i1 as Nat by A38,INT_1:16; A39: i1 < i1+1 by NAT_1:38; A40:0 < i1+1 by A38,NAT_1:38; vol(A)/a < 1*(i1+1) by A37,A39,AXIOMS:22; then A41: vol(A)/(i1+1) < 1*a by A34,A40,REAL_2:193; vol(A)/(i1+1) >= 0 by A35,A40,REAL_2:125; then A42: vol(A)/(i1+1)-0 = abs(vol(A)/(i1+1)-0) by ABSVALUE:def 1; (delta(T)).i1 = vol(A)/(i1+1) by A6; hence thesis by A41,A42; end; A43:for a be real number st 0<a ex i st for j st i <= j holds abs((delta(T)).j-0)<a proof let a be real number; A44: a is Real by XREAL_0:def 1; assume 0<a; then consider i such that A45: abs((delta(T)).i-0)<a by A33,A44; (delta(T)).i >= 0 by A5; then A46:(delta(T)).i < a by A45,ABSVALUE:def 1; for j st i <= j holds abs((delta(T)).j-0)<a proof let j; assume i <= j; then (delta(T)).j <= (delta(T)).i by A30; then A47: (delta(T)).j < a by A46,AXIOMS:22; (delta(T)).j >= 0 by A5; hence thesis by A47,ABSVALUE:def 1; end; hence thesis; end; then A48:delta(T) is convergent by SEQ_2:def 6; then lim delta(T)=0 by A43,SEQ_2:def 7; hence thesis by A48; end; Lm6: vol(A)=0 implies ex T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 proof assume A1:vol(A)=0; consider T being DivSequence of A; A2:for i holds (delta(T)).i=0 proof let i; reconsider D = T.i as Element of divs A; A3:len D = 1 proof assume A4:len D <> 1; len D <> 0 by FINSEQ_1:25; then len D is non trivial by A4,NAT_2:def 1; then A5: len D >= 2 by NAT_2:31; then 1 <= len D by AXIOMS:22; then A6: 1 in dom D & 2 in dom D by A5,FINSEQ_3:27; then A7: D.1 < D.2 by GOBOARD1:def 1; D.1 in A & D.2 in A by A6,INTEGRA1:8; then A8: inf A <= D.1 & D.1 <= sup A & inf A <= D.2 & D.2 <= sup A by INTEGRA2 :1; sup A-inf A=0 by A1,INTEGRA1:def 6; then sup A=inf A by XCMPLX_1:15; hence contradiction by A7,A8,AXIOMS:21; end; A9: (delta(T)).i=delta(D) by INTEGRA2:def 3 .= max rng upper_volume(chi(A,A),D) by INTEGRA1:def 19; rng upper_volume(chi(A,A),D)={0} proof for x1 being set st x1 in rng upper_volume(chi(A,A),D) holds x1 in {0} proof let x1 be set; assume A10:x1 in rng upper_volume(chi(A,A),D); then consider k such that A11: k in dom upper_volume(chi(A,A),D) & (upper_volume(chi(A,A),D)).k=x1 by PARTFUN1:26; reconsider x1 as Real by A10; k in Seg len upper_volume(chi(A,A),D) by A11,FINSEQ_1:def 3; then A12: k in Seg len D by INTEGRA1:def 7; then A13: x1=vol(divset(D,k)) by A11,INTEGRA1:22; then A14: x1 >= 0 by INTEGRA1:11; k in dom D by A12,FINSEQ_1:def 3; then divset(D,k) c= A by INTEGRA1:10; then x1 = 0 by A1,A13,A14,INTEGRA2:40; hence thesis by TARSKI:def 1; end; then A15: rng upper_volume(chi(A,A),D) c= {0} by TARSKI:def 3; for x1 being set st x1 in {0} holds x1 in rng upper_volume(chi(A,A),D) proof let x1 be set; assume A16:x1 in {0}; A17: 1 in Seg len D by A3,FINSEQ_1:5; then 1 in Seg len upper_volume(chi(A,A),D) by INTEGRA1:def 7; then 1 in dom upper_volume(chi(A,A),D) by FINSEQ_1:def 3; then A18: (upper_volume(chi(A,A),D)).1 in rng upper_volume(chi(A,A),D) by FUNCT_1:def 5; A19: (upper_volume(chi(A,A),D)).1 = vol(divset(D,1)) by A17,INTEGRA1:22; sup divset(D,1)=sup A & inf divset(D,1)=inf A proof 1 in dom D by A17,FINSEQ_1:def 3; then sup divset(D,1)=D.(len D) & inf divset(D,1)=inf A by A3,INTEGRA1:def 5; hence thesis by INTEGRA1:def 2; end; then vol(divset(D,1))=sup A-inf A by INTEGRA1:def 6 .=0 by A1,INTEGRA1:def 6; hence thesis by A16,A18,A19,TARSKI:def 1; end; then {0} c= rng upper_volume(chi(A,A),D) by TARSKI:def 3; hence thesis by A15,XBOOLE_0:def 10; end; then (delta(T)).i in {0} by A9,PRE_CIRC:def 1; hence thesis by TARSKI:def 1; end; then A20:delta(T) is constant by SEQM_3:def 6; then A21:delta(T) is convergent by SEQ_4:39; (delta(T)).1 = 0 by A2; then lim delta(T)=0 by A20,SEQ_4:40; hence thesis by A21; end; theorem Th11: ex T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 proof now per cases; suppose A1:vol(A)<>0; vol(A) >= 0 by INTEGRA1:11; hence ex T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 by A1,Lm5; suppose vol(A)=0; hence ex T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 by Lm6; end; hence thesis; end; theorem Th12: for f being Function of A,REAL st f is_bounded_on A holds f is_integrable_on A iff (for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(f,T)-lim lower_sum(f,T)=0) proof let f be Function of A,REAL; assume A1:f is_bounded_on A; A2:f is_integrable_on A implies for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(f,T)-lim lower_sum(f,T)=0 proof assume A3:f is_integrable_on A; for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(f,T)-lim lower_sum(f,T)=0 proof let T be DivSequence of A; assume that A4:delta(T) is convergent and A5:lim delta(T)=0; A6: lim upper_sum(f,T)=upper_integral(f) by A1,A4,A5,Th9; A7: lim lower_sum(f,T)=lower_integral(f) by A1,A4,A5,Th8; upper_integral(f)=lower_integral(f) by A3,INTEGRA1:def 17; hence thesis by A6,A7,XCMPLX_1:14; end; hence thesis; end; (for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(f,T)-lim lower_sum(f,T)=0) implies f is_integrable_on A proof assume A8:for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(f,T)-lim lower_sum(f,T)=0; A9:f is_upper_integrable_on A & f is_lower_integrable_on A by A1,Th10; consider T being DivSequence of A such that A10:delta(T) is convergent & lim delta(T)=0 by Th11; lim upper_sum(f,T)-lim lower_sum(f,T)=0 by A8,A10; then upper_integral(f)-lim lower_sum(f,T)=0 by A1,A10,Th9; then upper_integral(f)-lower_integral(f)=0 by A1,A10,Th8; then upper_integral(f)=lower_integral(f) by XCMPLX_1:15; hence thesis by A9,INTEGRA1:def 17; end; hence thesis by A2; end; theorem Th13: for f being Function of C,REAL holds max+(f) is total & max-(f) is total proof let f be Function of C,REAL; dom f = C by FUNCT_2:def 1; then dom max+(f) = C & dom max-(f) = C by RFUNCT_3:def 10,def 11; hence thesis by PARTFUN1:def 4; end; theorem Th14: for f being PartFunc of C,REAL st f is_bounded_above_on X holds max+(f) is_bounded_above_on X proof let f be PartFunc of C,REAL; assume f is_bounded_above_on X; then consider b be real number such that A1:for c st c in X /\ dom f holds f.c <= b by RFUNCT_1:def 9; A2:dom max+(f) = dom f by RFUNCT_3:def 10; ex r st for c st c in X /\ dom max+(f) holds max+(f).c <= r proof now per cases; suppose A3:b < 0; for c st c in X /\ dom max+(f) holds max+(f).c <= 0 proof let c; assume c in X /\ dom max+(f); then A4: c in X /\ dom f by RFUNCT_3:def 10; then f.c <= b by A1; then f.c <= 0 by A3,AXIOMS:22; then max(f.c,0) = 0 by SQUARE_1:def 2; then A5: max+(f.c) = 0 by RFUNCT_3:def 1; c in dom f by A4,XBOOLE_0:def 3; hence thesis by A2,A5,RFUNCT_3:def 10; end; then consider r such that A6: r = 0 & (for c st c in X /\ dom max+(f) holds max+(f).c <= r); thus thesis by A6; suppose A7: b >= 0; for c st c in X /\ dom max+(f) holds max+(f).c <= b proof let c; assume c in X /\ dom max+(f); then A8: c in X /\ dom f by RFUNCT_3:def 10; then f.c <= b by A1; then max(f.c,0) <= b by A7,SQUARE_1:50; then A9: max+(f.c) <= b by RFUNCT_3:def 1; c in dom f by A8,XBOOLE_0:def 3; hence max+(f).c <= b by A2,A9,RFUNCT_3:def 10; end; then consider r be real number such that A10: r = b & (for c st c in X /\ dom max+(f) holds max+(f).c <= r); r is Real by XREAL_0:def 1; hence thesis by A10; end; then consider r such that A11:(for c st c in X /\ dom max+(f) holds max+(f).c <= r); thus thesis by A11; end; hence thesis by RFUNCT_1:def 9; end; theorem Th15: for f being PartFunc of C,REAL holds max+(f) is_bounded_below_on X proof let f be PartFunc of C,REAL; A1:dom max+(f) = dom f by RFUNCT_3:def 10; ex r st for c st c in X /\ dom max+(f) holds max+(f).c >= r proof for c st c in X /\ dom max+(f) holds max+(f).c >= 0 proof let c; assume c in X /\ dom max+(f); then c in dom f by A1,XBOOLE_0:def 3; hence thesis by RFUNCT_3:40; end; hence thesis; end; hence thesis by RFUNCT_1:def 10; end; theorem Th16: for f being PartFunc of C,REAL st f is_bounded_below_on X holds max-(f) is_bounded_above_on X proof let f be PartFunc of C,REAL; assume f is_bounded_below_on X; then consider b be real number such that A1:for c st c in X /\ dom f holds f.c >= b by RFUNCT_1:def 10; A2:dom max-(f) = dom f by RFUNCT_3:def 11; ex r st for c st c in X /\ dom max-(f) holds max-(f).c <= r proof now per cases; suppose A3:b > 0; for c st c in X /\ dom max-(f) holds max-(f).c <= 0 proof let c; assume c in X /\ dom max-(f); then A4: c in X /\ dom f by RFUNCT_3:def 11; then f.c >= b by A1; then f.c >= 0 by A3,AXIOMS:22; then -f.c <= 0 by REAL_1:66; then max(-f.c,0) = 0 by SQUARE_1:def 2; then A5: max-(f.c) = 0 by RFUNCT_3:def 2; c in dom f by A4,XBOOLE_0:def 3; hence thesis by A2,A5,RFUNCT_3:def 11; end; then consider r such that A6: r = 0 & (for c st c in X /\ dom max-(f) holds max-(f).c <= r); thus thesis by A6; suppose b <= 0; then A7:-b >= 0 by REAL_1:26,50; for c st c in X /\ dom max-(f) holds max-(f).c <= -b proof let c; assume c in X /\ dom max-(f); then A8: c in X /\ dom f by RFUNCT_3:def 11; then f.c >= b by A1; then -f.c <= -b by REAL_1:50; then max(-f.c,0) <= -b by A7,SQUARE_1:50; then A9: max-(f.c) <= -b by RFUNCT_3:def 2; c in dom f by A8,XBOOLE_0:def 3; hence max-(f).c <= -b by A2,A9,RFUNCT_3:def 11; end; then consider r be real number such that A10: r = -b & (for c st c in X /\ dom max-(f) holds max-(f).c <= r); r is Real by XREAL_0:def 1; hence thesis by A10; end; then consider r such that A11:(for c st c in X /\ dom max-(f) holds max-(f).c <= r); thus thesis by A11; end; hence thesis by RFUNCT_1:def 9; end; theorem Th17: for f being PartFunc of C,REAL holds max-(f) is_bounded_below_on X proof let f be PartFunc of C,REAL; A1:dom max-(f) = dom f by RFUNCT_3:def 11; ex r st for c st c in X /\ dom max-(f) holds max-(f).c >= r proof for c st c in X /\ dom max-(f) holds max-(f).c >= 0 proof let c; assume c in X /\ dom max-(f); then c in dom f by A1,XBOOLE_0:def 3; hence thesis by RFUNCT_3:43; end; hence thesis; end; hence thesis by RFUNCT_1:def 10; end; theorem Th18: for f being PartFunc of A,REAL st f is_bounded_above_on A holds rng (f|X) is bounded_above proof let f be PartFunc of A,REAL; assume f is_bounded_above_on A; then A1:rng f is bounded_above by INTEGRA1:15; rng (f|X) c= rng f by FUNCT_1:76; hence thesis by A1,RCOMP_1:4; end; theorem Th19: for f being PartFunc of A,REAL st f is_bounded_below_on A holds rng (f|X) is bounded_below proof let f be PartFunc of A,REAL; assume f is_bounded_below_on A; then A1:rng f is bounded_below by INTEGRA1:13; rng (f|X) c= rng f by FUNCT_1:76; hence thesis by A1,RCOMP_1:3; end; theorem Th20: for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds max+(f) is_integrable_on A proof let f be Function of A,REAL; assume that A1: f is_bounded_on A and A2: f is_integrable_on A; max+(f) is total by Th13; then A3: max+(f) is Function of A,REAL by FUNCT_2:131; f is_bounded_above_on A by A1,RFUNCT_1:def 11; then max+(f) is_bounded_above_on A & max+(f) is_bounded_below_on A by Th14,Th15; then A4:max+(f) is_bounded_on A by RFUNCT_1:def 11; for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(max+(f),T)-lim lower_sum(max+(f),T)=0 proof let T be DivSequence of A; assume that A5: delta(T) is convergent and A6: lim delta(T)=0; A7: upper_sum(max+(f),T) is convergent & lower_sum(max+(f),T) is convergent by A3,A4,A5,A6,Th8,Th9; A8: upper_sum(f,T) is convergent & lower_sum(f,T) is convergent by A1,A5,A6,Th8,Th9; A9:lim upper_sum(f,T)-lim lower_sum(f,T)=0 by A1,A2,A5,A6,Th12; A10:upper_sum(f,T)-lower_sum(f,T) is convergent by A8,SEQ_2:25; reconsider osc=upper_sum(f,T)-lower_sum(f,T) as Real_Sequence; reconsider osc1=upper_sum(max+(f),T)-lower_sum(max+(f),T) as Real_Sequence; A11: lim(upper_sum(f,T)-lower_sum(f,T))=0 by A8,A9,SEQ_2:26; A12:for a be real number st 0<a ex n st for m st n <= m holds abs(osc1.m-0)<a proof let a be real number; assume 0 < a; then consider n such that A13: for m st n <= m holds abs( osc.m - 0 )<a by A10,A11,SEQ_2:def 7; for m st n <= m holds abs( osc1.m - 0 )<a proof let m; assume n <= m; then A14: abs( osc.m - 0 )<a by A13; reconsider D=T.m as Element of divs A; osc=upper_sum(f,T)+-lower_sum(f,T) by SEQ_1:15; then A15: osc.m=(upper_sum(f,T)).m+(-lower_sum(f,T)).m by SEQ_1:11 .=(upper_sum(f,T)).m+-(lower_sum(f,T)).m by SEQ_1:14 .=(upper_sum(f,T)).m-(lower_sum(f,T)).m by XCMPLX_0:def 8 .=upper_sum(f,T.m)-(lower_sum(f,T)).m by INTEGRA2:def 4 .=upper_sum(f,T.m)-lower_sum(f,T.m) by INTEGRA2:def 5 .=Sum(upper_volume(f,D))-lower_sum(f,T.m) by INTEGRA1:def 9 .=Sum(upper_volume(f,D))-Sum(lower_volume(f,D)) by INTEGRA1:def 10; len upper_volume(f,D)=len D by INTEGRA1:def 7; then reconsider UV=upper_volume(f,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len lower_volume(f,D)=len D by INTEGRA1:def 8; then reconsider LV=lower_volume(f,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; A16: osc.m=Sum(UV-LV) by A15,RVSUM_1:120; osc1=upper_sum(max+(f),T)+-lower_sum(max+(f),T) by SEQ_1:15; then A17: osc1.m=(upper_sum(max+(f),T)).m+(-lower_sum(max+(f),T)).m by SEQ_1: 11 .=(upper_sum(max+(f),T)).m+-(lower_sum(max+(f),T)).m by SEQ_1:14 .=(upper_sum(max+(f),T)).m-(lower_sum(max+(f),T)).m by XCMPLX_0:def 8 .=upper_sum(max+(f),T.m)-(lower_sum(max+(f),T)).m by INTEGRA2:def 4 .=upper_sum(max+(f),T.m)-lower_sum(max+(f),T.m) by INTEGRA2:def 5 .=Sum(upper_volume(max+(f),D))-lower_sum(max+(f),T.m) by INTEGRA1:def 9 .=Sum(upper_volume(max+(f),D))-Sum(lower_volume(max+(f),D)) by INTEGRA1:def 10; len upper_volume(max+(f),D) = len D by INTEGRA1:def 7; then reconsider UV1=upper_volume(max+(f),D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len lower_volume(max+(f),D) = len D by INTEGRA1:def 8; then reconsider LV1=lower_volume(max+(f),D) as Element of (len D)-tuples_on REAL by CATALG_1:5; A18: osc1.m=Sum(UV1-LV1) by A17,RVSUM_1:120; for j st j in Seg (len D) holds (UV1-LV1).j <= (UV-LV).j proof let j; assume that A19:j in Seg (len D); set x=(UV1-LV1).j, y=(UV-LV).j; A20: UV1.j=(sup (rng (max+(f)|divset(D,j))))*vol(divset(D,j)) by A19,INTEGRA1:def 7; LV1.j=(inf (rng (max+(f)|divset(D,j))))*vol(divset(D,j)) by A19,INTEGRA1:def 8; then A21: x=(sup rng (max+(f)|divset(D,j)))*vol(divset(D,j)) -(inf rng (max+(f)|divset(D,j)))*vol(divset(D,j)) by A20,RVSUM_1:48 .=(sup rng (max+(f)|divset(D,j))-inf rng (max+(f)|divset(D,j))) *vol(divset(D,j)) by XCMPLX_1:40; A22: UV.j=(sup rng (f|divset(D,j)))*vol(divset(D,j)) by A19,INTEGRA1:def 7; LV.j=(inf rng (f|divset(D,j)))*vol(divset(D,j)) by A19,INTEGRA1:def 8; then A23: y=(sup rng (f|divset(D,j)))*vol(divset(D,j)) -(inf rng (f|divset(D,j)))*vol(divset(D,j)) by A22,RVSUM_1:48 .=(sup rng (f|divset(D,j))-inf rng (f|divset(D,j)))*vol(divset(D,j)) by XCMPLX_1:40; A24: sup rng (f|divset(D,j)) >= inf rng (f|divset(D,j)) proof rng (f|divset(D,j)) is bounded & ex r st r in rng (f|divset(D,j)) proof consider r such that A25: r in divset(D,j) by SUBSET_1:10; j in dom D by A19,FINSEQ_1:def 3; then divset(D,j) c= A by INTEGRA1:10; then r in A by A25; then r in dom f by FUNCT_2:def 1; then A26: f.r in rng(f|divset(D,j)) by A25,FUNCT_1:73; A27: rng(f|divset(D,j)) c= rng f by FUNCT_1:76; f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; then rng f is bounded_above & rng f is bounded_below by INTEGRA1:13,15 ; then rng f is bounded by SEQ_4:def 3; hence rng (f|divset(D,j)) is bounded by A27,RCOMP_1:5; thus thesis by A26; end; hence thesis by SEQ_4:24; end; A28: sup rng (f|divset(D,j))-inf rng (f|divset(D,j)) >= sup rng (max+(f)|divset(D,j))-inf rng (max+(f)|divset(D,j)) proof set M=sup rng (f|divset(D,j)); set m=inf rng (f|divset(D,j)); set M1=sup rng (max+(f)|divset(D,j)); set m1=inf rng (max+(f)|divset(D,j)); A29: dom (f|divset(D,j)) = dom f /\ divset(D,j) by FUNCT_1:68; A30: dom f = A by FUNCT_2:def 1; A31: dom (f|divset(D,j)) = A /\ divset(D,j) by A29,FUNCT_2:def 1; j in dom D by A19,FINSEQ_1:def 3; then A32: divset(D,j) c= A by INTEGRA1:10; then dom (f|divset(D,j)) <> {} by A31,XBOOLE_1:28; then A33: rng (f|divset(D,j)) <> {} by RELAT_1:65; A34: f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; then A35: rng (f|divset(D,j)) is bounded_above & rng (f|divset(D,j)) is bounded_below by Th18,Th19; dom f = dom max+(f) by RFUNCT_3:def 10; then dom (max+(f)|divset(D,j)) = A /\ divset(D,j) by A30,FUNCT_1:68; then dom (max+(f)|divset(D,j)) <> {} by A32,XBOOLE_1:28; then A36: rng (max+(f)|divset(D,j)) <> {} by RELAT_1:65; max+(f) is_bounded_above_on A & max+(f) is_bounded_below_on A by A34,Th14,Th15; then A37: rng (max+(f)|divset(D,j)) is bounded_above & rng (max+(f)|divset(D,j)) is bounded_below by Th18,Th19; now per cases by A24; suppose A38:M > 0 & m >=0; M1=M & m1=m proof (for r be real number st r in rng (max+(f)|divset(D,j)) holds r<=M ) & (for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & M-s<r)) proof A39: for r be real number st r in rng (max+(f)|divset(D,j)) holds r <= M proof let r be real number; assume r in rng(max+(f)|divset(D,j)); then consider x being Element of A such that A40: x in dom(max+(f)|divset(D,j)) & r=(max+(f)|divset(D,j)).x by PARTFUN1:26; A41: r=(max+(f|divset(D,j))).x by A40,RFUNCT_3:47; A42: x in dom(max+(f|divset(D,j))) by A40,RFUNCT_3:47; then A43: x in dom(f|divset(D,j)) by RFUNCT_3:def 10; now per cases by A41,A43,RFUNCT_3:40; suppose r=0; hence r <= M by A38; suppose A44:r>0; r=max+((f|divset(D,j)).x) by A41,A42,RFUNCT_3:def 10; then A45: r=max((f|divset(D,j)).x,0) by RFUNCT_3:def 1; then (f|divset(D,j)).x > 0 by A44,SQUARE_1:def 2; then r=(f|divset(D,j)).x by A45,SQUARE_1:def 2; then r in rng(f|divset(D,j)) by A43,FUNCT_1:def 5; hence thesis by A35,SEQ_4:def 4; end; hence thesis; end; for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & M-s<r) proof let s be real number; assume 0<s; then consider r be real number such that A46: (r in rng (f|divset(D,j)) & M-s<r) by A33,A35,SEQ_4:def 4; r in rng (max+(f)|divset(D,j)) proof consider x being Element of A such that A47: x in dom(f|divset(D,j)) & r=(f|divset(D,j)).x by A46,PARTFUN1:26; A48: r >= m by A35,A46,SEQ_4:def 5; reconsider r1 = r as Real by XREAL_0:def 1; A49: x in dom(max+(f|divset(D,j))) by A47,RFUNCT_3:def 10; then (max+(f|divset(D,j))).x=max+(r1) by A47,RFUNCT_3:def 10 .=max(r,0) by RFUNCT_3:def 1 .= r by A38,A48,SQUARE_1:def 2; then r in rng (max+(f|divset(D,j))) by A49,FUNCT_1:def 5; hence r in rng (max+(f)|divset(D,j)) by RFUNCT_3:47; end; hence thesis by A46; end; hence thesis by A39; end; hence M1=M by A36,A37,SEQ_4:def 4; (for r be real number st r in rng (max+(f)|divset(D,j)) holds m<=r ) & (for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & r<m+s)) proof A50: for r be real number st r in rng (max+(f)|divset(D,j)) holds m<=r proof let r be real number; assume r in rng(max+(f)|divset(D,j)); then consider x being Element of A such that A51: x in dom(max+(f)|divset(D,j)) & r=(max+(f)|divset(D,j)).x by PARTFUN1:26; A52: x in dom(max+(f|divset(D,j))) by A51,RFUNCT_3:47; A53: r=(max+(f|divset(D,j))).x by A51,RFUNCT_3:47 .=max+((f|divset(D,j)).x) by A52,RFUNCT_3:def 10 .=max((f|divset(D,j)).x,0) by RFUNCT_3:def 1; x in dom(max+(f|divset(D,j))) by A51,RFUNCT_3:47; then x in dom(f|divset(D,j)) by RFUNCT_3:def 10; then (f|divset(D,j)).x in rng (f|divset(D,j)) by FUNCT_1:def 5; then (f|divset(D,j)).x >= m by A35,SEQ_4:def 5; hence thesis by A38,A53,SQUARE_1:def 2; end; for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & r<m+s) proof let s be real number; assume 0<s; then consider r be real number such that A54: (r in rng (f|divset(D,j)) & r<m+s) by A33,A35,SEQ_4:def 5; reconsider r as Real by XREAL_0:def 1; r in rng (max+(f)|divset(D,j)) proof consider x being Element of A such that A55: x in dom(f|divset(D,j)) & r=(f|divset(D,j)).x by A54,PARTFUN1:26; A56: r >= m by A35,A54,SEQ_4:def 5; A57: x in dom(max+(f|divset(D,j))) by A55,RFUNCT_3:def 10; then (max+(f|divset(D,j))).x=max+(r) by A55,RFUNCT_3:def 10 .=max(r,0) by RFUNCT_3:def 1 .= r by A38,A56,SQUARE_1:def 2; then r in rng (max+(f|divset(D,j))) by A57,FUNCT_1:def 5; hence r in rng (max+(f)|divset(D,j)) by RFUNCT_3:47; end; hence thesis by A54; end; hence thesis by A50; end; hence thesis by A36,A37,SEQ_4:def 5; end; hence M-m >= M1-m1; suppose A58:M > 0 & m <= 0; M1=M & m1=0 proof (for r be real number st r in rng (max+(f)|divset(D,j)) holds r<=M ) & (for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & M-s<r)) proof A59: for r st r in rng (max+(f)|divset(D,j)) holds r <= M proof let r; assume r in rng(max+(f)|divset(D,j)); then consider x being Element of A such that A60: x in dom(max+(f)|divset(D,j)) & r=(max+(f)|divset(D,j)).x by PARTFUN1:26; A61: r=(max+(f|divset(D,j))).x by A60,RFUNCT_3:47; A62: x in dom(max+(f|divset(D,j))) by A60,RFUNCT_3:47; then A63: x in dom(f|divset(D,j)) by RFUNCT_3:def 10; now per cases by A61,A63,RFUNCT_3:40; suppose r=0; hence r <= M by A58; suppose A64:r>0; r=max+((f|divset(D,j)).x) by A61,A62,RFUNCT_3:def 10; then A65: r=max((f|divset(D,j)).x,0) by RFUNCT_3:def 1; then (f|divset(D,j)).x > 0 by A64,SQUARE_1:def 2; then r=(f|divset(D,j)).x by A65,SQUARE_1:def 2; then r in rng(f|divset(D,j)) by A63,FUNCT_1:def 5; hence thesis by A35,SEQ_4:def 4; end; hence thesis; end; for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & M-s<r) proof assume not(for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & M-s<r)); then consider s be real number such that A66: s>0 & (for r be real number st (r in rng (max+(f)|divset(D,j))) holds M-s>=r); consider r1 being real number such that A67: r1 in rng (f|divset(D,j)) & M-s < r1 by A33,A35,A66,SEQ_4:def 4; consider x being Element of A such that A68: x in dom(f|divset(D,j)) & r1=(f|divset(D,j)).x by A67,PARTFUN1:26; A69: x in dom(max+(f|divset(D,j))) by A68,RFUNCT_3:def 10; (max+(f|divset(D,j))).x >= 0 by A68,RFUNCT_3:40; then A70: (max+(f)|divset(D,j)).x >= 0 by RFUNCT_3:47; x in dom(max+(f)|divset(D,j)) by A69,RFUNCT_3:47; then A71: (max+(f)|divset(D,j)).x in rng (max+(f)|divset(D,j)) by FUNCT_1:def 5; then A72: M-s >= 0 by A66,A70; (max+(f)|divset(D,j)).x = (max+(f|divset(D,j))).x by RFUNCT_3:47 .=max+((f|divset(D,j)).x) by A69,RFUNCT_3:def 10 .=max(r1,0) by A68,RFUNCT_3:def 1 .=r1 by A67,A72,SQUARE_1:def 2; hence contradiction by A66,A67,A71; end; hence thesis by A59; end; hence M1=M by A36,A37,SEQ_4:def 4; (for r be real number st r in rng (max+(f)|divset(D,j)) holds 0<=r ) & (for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & r<0+s)) proof A73: for r be real number st r in rng (max+(f)|divset(D,j)) holds 0<=r proof let r be real number; assume r in rng (max+(f)|divset(D,j)); then r in rng(max+(f|divset(D,j))) by RFUNCT_3:47; then consider x being Element of A such that A74: x in dom(max+(f|divset(D,j))) & r=(max+(f|divset(D,j))).x by PARTFUN1:26; x in dom(f|divset(D,j)) by A74,RFUNCT_3:def 10; hence thesis by A74,RFUNCT_3:40; end; for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & r<0+s) proof let s be real number; assume A75:s>0; then consider r be real number such that A76: r in rng (f|divset(D,j)) & r<m+s by A33,A35,SEQ_4:def 5; A77: r-s < m by A76,REAL_1:84; consider x being Element of A such that A78: x in dom (f|divset(D,j)) & r=(f|divset(D,j)).x by A76,PARTFUN1:26; A79: x in dom (max+(f|divset(D,j))) by A78,RFUNCT_3:def 10; then (max+(f|divset(D,j))).x in rng (max+(f|divset(D,j))) by FUNCT_1:def 5; then A80: (max+(f|divset(D,j))).x in rng(max+(f)|divset(D,j)) by RFUNCT_3 :47; A81: (max+(f|divset(D,j))).x = max+((f|divset(D,j)).x) by A79,RFUNCT_3:def 10 .= max((f|divset(D,j)).x,0) by RFUNCT_3:def 1; now per cases; suppose r < 0; then 0 in rng(max+(f)|divset(D,j)) by A78,A80,A81,SQUARE_1:def 2; hence ex r st (r in rng (max+(f)|divset(D,j)) & r<0+s) by A75; suppose r >=0; then r in rng(max+(f)|divset(D,j)) & r<0+s by A58,A77,A78,A80,A81,REAL_1:84,SQUARE_1:def 2; hence ex r st (r in rng (max+(f)|divset(D,j)) & r < 0+s); end; hence thesis; end; hence thesis by A73; end; hence thesis by A36,A37,SEQ_4:def 5; end; hence M-m >= M1-m1 by A58,REAL_1:92; suppose A82:M <= 0 & m <= 0; M1=0 & m1=0 proof (for r be real number st r in rng (max+(f)|divset(D,j)) holds r<=0 ) & (for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & 0-s<r)) proof A83: for r be real number st r in rng (max+(f)|divset(D,j)) holds r<=0 proof let r be real number; assume r in rng (max+(f)|divset(D,j)); then consider x being Element of A such that A84: x in dom (max+(f)|divset(D,j)) & r = (max+(f)|divset(D,j)).x by PARTFUN1:26; A85: r=(max+(f|divset(D,j))).x by A84,RFUNCT_3:47; A86: x in dom (max+(f|divset(D,j))) by A84,RFUNCT_3:47; then x in dom (f|divset(D,j)) by RFUNCT_3:def 10; then (f|divset(D,j)).x in rng (f|divset(D,j)) by FUNCT_1:def 5 ; then A87: (f|divset(D,j)).x <= M by A35,SEQ_4:def 4; r=max+((f|divset(D,j)).x) by A85,A86,RFUNCT_3:def 10 .=max((f|divset(D,j)).x,0) by RFUNCT_3:def 1 .=0 by A82,A87,SQUARE_1:def 2; hence thesis; end; for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & 0-s<r) proof let s be real number; assume s>0; then 0+s > 0; then A88: 0-s < 0 by REAL_1:84; consider r such that A89: r in rng (max+(f)|divset(D,j)) by A36,SUBSET_1:10; consider x being Element of A such that A90: x in dom (max+(f)|divset(D,j)) & r=(max+(f)|divset(D,j)).x by A89,PARTFUN1:26; x in dom (max+(f|divset(D,j))) & r=(max+(f|divset(D,j))).x by A90,RFUNCT_3:47; then x in dom (f|divset(D,j)) & r=(max+(f|divset(D,j))).x by RFUNCT_3:def 10; then r >= 0 by RFUNCT_3:40; hence thesis by A88,A89; end; hence thesis by A83; end; hence M1=0 by A36,A37,SEQ_4:def 4; (for r be real number st r in rng (max+(f)|divset(D,j)) holds 0<=r ) & (for s be real number st 0<s ex r be real number st (r in rng (max+(f)|divset(D,j)) & r<0+s)) proof A91: for r be real number st r in rng (max+(f)|divset(D,j)) holds 0<=r proof let r be real number; assume r in rng (max+(f)|divset(D,j)); then consider x being Element of A such that A92: x in dom (max+(f)|divset(D,j)) & r = (max+(f)|divset(D,j)).x by PARTFUN1:26; A93: r=(max+(f|divset(D,j))).x by A92,RFUNCT_3:47; x in dom (max+(f|divset(D,j))) by A92,RFUNCT_3:47; then x in dom (f|divset(D,j)) by RFUNCT_3:def 10; hence thesis by A93,RFUNCT_3:40; end; for s be real number st 0<s ex r be real number st (r in rng(max+(f)|divset(D,j)) & r<0+s) proof let s be real number; assume A94:s>0; consider r such that A95: r in rng (max+(f)|divset(D,j)) by A36,SUBSET_1:10; consider x being Element of A such that A96: x in dom (max+(f)|divset(D,j)) & r=(max+(f)|divset(D,j)).x by A95,PARTFUN1:26; A97: x in dom (max+(f|divset(D,j))) & r=(max+(f|divset(D,j))).x by A96,RFUNCT_3:47; then A98: x in dom (f|divset(D,j)) & r=(max+(f|divset(D,j))).x by RFUNCT_3:def 10; A99: r=max+((f|divset(D,j)).x) by A97,RFUNCT_3:def 10 .=max((f|divset(D,j)).x,0) by RFUNCT_3:def 1; (f|divset(D,j)).x in rng (f|divset(D,j)) by A98,FUNCT_1:def 5 ; then (f|divset(D,j)).x <= M by A35,SEQ_4:def 4; then r=0 by A82,A99,SQUARE_1:def 2; hence thesis by A94,A95; end; hence thesis by A91; end; hence thesis by A36,A37,SEQ_4:def 5; end; hence thesis by A24,SQUARE_1:12; end; hence thesis; end; vol(divset(D,j)) >= 0 by INTEGRA1:11; hence thesis by A21,A23,A28,AXIOMS:25; end; then A100: osc1.m <= osc.m by A16,A18,RVSUM_1:112; reconsider F = UV1-LV1 as FinSequence of REAL; A101: osc1.m >= 0 proof for j st j in dom F holds 0 <= F.j proof let j; assume that A102:j in dom F; set r = F.j; j in Seg len F by A102,FINSEQ_1:def 3; then A103: j in Seg len D by FINSEQ_2:109; then UV1.j=(sup (rng (max+(f)|divset(D,j))))*vol(divset(D,j)) & LV1.j=(inf (rng (max+(f)|divset(D,j))))*vol(divset(D,j)) by INTEGRA1:def 7,def 8; then A104: r = (sup(rng(max+(f)|divset(D,j))))*vol(divset(D,j)) -(inf(rng(max+(f)|divset(D,j))))*vol(divset(D,j)) by A102,RVSUM_1:47 .=(sup(rng(max+(f)|divset(D,j))) - inf(rng(max+(f)|divset(D,j))))* vol(divset(D,j)) by XCMPLX_1:40; A105: sup(rng(max+(f)|divset(D,j)))-inf(rng(max+(f)|divset(D,j)))>=0 proof rng (max+(f)|divset(D,j)) is bounded & ex r st r in rng (max+(f)|divset(D,j)) proof consider r such that A106: r in divset(D,j) by SUBSET_1:10; j in dom D by A103,FINSEQ_1:def 3; then divset(D,j) c= A by INTEGRA1:10; then r in A by A106; then r in dom f by FUNCT_2:def 1; then r in dom f /\ divset(D,j) by A106,XBOOLE_0:def 3; then r in dom (f|divset(D,j)) by RELAT_1:90; then r in dom max+(f|divset(D,j)) by RFUNCT_3:def 10; then r in dom (max+(f)|divset(D,j)) by RFUNCT_3:47; then A107: (max+(f)|divset(D,j)).r in rng(max+(f)|divset(D,j)) by FUNCT_1:def 5; A108: rng(max+(f)|divset(D,j)) c= rng max+(f) by FUNCT_1:76; f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; then max+(f) is_bounded_above_on A & max+(f) is_bounded_below_on A by Th14,Th15; then rng max+(f) is bounded_above & rng max+(f) is bounded_below by INTEGRA1:13,15; then rng max+(f) is bounded by SEQ_4:def 3; hence rng (max+(f)|divset(D,j)) is bounded by A108,RCOMP_1:5; thus thesis by A107; end; then sup(rng(max+(f)|divset(D,j)))>=inf(rng(max+(f)|divset(D,j))) by SEQ_4:24; hence thesis by SQUARE_1:12; end; vol(divset(D,j))>=0 by INTEGRA1:11; hence thesis by A104,A105,REAL_2:121; end; hence thesis by A18,RVSUM_1:114; end; then A109: abs( osc1.m-0 )=osc1.m by ABSVALUE:def 1; abs( osc.m )=osc.m by A100,A101,ABSVALUE:def 1; hence thesis by A14,A100,A109,AXIOMS:22; end; hence thesis; end; then osc1 is convergent by SEQ_2:def 6; then lim(upper_sum(max+(f),T)-lower_sum(max+(f),T))=0 by A12,SEQ_2:def 7; hence thesis by A7,SEQ_2:26; end; hence thesis by A3,A4,Th12; end; theorem Th21: for f being PartFunc of C,REAL holds max-(f)=max+(-f) proof let f be PartFunc of C,REAL; A1:dom max-(f) = dom f by RFUNCT_3:def 11; dom max+(-f)= dom -f by RFUNCT_3:def 10; then A2:dom max+(-f)= dom f by SEQ_1:def 7; for x1 being Element of C st x1 in dom f holds max-(f).x1=max+(-f).x1 proof let x1 be Element of C; assume A3:x1 in dom f; then A4: max-(f).x1 = max-(f.x1) by A1,RFUNCT_3:def 11 .= max(-(f.x1),0) by RFUNCT_3:def 2; A5: x1 in dom -f by A3,SEQ_1:def 7; max+(-f).x1 = max+((-f).x1) by A2,A3,RFUNCT_3:def 10 .= max((-f).x1,0) by RFUNCT_3:def 1 .= max(-(f.x1),0) by A5,SEQ_1:def 7; hence thesis by A4; end; hence thesis by A1,A2,PARTFUN1:34; end; theorem Th22: for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds max-(f) is_integrable_on A proof let f be Function of A,REAL; assume that A1:f is_bounded_on A and A2:f is_integrable_on A; -f is total by RFUNCT_1:68; then A3: -f is Function of A,REAL by FUNCT_2:131; A4:-f is_bounded_on A by A1,RFUNCT_1:99; (-1)(#)f is_integrable_on A by A1,A2,INTEGRA2:31; then -f is_integrable_on A by RFUNCT_1:38; then max+(-f) is_integrable_on A by A3,A4,Th20; hence thesis by Th21; end; theorem for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A holds abs(f) is_integrable_on A & abs(integral(f))<=integral(abs(f)) proof let f be Function of A,REAL; assume that A1:f is_bounded_on A and A2:f is_integrable_on A; max+(f) is total & max-(f) is total by Th13; then A3: max+(f) is Function of A, REAL & max-(f) is Function of A, REAL by FUNCT_2:131; f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; then max+(f) is_bounded_above_on A & max+(f) is_bounded_below_on A & max-(f) is_bounded_above_on A & max-(f) is_bounded_below_on A by Th14,Th15,Th16,Th17; then A4:max+(f) is_bounded_on A & max-(f) is_bounded_on A by RFUNCT_1:def 11; A5:max+(f) is_integrable_on A & max-(f) is_integrable_on A by A1,A2,Th20,Th22; then max+(f) + max-(f) is_integrable_on A by A3,A4,INTEGRA1:59; hence abs(f) is_integrable_on A by RFUNCT_3:37; A6:integral(max+(f))+integral(max-(f)) = integral(max+(f)+max-(f)) by A3,A4,A5,INTEGRA1:59 .= integral(abs(f)) by RFUNCT_3:37; A7:integral(max+(f))-integral(max-(f)) = integral(max+(f)-max-(f)) by A3,A4,A5,INTEGRA2:33 .= integral(f) by RFUNCT_3:37; A8:for x st x in A holds (max+(f)).x >= 0 proof let x; assume A9:x in A; A = dom f by FUNCT_2:def 1; hence thesis by A9,RFUNCT_3:40; end; for x st x in A holds (max-(f)).x >= 0 proof let x; assume A10:x in A; A = dom f by FUNCT_2:def 1; hence thesis by A10,RFUNCT_3:43; end; then A11:integral(max+(f))>=0 & integral(max-(f))>=0 by A3,A4,A5,A8,INTEGRA2:32 ; integral(abs(f))-integral(f) = integral(max+(f))+integral(max-(f))-integral(max+(f))+integral(max-(f)) by A6,A7,XCMPLX_1:37 .=integral(max-(f))-integral(max+(f))+integral(max+(f))+integral(max-(f)) by XCMPLX_1:29 .=integral(max-(f))-(integral(max+(f))-integral(max+(f)))+integral(max-(f)) by XCMPLX_1:37 .=integral(max-(f))+integral(max-(f)) by XCMPLX_1:17 .=2*integral(max-(f)) by XCMPLX_1:11; then integral(abs(f))-integral(f) >= 0 by A11,REAL_2:121; then A12:integral(abs(f))>=integral(f) by REAL_2:105; integral(abs(f))+integral(f) = integral(max+(f))+integral(max-(f))+integral(max+(f))-integral(max-(f)) by A6,A7,XCMPLX_1:29 .=integral(max+(f))+integral(max+(f))+integral(max-(f))-integral(max-(f)) by XCMPLX_1:1 .=integral(max+(f))+integral(max+(f)) by XCMPLX_1:26 .=2*integral(max+(f)) by XCMPLX_1:11; then integral(abs(f))+integral(f) >= 0 by A11,REAL_2:121; then -integral(abs(f))<=integral(f) by REAL_2:110; hence thesis by A12,ABSVALUE:12; end; theorem Th24: for f being Function of A,REAL st (for x,y st x in A & y in A holds abs(f.x-f.y)<=a) holds sup rng f - inf rng f <= a proof let f be Function of A,REAL; assume A1:(for x,y st x in A & y in A holds abs(f.x-f.y)<=a); dom f = A by FUNCT_2:def 1; then A2:rng f is non empty Subset of REAL by RELAT_1:65; A3:for y be real number st y in A holds sup rng f - a <= f.y proof let y be real number; assume A4:y in A; for b be real number st b in rng f holds b <= a+f.y proof let b be real number; assume b in rng f; then consider x being Element of A such that A5: x in dom f & b=f.x by PARTFUN1:26; abs(f.x-f.y)<=a by A1,A4; then f.x-f.y <= a by ABSVALUE:12; hence thesis by A5,REAL_1:86; end; then sup rng f <= a + f.y by A2,PSCOMP_1:10; hence thesis by REAL_1:86; end; for b be real number st b in rng f holds sup rng f - a <= b proof let b be real number; assume b in rng f; then consider x being Element of A such that A6: x in dom f & b=f.x by PARTFUN1:26; thus thesis by A3,A6; end; then sup rng f - a <= inf rng f by A2,PSCOMP_1:8; then sup rng f <= a + inf rng f by REAL_1:86; hence thesis by REAL_1:86; end; theorem Th25: for f,g being Function of A,REAL st f is_bounded_on A & a>=0 & (for x,y st x in A & y in A holds abs(g.x-g.y)<=a*abs(f.x-f.y)) holds sup rng g - inf rng g <= a*(sup rng f - inf rng f) proof let f,g be Function of A,REAL; assume that A1:f is_bounded_on A and A2:a>=0 and A3:(for x,y st x in A & y in A holds abs(g.x-g.y)<=a*abs(f.x-f.y)); A4:dom f = A & dom g = A by FUNCT_2:def 1; f is_bounded_below_on A & f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A5:rng f is bounded_below & rng f is bounded_above by INTEGRA1:13,15; A6:for x,y st x in A & y in A holds abs(f.x-f.y)<=sup rng f - inf rng f proof let x,y; assume that A7:x in A and A8:y in A; now per cases; suppose f.x >= f.y; then f.x - f.y >= 0 by SQUARE_1:12; then abs(f.x-f.y) = f.x - f.y by ABSVALUE:def 1; then A9: abs(f.x-f.y) + f.y = f.x by XCMPLX_1:27; A10: f.x in rng f & f.y in rng f by A4,A7,A8,FUNCT_1:def 5; then f.x <= sup rng f by A5,SEQ_4:def 4; then A11: f.y <= sup rng f - abs(f.x-f.y) by A9,REAL_1:84; inf rng f <= f.y by A5,A10,SEQ_4:def 5; then inf rng f <= sup rng f - abs(f.x-f.y) by A11,AXIOMS:22; then inf rng f + abs(f.x-f.y) <= sup rng f by REAL_1:84; hence abs(f.x-f.y) <= sup rng f - inf rng f by REAL_1:84; suppose f.x < f.y; then f.x - f.y < 0 by REAL_2:105; then abs(f.x-f.y) = -(f.x-f.y) by ABSVALUE:def 1 .= f.y - f.x by XCMPLX_1:143; then A12: abs(f.x-f.y) + f.x = f.y by XCMPLX_1:27; A13: f.x in rng f & f.y in rng f by A4,A7,A8,FUNCT_1:def 5; then f.y <= sup rng f by A5,SEQ_4:def 4; then A14: f.x <= sup rng f - abs(f.x-f.y) by A12,REAL_1:84; inf rng f <= f.x by A5,A13,SEQ_4:def 5; then inf rng f <= sup rng f - abs(f.x-f.y) by A14,AXIOMS:22; then inf rng f + abs(f.x-f.y) <= sup rng f by REAL_1:84; hence abs(f.x-f.y) <= sup rng f - inf rng f by REAL_1:84; end; hence thesis; end; for x,y st x in A & y in A holds abs(g.x-g.y)<=a*(sup rng f - inf rng f) proof let x,y; assume that A15:x in A and A16:y in A; A17:abs(g.x-g.y)<=a*abs(f.x-f.y) by A3,A15,A16; abs(f.x-f.y)<=sup rng f - inf rng f by A6,A15,A16; then a*abs(f.x-f.y)<=a*(sup rng f - inf rng f) by A2,AXIOMS:25; hence thesis by A17,AXIOMS:22; end; hence thesis by Th24; end; theorem Th26: for f,g,h being Function of A,REAL st f is_bounded_on A & g is_bounded_on A & a>=0 & (for x,y st x in A & y in A holds abs(h.x-h.y)<=a*(abs(f.x-f.y)+abs(g.x-g.y))) holds sup rng h - inf rng h <= a*((sup rng f - inf rng f)+(sup rng g - inf rng g)) proof let f,g,h be Function of A,REAL; assume that A1:f is_bounded_on A and A2:g is_bounded_on A and A3:a>=0 and A4:(for x,y st x in A & y in A holds abs(h.x-h.y)<=a*(abs(f.x-f.y)+abs(g.x-g.y))); A5:dom f = A & dom g = A & dom h = A by FUNCT_2:def 1; f is_bounded_below_on A & f is_bounded_above_on A by A1,RFUNCT_1:def 11; then A6:rng f is bounded_below & rng f is bounded_above by INTEGRA1:13,15; A7:for x,y st x in A & y in A holds abs(f.x-f.y)<=sup rng f - inf rng f proof let x,y; assume that A8:x in A and A9:y in A; now per cases; suppose f.x >= f.y; then f.x - f.y >= 0 by SQUARE_1:12; then abs(f.x-f.y) = f.x - f.y by ABSVALUE:def 1; then A10: abs(f.x-f.y) + f.y = f.x by XCMPLX_1:27; A11: f.x in rng f & f.y in rng f by A5,A8,A9,FUNCT_1:def 5; then f.x <= sup rng f by A6,SEQ_4:def 4; then A12: f.y <= sup rng f - abs(f.x-f.y) by A10,REAL_1:84; inf rng f <= f.y by A6,A11,SEQ_4:def 5; then inf rng f <= sup rng f - abs(f.x-f.y) by A12,AXIOMS:22; then inf rng f + abs(f.x-f.y) <= sup rng f by REAL_1:84; hence abs(f.x-f.y) <= sup rng f - inf rng f by REAL_1:84; suppose f.x < f.y; then f.x - f.y < 0 by REAL_2:105; then abs(f.x-f.y) = -(f.x-f.y) by ABSVALUE:def 1 .= f.y - f.x by XCMPLX_1:143; then A13: abs(f.x-f.y) + f.x = f.y by XCMPLX_1:27; A14: f.x in rng f & f.y in rng f by A5,A8,A9,FUNCT_1:def 5; then f.y <= sup rng f by A6,SEQ_4:def 4; then A15: f.x <= sup rng f - abs(f.x-f.y) by A13,REAL_1:84; inf rng f <= f.x by A6,A14,SEQ_4:def 5; then inf rng f <= sup rng f - abs(f.x-f.y) by A15,AXIOMS:22; then inf rng f + abs(f.x-f.y) <= sup rng f by REAL_1:84; hence abs(f.x-f.y) <= sup rng f - inf rng f by REAL_1:84; end; hence thesis; end; g is_bounded_below_on A & g is_bounded_above_on A by A2,RFUNCT_1:def 11; then A16:rng g is bounded_below & rng g is bounded_above by INTEGRA1:13,15; A17:for x,y st x in A & y in A holds abs(g.x-g.y)<=sup rng g - inf rng g proof let x,y; assume that A18:x in A and A19:y in A; now per cases; suppose g.x >= g.y; then g.x - g.y >= 0 by SQUARE_1:12; then abs(g.x-g.y) = g.x - g.y by ABSVALUE:def 1; then A20: abs(g.x-g.y) + g.y = g.x by XCMPLX_1:27; A21: g.x in rng g & g.y in rng g by A5,A18,A19,FUNCT_1:def 5; then g.x <= sup rng g by A16,SEQ_4:def 4; then A22: g.y <= sup rng g - abs(g.x-g.y) by A20,REAL_1:84; inf rng g <= g.y by A16,A21,SEQ_4:def 5; then inf rng g <= sup rng g - abs(g.x-g.y) by A22,AXIOMS:22; then inf rng g + abs(g.x-g.y) <= sup rng g by REAL_1:84; hence abs(g.x-g.y) <= sup rng g - inf rng g by REAL_1:84; suppose g.x < g.y; then g.x - g.y < 0 by REAL_2:105; then abs(g.x-g.y) = -(g.x-g.y) by ABSVALUE:def 1 .= g.y - g.x by XCMPLX_1:143; then A23: abs(g.x-g.y) + g.x = g.y by XCMPLX_1:27; A24: g.x in rng g & g.y in rng g by A5,A18,A19,FUNCT_1:def 5; then g.y <= sup rng g by A16,SEQ_4:def 4; then A25: g.x <= sup rng g - abs(g.x-g.y) by A23,REAL_1:84; inf rng g <= g.x by A16,A24,SEQ_4:def 5; then inf rng g <= sup rng g - abs(g.x-g.y) by A25,AXIOMS:22; then inf rng g + abs(g.x-g.y) <= sup rng g by REAL_1:84; hence abs(g.x-g.y) <= sup rng g - inf rng g by REAL_1:84; end; hence thesis; end; for x,y st x in A & y in A holds abs(h.x-h.y)<=a*((sup rng f - inf rng f)+(sup rng g - inf rng g)) proof let x,y; assume that A26:x in A and A27:y in A; abs(h.x-h.y)<=a*(abs(f.x-f.y)+abs(g.x-g.y)) by A4,A26,A27; then A28:abs(h.x-h.y)<=a*abs(f.x-f.y)+a*abs(g.x-g.y) by XCMPLX_1:8; abs(f.x-f.y)<=sup rng f - inf rng f by A7,A26,A27; then A29:a*abs(f.x-f.y)<=a*(sup rng f - inf rng f) by A3,AXIOMS:25; abs(g.x-g.y)<=sup rng g - inf rng g by A17,A26,A27; then a*abs(g.x-g.y)<=a*(sup rng g - inf rng g) by A3,AXIOMS:25; then a*abs(f.x-f.y)+a*abs(g.x-g.y)<= a*(sup rng f - inf rng f)+a*(sup rng g - inf rng g) by A29,REAL_1:55; then abs(h.x-h.y)<= a*(sup rng f - inf rng f)+a*(sup rng g - inf rng g) by A28,AXIOMS:22; hence thesis by XCMPLX_1:8; end; hence thesis by Th24; end; theorem Th27: for f,g being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & a>0 & (for x,y st x in A & y in A holds abs(g.x-g.y)<=a*abs(f.x-f.y)) holds g is_integrable_on A proof let f,g be Function of A,REAL; assume that A1:f is_bounded_on A and A2:f is_integrable_on A and A3:g is_bounded_on A and A4:a>0 and A5:(for x,y st x in A & y in A holds abs(g.x-g.y)<=a*abs(f.x-f.y)); for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(g,T)-lim lower_sum(g,T)=0 proof let T be DivSequence of A; assume that A6:delta(T) is convergent and A7:lim delta(T)=0; A8:upper_sum(g,T) is convergent & lower_sum(g,T) is convergent by A3,A6,A7,Th8,Th9; A9:upper_sum(f,T) is convergent & lower_sum(f,T) is convergent by A1,A6,A7,Th8,Th9; A10:lim upper_sum(f,T)-lim lower_sum(f,T)=0 by A1,A2,A6,A7,Th12; A11:upper_sum(f,T)-lower_sum(f,T) is convergent by A9,SEQ_2:25; reconsider osc=upper_sum(f,T)-lower_sum(f,T) as Real_Sequence; reconsider osc1=upper_sum(g,T)-lower_sum(g,T) as Real_Sequence; A12:lim(upper_sum(f,T)-lower_sum(f,T))=0 by A9,A10,SEQ_2:26; A13:for b be real number st 0<b ex n st for m st n <= m holds abs(osc1.m-0)<b proof let b be real number; assume b>0; then b/a > 0 by A4,REAL_2:127; then consider n such that A14: for m st n <= m holds abs( osc.m - 0 )<b/a by A11,A12,SEQ_2:def 7; for m st n <= m holds abs( osc1.m - 0 )<b proof let m; assume n <= m; then A15: abs( osc.m - 0 )<b/a by A14; reconsider D=T.m as Element of divs A; osc=upper_sum(f,T)+-lower_sum(f,T) by SEQ_1:15; then A16: osc.m=(upper_sum(f,T)).m+(-lower_sum(f,T)).m by SEQ_1:11 .=(upper_sum(f,T)).m+-(lower_sum(f,T)).m by SEQ_1:14 .=(upper_sum(f,T)).m-(lower_sum(f,T)).m by XCMPLX_0:def 8 .=upper_sum(f,T.m)-(lower_sum(f,T)).m by INTEGRA2:def 4 .=upper_sum(f,T.m)-lower_sum(f,T.m) by INTEGRA2:def 5 .=Sum(upper_volume(f,D))-lower_sum(f,T.m) by INTEGRA1:def 9 .=Sum(upper_volume(f,D))-Sum(lower_volume(f,D)) by INTEGRA1:def 10; len upper_volume(f,D)=len D by INTEGRA1:def 7; then reconsider UV=upper_volume(f,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len lower_volume(f,D)=len D by INTEGRA1:def 8; then reconsider LV=lower_volume(f,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; A17: osc.m=Sum(UV-LV) by A16,RVSUM_1:120; osc1=upper_sum(g,T)+-lower_sum(g,T) by SEQ_1:15; then A18: osc1.m=(upper_sum(g,T)).m+(-lower_sum(g,T)).m by SEQ_1:11 .=(upper_sum(g,T)).m+-(lower_sum(g,T)).m by SEQ_1:14 .=(upper_sum(g,T)).m-(lower_sum(g,T)).m by XCMPLX_0:def 8 .=upper_sum(g,T.m)-(lower_sum(g,T)).m by INTEGRA2:def 4 .=upper_sum(g,T.m)-lower_sum(g,T.m) by INTEGRA2:def 5 .=Sum(upper_volume(g,D))-lower_sum(g,T.m) by INTEGRA1:def 9 .=Sum(upper_volume(g,D))-Sum(lower_volume(g,D)) by INTEGRA1:def 10; len upper_volume(g,D) = len D by INTEGRA1:def 7; then reconsider UV1=upper_volume(g,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len lower_volume(g,D) = len D by INTEGRA1:def 8; then reconsider LV1=lower_volume(g,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; A19: osc1.m=Sum(UV1-LV1) by A18,RVSUM_1:120; for j st j in Seg (len D) holds (UV1-LV1).j <= (a*(UV-LV)).j proof let j; assume that A20:j in Seg (len D); set x=(UV1-LV1).j, y=(a*(UV-LV)).j; A21: UV1.j=(sup (rng (g|divset(D,j))))*vol(divset(D,j)) by A20,INTEGRA1:def 7; LV1.j=(inf (rng (g|divset(D,j))))*vol(divset(D,j)) by A20,INTEGRA1:def 8; then A22: x=(sup rng (g|divset(D,j)))*vol(divset(D,j)) -(inf rng (g|divset(D,j)))*vol(divset(D,j)) by A21,RVSUM_1:48 .=(sup rng (g|divset(D,j))-inf rng (g|divset(D,j))) *vol(divset(D,j)) by XCMPLX_1:40; A23: UV.j=(sup rng (f|divset(D,j)))*vol(divset(D,j)) by A20,INTEGRA1:def 7; A24: LV.j=(inf rng (f|divset(D,j)))*vol(divset(D,j)) by A20,INTEGRA1:def 8; y=a*((UV-LV).j) by RVSUM_1:67; then A25: y=a*((sup rng (f|divset(D,j)))*vol(divset(D,j)) -(inf rng (f|divset(D,j)))*vol(divset(D,j))) by A23,A24,RVSUM_1:48 .=a*((sup rng (f|divset(D,j))-inf rng (f|divset(D,j)))*vol(divset(D,j))) by XCMPLX_1:40; A26: a*(sup rng (f|divset(D,j))-inf rng (f|divset(D,j))) >= sup rng (g|divset(D,j))-inf rng (g|divset(D,j)) proof j in dom D by A20,FINSEQ_1:def 3; then A27: divset(D,j) c= A by INTEGRA1:10; A28: dom(f|divset(D,j)) = dom f /\ divset(D,j) by RELAT_1:90 .= A /\ divset(D,j) by FUNCT_2:def 1 .= divset(D,j) by A27,XBOOLE_1:28; then reconsider f1=f|divset(D,j) as PartFunc of divset(D,j),REAL by PARTFUN1:28; reconsider f1 as Function of divset(D,j),REAL by A28,FUNCT_2:def 1; A29: dom(g|divset(D,j)) = dom g /\ divset(D,j) by RELAT_1:90 .= A /\ divset(D,j) by FUNCT_2:def 1 .= divset(D,j) by A27,XBOOLE_1:28; then reconsider g1=g|divset(D,j) as PartFunc of divset(D,j),REAL by PARTFUN1:28; reconsider g1 as Function of divset(D,j),REAL by A29,FUNCT_2:def 1; f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; then f|divset(D,j) is_bounded_above_on divset(D,j) & f|divset(D,j) is_bounded_below_on divset(D,j) by A27,INTEGRA2:5,6; then f|divset(D,j) is_bounded_on divset(D,j) by RFUNCT_1:def 11; then consider r be real number such that A30: for x being Element of A st x in divset(D,j) /\ dom(f|divset(D,j)) holds abs((f|divset(D,j)).x)<=r by RFUNCT_1:90; for x being Element of divset(D,j) st x in divset(D,j) /\ dom f1 holds abs(f1.x)<=r proof let x be Element of divset(D,j); assume A31:x in divset(D,j) /\ dom f1; x in divset(D,j); then reconsider x as Element of A by A27; (f|divset(D,j)).x = f1.x; hence thesis by A30,A31; end; then A32: f1 is_bounded_on divset(D,j) by RFUNCT_1:90; (for x,y st x in divset(D,j) & y in divset(D,j) holds abs(g1.x-g1.y) <= a*abs(f1.x-f1.y)) proof let x,y; assume A33:x in divset(D,j) & y in divset(D,j); then g.x=g1.x & g.y=g1.y & f.x=f1.x & f.y=f1.y by A28,A29,FUNCT_1:70; hence thesis by A5,A27,A33; end; hence thesis by A4,A32,Th25; end; vol(divset(D,j)) >= 0 by INTEGRA1:11; then a*(sup rng (f|divset(D,j))-inf rng (f|divset(D,j)))*vol(divset(D,j )) >= (sup rng (g|divset(D,j))-inf rng (g|divset(D,j)))*vol(divset(D,j)) by A26,AXIOMS:25; hence thesis by A22,A25,XCMPLX_1:4; end; then osc1.m <= Sum(a*(UV-LV)) by A19,RVSUM_1:112; then A34: osc1.m <= a*osc.m by A17,RVSUM_1:117; reconsider F = UV1-LV1 as FinSequence of REAL; A35: osc1.m >= 0 proof for j st j in dom F holds 0 <= F.j proof let j; assume that A36:j in dom F; set r = F.j; j in Seg len F by A36,FINSEQ_1:def 3; then A37: j in Seg len D by FINSEQ_2:109; then UV1.j=(sup (rng (g|divset(D,j))))*vol(divset(D,j)) & LV1.j=(inf (rng (g|divset(D,j))))*vol(divset(D,j)) by INTEGRA1:def 7,def 8; then A38: r = (sup(rng(g|divset(D,j))))*vol(divset(D,j)) -(inf(rng(g|divset(D,j))))*vol(divset(D,j)) by A36,RVSUM_1:47 .=(sup(rng(g|divset(D,j))) - inf(rng(g|divset(D,j))))* vol(divset(D,j)) by XCMPLX_1:40; A39: sup(rng(g|divset(D,j)))-inf(rng(g|divset(D,j)))>=0 proof rng (g|divset(D,j)) is bounded & ex r st r in rng (g|divset(D,j)) proof consider r such that A40: r in divset(D,j) by SUBSET_1:10; j in dom D by A37,FINSEQ_1:def 3; then divset(D,j) c= A by INTEGRA1:10; then r in A by A40; then r in dom g by FUNCT_2:def 1; then r in dom g /\ divset(D,j) by A40,XBOOLE_0:def 3; then r in dom (g|divset(D,j)) by RELAT_1:90; then A41: (g|divset(D,j)).r in rng(g|divset(D,j)) by FUNCT_1:def 5; A42: rng(g|divset(D,j)) c= rng g by FUNCT_1:76; g is_bounded_above_on A & g is_bounded_below_on A by A3,RFUNCT_1:def 11; then rng g is bounded_above & rng g is bounded_below by INTEGRA1:13,15; then rng g is bounded by SEQ_4:def 3; hence rng (g|divset(D,j)) is bounded by A42,RCOMP_1:5; thus thesis by A41; end; then sup(rng(g|divset(D,j)))>=inf(rng(g|divset(D,j))) by SEQ_4:24; hence thesis by SQUARE_1:12; end; vol(divset(D,j))>=0 by INTEGRA1:11; hence thesis by A38,A39,REAL_2:121; end; hence thesis by A19,RVSUM_1:114; end; then A43: abs( osc1.m )=osc1.m by ABSVALUE:def 1; osc.m >= 0/a by A4,A34,A35,REAL_2:177; then abs( osc.m )=osc.m by ABSVALUE:def 1; then a*osc.m < a*(b/a) by A4,A15,REAL_1:70; then a*osc.m < b by A4,XCMPLX_1:88; hence thesis by A34,A43,AXIOMS:22; end; hence thesis; end; then osc1 is convergent by SEQ_2:def 6; then lim(upper_sum(g,T)-lower_sum(g,T))=0 by A13,SEQ_2:def 7; hence thesis by A8,SEQ_2:26; end; hence thesis by A3,Th12; end; theorem Th28: for f,g,h being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A & h is_bounded_on A & a > 0 & (for x,y st x in A & y in A holds abs(h.x-h.y)<=a*(abs(f.x-f.y)+abs(g.x-g.y))) holds h is_integrable_on A proof let f,g,h be Function of A,REAL; assume that A1: f is_bounded_on A and A2:f is_integrable_on A and A3: g is_bounded_on A and A4: g is_integrable_on A and A5: h is_bounded_on A and A6: a>0 and A7:(for x,y st x in A & y in A holds abs(h.x-h.y)<=a*(abs(f.x-f.y)+abs(g.x-g.y))); for T being DivSequence of A st delta(T) is convergent & lim delta(T)=0 holds lim upper_sum(h,T)-lim lower_sum(h,T)=0 proof let T be DivSequence of A; assume that A8:delta(T) is convergent and A9:lim delta(T)=0; A10:upper_sum(g,T) is convergent & lower_sum(g,T) is convergent by A3,A8,A9,Th8,Th9; A11:upper_sum(f,T) is convergent & lower_sum(f,T) is convergent by A1,A8,A9,Th8,Th9; A12:upper_sum(h,T) is convergent & lower_sum(h,T) is convergent by A5,A8,A9,Th8,Th9; A13:lim upper_sum(f,T)-lim lower_sum(f,T)=0 by A1,A2,A8,A9,Th12; A14:lim upper_sum(g,T)-lim lower_sum(g,T)=0 by A3,A4,A8,A9,Th12; A15:upper_sum(f,T)-lower_sum(f,T) is convergent by A11,SEQ_2:25; A16:upper_sum(g,T)-lower_sum(g,T) is convergent by A10,SEQ_2:25; reconsider osc=upper_sum(f,T)-lower_sum(f,T) as Real_Sequence; reconsider osc1=upper_sum(g,T)-lower_sum(g,T) as Real_Sequence; reconsider osc2=upper_sum(h,T)-lower_sum(h,T) as Real_Sequence; A17:lim(upper_sum(f,T)-lower_sum(f,T))=0 by A11,A13,SEQ_2:26; A18:lim(upper_sum(g,T)-lower_sum(g,T))=0 by A10,A14,SEQ_2:26; A19:for b be real number st 0<b ex n st for m st n <= m holds abs(osc2.m-0)<b proof let b be real number; assume b>0; then b/a > 0 by A6,REAL_2:127; then A20: (b/a)/2 > 0 by REAL_2:127; then consider n1 such that A21: for m st n1 <= m holds abs( osc.m - 0 )<(b/a)/2 by A15,A17,SEQ_2:def 7; consider n2 such that A22: for m st n2 <= m holds abs( osc1.m-0 )<(b/a)/2 by A16,A18,A20,SEQ_2:def 7; ex n st n1 <= n & n2 <= n proof take n=max(n1,n2); reconsider n as Nat by SQUARE_1:49; n1<=n & n2<=n by SQUARE_1:46; hence thesis; end; then consider n such that A23:n1 <= n & n2 <= n; for m st n <= m holds abs( osc2.m-0 )<b proof let m; assume n <= m; then n1<=m & n2<=m by A23,AXIOMS:22; then A24: abs( osc.m - 0 )<(b/a)/2 & abs( osc1.m - 0 )<(b/a)/2 by A21,A22; reconsider D=T.m as Element of divs A; osc=upper_sum(f,T)+-lower_sum(f,T) by SEQ_1:15; then A25: osc.m=(upper_sum(f,T)).m+(-lower_sum(f,T)).m by SEQ_1:11 .=(upper_sum(f,T)).m+-(lower_sum(f,T)).m by SEQ_1:14 .=(upper_sum(f,T)).m-(lower_sum(f,T)).m by XCMPLX_0:def 8 .=upper_sum(f,T.m)-(lower_sum(f,T)).m by INTEGRA2:def 4 .=upper_sum(f,T.m)-lower_sum(f,T.m) by INTEGRA2:def 5 .=Sum(upper_volume(f,D))-lower_sum(f,T.m) by INTEGRA1:def 9 .=Sum(upper_volume(f,D))-Sum(lower_volume(f,D)) by INTEGRA1:def 10; osc1=upper_sum(g,T)+-lower_sum(g,T) by SEQ_1:15; then A26: osc1.m=(upper_sum(g,T)).m+(-lower_sum(g,T)).m by SEQ_1:11 .=(upper_sum(g,T)).m+-(lower_sum(g,T)).m by SEQ_1:14 .=(upper_sum(g,T)).m-(lower_sum(g,T)).m by XCMPLX_0:def 8 .=upper_sum(g,T.m)-(lower_sum(g,T)).m by INTEGRA2:def 4 .=upper_sum(g,T.m)-lower_sum(g,T.m) by INTEGRA2:def 5 .=Sum(upper_volume(g,D))-lower_sum(g,T.m) by INTEGRA1:def 9 .=Sum(upper_volume(g,D))-Sum(lower_volume(g,D)) by INTEGRA1:def 10; len upper_volume(f,D)=len D by INTEGRA1:def 7; then reconsider UV=upper_volume(f,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len lower_volume(f,D)=len D by INTEGRA1:def 8; then reconsider LV=lower_volume(f,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len upper_volume(g,D)=len D by INTEGRA1:def 7; then reconsider UV1=upper_volume(g,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len lower_volume(g,D)=len D by INTEGRA1:def 8; then reconsider LV1=lower_volume(g,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; A27: osc.m=Sum(UV-LV) by A25,RVSUM_1:120; A28: osc1.m=Sum(UV1-LV1) by A26,RVSUM_1:120; osc2=upper_sum(h,T)+-lower_sum(h,T) by SEQ_1:15; then A29: osc2.m=(upper_sum(h,T)).m+(-lower_sum(h,T)).m by SEQ_1:11 .=(upper_sum(h,T)).m+-(lower_sum(h,T)).m by SEQ_1:14 .=(upper_sum(h,T)).m-(lower_sum(h,T)).m by XCMPLX_0:def 8 .=upper_sum(h,T.m)-(lower_sum(h,T)).m by INTEGRA2:def 4 .=upper_sum(h,T.m)-lower_sum(h,T.m) by INTEGRA2:def 5 .=Sum(upper_volume(h,D))-lower_sum(h,T.m) by INTEGRA1:def 9 .=Sum(upper_volume(h,D))-Sum(lower_volume(h,D)) by INTEGRA1:def 10; len upper_volume(h,D) = len D by INTEGRA1:def 7; then reconsider UV2=upper_volume(h,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; len lower_volume(h,D) = len D by INTEGRA1:def 8; then reconsider LV2=lower_volume(h,D) as Element of (len D)-tuples_on REAL by CATALG_1:5; A30: osc2.m=Sum(UV2-LV2) by A29,RVSUM_1:120; for j st j in Seg(len D) holds (UV2-LV2).j <= (a*((UV-LV)+(UV1-LV1))).j proof let j; assume that A31:j in Seg (len D); set x=(UV2-LV2).j, y=(a*((UV-LV)+(UV1-LV1))).j; A32: UV2.j=(sup (rng (h|divset(D,j))))*vol(divset(D,j)) by A31,INTEGRA1:def 7; LV2.j=(inf (rng (h|divset(D,j))))*vol(divset(D,j)) by A31,INTEGRA1:def 8; then A33: x=(sup rng (h|divset(D,j)))*vol(divset(D,j)) -(inf rng (h|divset(D,j)))*vol(divset(D,j)) by A32,RVSUM_1:48 .=(sup rng (h|divset(D,j))-inf rng (h|divset(D,j))) *vol(divset(D,j)) by XCMPLX_1:40; A34: LV.j=(inf rng (f|divset(D,j)))*vol(divset(D,j)) by A31,INTEGRA1:def 8; A35: UV1.j=(sup rng (g|divset(D,j)))*vol(divset(D,j)) by A31,INTEGRA1:def 7; A36: LV1.j=(inf rng (g|divset(D,j)))*vol(divset(D,j)) by A31,INTEGRA1:def 8; y=a*(((UV-LV)+(UV1-LV1)).j) by RVSUM_1:67 .=a*((UV-LV).j+(UV1-LV1).j) by RVSUM_1:27 .=a*(UV.j-LV.j+(UV1-LV1).j) by RVSUM_1:48 .=a*(UV.j-LV.j+(UV1.j-LV1.j)) by RVSUM_1:48; then A37: y=a*(((sup rng (f|divset(D,j)))*vol(divset(D,j)) -(inf rng (f|divset(D,j)))*vol(divset(D,j))) +((sup rng (g|divset(D,j)))*vol(divset(D,j)) -(inf rng (g|divset(D,j)))*vol(divset(D,j)))) by A31,A34,A35,A36,INTEGRA1:def 7 .=a*(((sup rng (f|divset(D,j))-inf rng (f|divset(D,j))) *vol(divset(D,j))) +((sup rng (g|divset(D,j)))*vol(divset(D,j)) -(inf rng (g|divset(D,j)))*vol(divset(D,j))) ) by XCMPLX_1:40 .=a*(((sup rng(f|divset(D,j))-inf rng(f|divset(D,j)))*vol(divset(D,j))) +(sup rng (g|divset(D,j))-inf rng (g|divset(D,j)))*vol(divset(D,j))) by XCMPLX_1:40 .=a*(((sup rng(f|divset(D,j))-inf rng(f|divset(D,j))) +(sup rng (g|divset(D,j))-inf rng (g|divset(D,j))))*vol(divset(D,j))) by XCMPLX_1:8 .=a*(((sup rng(f|divset(D,j))-inf rng(f|divset(D,j))) +(sup rng (g|divset(D,j))-inf rng (g|divset(D,j)))))*vol(divset(D,j)) by XCMPLX_1:4; A38: a*(((sup rng(f|divset(D,j))-inf rng(f|divset(D,j))) +(sup rng (g|divset(D,j))-inf rng (g|divset(D,j))))) >= sup rng (h|divset(D,j))-inf rng (h|divset(D,j)) proof j in dom D by A31,FINSEQ_1:def 3; then A39: divset(D,j) c= A by INTEGRA1:10; A40: dom(f|divset(D,j)) = dom f /\ divset(D,j) by RELAT_1:90 .= A /\ divset(D,j) by FUNCT_2:def 1 .= divset(D,j) by A39,XBOOLE_1:28; then reconsider f1=f|divset(D,j) as PartFunc of divset(D,j),REAL by PARTFUN1:28; A41: dom(g|divset(D,j)) = dom g /\ divset(D,j) by RELAT_1:90 .= A /\ divset(D,j) by FUNCT_2:def 1 .= divset(D,j) by A39,XBOOLE_1:28; then reconsider g1=g|divset(D,j) as PartFunc of divset(D,j),REAL by PARTFUN1:28; reconsider g1 as Function of divset(D,j),REAL by A41,FUNCT_2:def 1; A42: dom(h|divset(D,j)) = dom h /\ divset(D,j) by RELAT_1:90 .= A /\ divset(D,j) by FUNCT_2:def 1 .= divset(D,j) by A39,XBOOLE_1:28; then reconsider h1=h|divset(D,j) as PartFunc of divset(D,j),REAL by PARTFUN1:28; reconsider h1 as Function of divset(D,j),REAL by A42,FUNCT_2:def 1; f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; then f|divset(D,j) is_bounded_above_on divset(D,j) & f|divset(D,j) is_bounded_below_on divset(D,j) by A40,INTEGRA2:5,6; then f|divset(D,j) is_bounded_on divset(D,j) by RFUNCT_1:def 11; then consider r1 be real number such that A43: for x being Element of A st x in divset(D,j) /\ dom(f|divset(D,j)) holds abs((f|divset(D,j)).x)<=r1 by RFUNCT_1:90; g is_bounded_above_on A & g is_bounded_below_on A by A3,RFUNCT_1:def 11; then g|divset(D,j) is_bounded_above_on divset(D,j) & g|divset(D,j) is_bounded_below_on divset(D,j) by A41,INTEGRA2:5,6; then g|divset(D,j) is_bounded_on divset(D,j) by RFUNCT_1:def 11; then consider r2 be real number such that A44: for x being Element of A st x in divset(D,j) /\ dom(g|divset(D,j)) holds abs((g|divset(D,j)).x)<=r2 by RFUNCT_1:90; for x being Element of divset(D,j) st x in divset(D,j) /\ dom f1 holds abs(f1.x)<=r1 by A40,A43; then A45: f1 is_bounded_on divset(D,j) by RFUNCT_1:90; for x being Element of divset(D,j) st x in divset(D,j) /\ dom g1 holds abs(g1.x)<=r2 proof let x be Element of divset(D,j); assume A46:x in divset(D,j) /\ dom g1; x in divset(D,j); then reconsider x as Element of A by A40; (g|divset(D,j)).x = g1.x; hence thesis by A44,A46; end; then A47: g1 is_bounded_on divset(D,j) by RFUNCT_1:90; dom f1 = divset(D,j) & dom g1 = divset(D,j) & dom h1 = divset(D,j) by A40,FUNCT_2:def 1; then f1 is total & g1 is total & h1 is total by PARTFUN1:def 4; then A48: f1 is Function of divset(D,j), REAL & g1 is Function of divset(D,j), REAL & h1 is Function of divset(D,j), REAL by FUNCT_2:131; (for x,y st x in divset(D,j) & y in divset(D,j) holds abs(h1.x-h1.y) <= a*(abs(f1.x-f1.y)+abs(g1.x-g1.y))) proof let x,y; assume A49:x in divset(D,j) & y in divset(D,j); then g.x=g1.x & g.y=g1.y & f.x=f1.x & f.y=f1.y & h.x=h1.x & h.y=h1.y by A40,A41,A42,FUNCT_1:70; hence thesis by A7,A40,A49; end; hence thesis by A6,A45,A47,A48,Th26; end; vol(divset(D,j)) >= 0 by INTEGRA1:11; hence thesis by A33,A37,A38,AXIOMS:25; end; then osc2.m <= Sum(a*((UV-LV)+(UV1-LV1))) by A30,RVSUM_1:112; then osc2.m <= a*Sum((UV-LV)+(UV1-LV1)) by RVSUM_1:117; then A50: osc2.m <= a*(osc.m+osc1.m) by A27,A28,RVSUM_1:119; reconsider F = UV2-LV2 as FinSequence of REAL; osc2.m >= 0 proof for j st j in dom F holds 0 <= F.j proof let j; assume that A51:j in dom F; set r = F.j; j in Seg len F by A51,FINSEQ_1:def 3; then A52: j in Seg len D by FINSEQ_2:109; then UV2.j=(sup (rng (h|divset(D,j))))*vol(divset(D,j)) & LV2.j=(inf (rng (h|divset(D,j))))*vol(divset(D,j)) by INTEGRA1:def 7,def 8; then A53: r = (sup(rng(h|divset(D,j))))*vol(divset(D,j)) -(inf(rng(h|divset(D,j))))*vol(divset(D,j)) by A51,RVSUM_1:47 .=(sup(rng(h|divset(D,j))) - inf(rng(h|divset(D,j))))* vol(divset(D,j)) by XCMPLX_1:40; A54: sup(rng(h|divset(D,j)))-inf(rng(h|divset(D,j)))>=0 proof rng (h|divset(D,j)) is bounded & ex r st r in rng (h|divset(D,j)) proof consider r such that A55: r in divset(D,j) by SUBSET_1:10; j in dom D by A52,FINSEQ_1:def 3; then divset(D,j) c= A by INTEGRA1:10; then r in A by A55; then r in dom h by FUNCT_2:def 1; then r in dom h /\ divset(D,j) by A55,XBOOLE_0:def 3; then r in dom (h|divset(D,j)) by RELAT_1:90; then A56: (h|divset(D,j)).r in rng(h|divset(D,j)) by FUNCT_1:def 5; A57: rng(h|divset(D,j)) c= rng h by FUNCT_1:76; h is_bounded_above_on A & h is_bounded_below_on A by A5,RFUNCT_1:def 11; then rng h is bounded_above & rng h is bounded_below by INTEGRA1:13,15; then rng h is bounded by SEQ_4:def 3; hence rng (h|divset(D,j)) is bounded by A57,RCOMP_1:5; thus thesis by A56; end; then sup(rng(h|divset(D,j)))>=inf(rng(h|divset(D,j))) by SEQ_4:24; hence thesis by SQUARE_1:12; end; vol(divset(D,j))>=0 by INTEGRA1:11; hence thesis by A53,A54,REAL_2:121; end; hence thesis by A30,RVSUM_1:114; end; then A58: abs( osc2.m )=osc2.m by ABSVALUE:def 1; reconsider G = UV1-LV1 as FinSequence of REAL; reconsider H = UV-LV as FinSequence of REAL; A59: osc.m >= 0 & osc1.m >=0 proof for j st j in dom H holds 0 <= H.j proof let j; assume that A60:j in dom H; set r = H.j; j in Seg len H by A60,FINSEQ_1:def 3; then A61: j in Seg len D by FINSEQ_2:109; then UV.j=(sup (rng (f|divset(D,j))))*vol(divset(D,j)) & LV.j=(inf (rng (f|divset(D,j))))*vol(divset(D,j)) by INTEGRA1:def 7,def 8; then A62: r = (sup(rng(f|divset(D,j))))*vol(divset(D,j)) -(inf(rng(f|divset(D,j))))*vol(divset(D,j)) by A60,RVSUM_1:47 .=(sup(rng(f|divset(D,j))) - inf(rng(f|divset(D,j))))* vol(divset(D,j)) by XCMPLX_1:40; A63: sup(rng(f|divset(D,j)))-inf(rng(f|divset(D,j)))>=0 proof rng (f|divset(D,j)) is bounded & ex r st r in rng (f|divset(D,j)) proof consider r such that A64: r in divset(D,j) by SUBSET_1:10; j in dom D by A61,FINSEQ_1:def 3; then divset(D,j) c= A by INTEGRA1:10; then r in A by A64; then r in dom f by FUNCT_2:def 1; then r in dom f /\ divset(D,j) by A64,XBOOLE_0:def 3; then r in dom (f|divset(D,j)) by RELAT_1:90; then A65: (f|divset(D,j)).r in rng(f|divset(D,j)) by FUNCT_1:def 5; A66: rng(f|divset(D,j)) c= rng f by FUNCT_1:76; f is_bounded_above_on A & f is_bounded_below_on A by A1,RFUNCT_1:def 11; then rng f is bounded_above & rng f is bounded_below by INTEGRA1:13,15; then rng f is bounded by SEQ_4:def 3; hence rng (f|divset(D,j)) is bounded by A66,RCOMP_1:5; thus thesis by A65; end; then sup(rng(f|divset(D,j)))>=inf(rng(f|divset(D,j))) by SEQ_4:24; hence thesis by SQUARE_1:12; end; vol(divset(D,j))>=0 by INTEGRA1:11; hence thesis by A62,A63,REAL_2:121; end; hence osc.m >= 0 by A27,RVSUM_1:114; for j st j in dom G holds 0 <= G.j proof let j; assume that A67:j in dom G; set r = G.j; j in Seg len G by A67,FINSEQ_1:def 3; then A68: j in Seg len D by FINSEQ_2:109; then UV1.j=(sup (rng (g|divset(D,j))))*vol(divset(D,j)) & LV1.j=(inf (rng (g|divset(D,j))))*vol(divset(D,j)) by INTEGRA1:def 7,def 8; then A69: r = (sup(rng(g|divset(D,j))))*vol(divset(D,j)) -(inf(rng(g|divset(D,j))))*vol(divset(D,j)) by A67,RVSUM_1:47 .=(sup(rng(g|divset(D,j))) - inf(rng(g|divset(D,j))))* vol(divset(D,j)) by XCMPLX_1:40; A70: sup(rng(g|divset(D,j)))-inf(rng(g|divset(D,j)))>=0 proof rng (g|divset(D,j)) is bounded & ex r st r in rng (g|divset(D,j)) proof consider r such that A71: r in divset(D,j) by SUBSET_1:10; j in dom D by A68,FINSEQ_1:def 3; then divset(D,j) c= A by INTEGRA1:10; then r in A by A71; then r in dom g by FUNCT_2:def 1; then r in dom g /\ divset(D,j) by A71,XBOOLE_0:def 3; then r in dom (g|divset(D,j)) by RELAT_1:90; then A72: (g|divset(D,j)).r in rng(g|divset(D,j)) by FUNCT_1:def 5; A73: rng(g|divset(D,j)) c= rng g by FUNCT_1:76; g is_bounded_above_on A & g is_bounded_below_on A by A3,RFUNCT_1:def 11; then rng g is bounded_above & rng g is bounded_below by INTEGRA1:13,15; then rng g is bounded by SEQ_4:def 3; hence rng (g|divset(D,j)) is bounded by A73,RCOMP_1:5; thus thesis by A72; end; then sup(rng(g|divset(D,j)))>=inf(rng(g|divset(D,j))) by SEQ_4:24; hence thesis by SQUARE_1:12; end; vol(divset(D,j))>=0 by INTEGRA1:11; hence thesis by A69,A70,REAL_2:121; end; hence thesis by A28,RVSUM_1:114; end; then osc.m*osc1.m >=0 by REAL_2:121; then A74: abs(osc.m)+abs(osc1.m)=abs(osc.m+osc1.m) by ABSVALUE:24; osc.m+osc1.m >= 0+0 by A59,REAL_1:55; then abs(osc.m-0)+abs(osc1.m)=osc.m+osc1.m by A74,ABSVALUE:def 1; then osc.m+osc1.m < (b/a)/2+(b/a)/2 by A24,REAL_1:67; then osc.m+osc1.m < 2*((b/a)/2) by XCMPLX_1:11; then osc.m+osc1.m < b/a by XCMPLX_1:88; then a*(osc.m+osc1.m) < a*(b/a) by A6,REAL_1:70; then a*(osc.m+osc1.m) < b by A6,XCMPLX_1:88; hence thesis by A50,A58,AXIOMS:22; end; hence thesis; end; then osc2 is convergent by SEQ_2:def 6; then lim(upper_sum(h,T)-lower_sum(h,T))=0 by A19,SEQ_2:def 7; hence thesis by A12,SEQ_2:26; end; hence thesis by A5,Th12; end; theorem for f,g being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & g is_bounded_on A & g is_integrable_on A holds f(#)g is_integrable_on A proof let f,g be Function of A,REAL; assume that A1:f is_bounded_on A and A2:f is_integrable_on A and A3:g is_bounded_on A and A4:g is_integrable_on A; consider r1 be real number such that A5:for x being Element of A st x in A /\ dom f holds abs(f.x)<=r1 by A1,RFUNCT_1:90; consider r2 be real number such that A6:for x being Element of A st x in A /\ dom g holds abs(g.x)<=r2 by A3,RFUNCT_1:90; reconsider r=max(r1,r2) as Real by XREAL_0:def 1; A7:f(#)g is total & f(#)g is_bounded_on A proof thus f(#)g is total by RFUNCT_1:66; f(#)g is_bounded_on (A /\ A) by A1,A3,RFUNCT_1:101; hence thesis; end; then A8: f(#)g is Function of A, REAL by FUNCT_2:131; A9:r1<=r & r2<=r by SQUARE_1:46; A10:A /\ dom f = A /\ A by FUNCT_2:def 1 .= A; then consider a being Element of REAL such that A11:a in A /\ dom f by SUBSET_1:10; reconsider a as Element of A by A10,A11; A12: abs(f.a)<=r1 & abs(f.a)>=0 by A5,A11,ABSVALUE:5; A13:A /\ dom g = A /\ A by FUNCT_2:def 1 .= A; A14:for x,y st x in A & y in A holds abs((f(#)g).x-(f(#)g).y)<=r*(abs(g.x-g.y)+abs(f.x-f.y)) proof let x,y; assume A15:x in A & y in A; then x in dom(f(#)g) & y in dom(f(#)g) by A7,PARTFUN1:def 4; then (f(#)g).x=f.x*g.x & (f(#)g).y=f.y*g.y by SEQ_1:def 5; then abs((f(#)g).x-(f(#) g).y)=abs((f.x*g.x-f.x*g.y)+(f.x*g.y-f.y*g.y)) by XCMPLX_1:39 .=abs(f.x*(g.x-g.y)+(f.x*g.y-f.y*g.y)) by XCMPLX_1:40 .=abs(f.x*(g.x-g.y)+(f.x-f.y)*g.y) by XCMPLX_1:40; then A16:abs((f(#)g).x-(f(#) g).y)<=abs(f.x*(g.x-g.y))+abs((f.x-f.y)*g.y) by ABSVALUE:13; A17:abs(f.x*(g.x-g.y))=abs(f.x)*abs(g.x-g.y) by ABSVALUE:10; A18:abs(g.x-g.y)>=0 by ABSVALUE:5; abs(f.x)<=r1 by A5,A10,A15; then abs(f.x)<=r by A9,AXIOMS:22; then A19:abs(f.x*(g.x-g.y))<=r*abs(g.x-g.y) by A17,A18,AXIOMS:25; A20:abs((f.x-f.y)*g.y)=abs(f.x-f.y)*abs(g.y) by ABSVALUE:10; A21:abs(f.x-f.y)>=0 by ABSVALUE:5; abs(g.y)<=r2 by A6,A13,A15; then abs(g.y)<=r by A9,AXIOMS:22; then abs((f.x-f.y)*g.y)<=r*abs(f.x-f.y) by A20,A21,AXIOMS:25; then abs(f.x*(g.x-g.y))+abs((f.x-f.y)*g.y)<=r*abs(g.x-g.y)+r*abs(f.x-f.y) by A19,REAL_1:55; then abs(f.x*(g.x-g.y))+abs((f.x-f.y)*g.y)<=r*(abs(g.x-g.y)+abs(f.x-f.y)) by XCMPLX_1:8; hence thesis by A16,AXIOMS:22; end; now per cases by A12,SQUARE_1:46; suppose A22:r=0; for x,y st x in A & y in A holds abs((f(#)g).x-(f(#)g).y)<=1*abs(f.x-f.y) proof let x,y; assume x in A & y in A; then abs((f(#)g).x-(f(#)g).y)<=r*(abs(g.x-g.y)+abs(f.x-f.y)) by A14; hence thesis by A22,ABSVALUE:5; end; hence f(#)g is_integrable_on A by A1,A2,A7,A8,Th27; suppose r>0; hence thesis by A1,A2,A3,A4,A7,A8,A14,Th28; end; hence thesis; end; theorem for f being Function of A,REAL st f is_bounded_on A & f is_integrable_on A & not(0 in rng f) & f^ is_bounded_on A holds f^ is_integrable_on A proof let f be Function of A,REAL; assume that A1:f is_bounded_on A and A2: f is_integrable_on A and A3:not(0 in rng f) and A4:f^ is_bounded_on A; consider r be real number such that A5:for x being Element of A st x in A /\ dom(f^) holds abs((f^).x)<=r by A4,RFUNCT_1:90; reconsider r as Real by XREAL_0:def 1; A6: f"{0} = {} by A3,FUNCT_1:142; A7:f^ is total by A6,RFUNCT_1:70; then A8: f^ is Function of A,REAL by FUNCT_2:131; A9:for x,y st x in A & y in A holds abs((f^).x-(f^).y)<=(r^2)*abs(f.x-f.y) proof let x,y; assume A10:x in A & y in A; then A11:x in dom(f^) & y in dom(f^) by A7,PARTFUN1:def 4; then A12:(f^).x-(f^).y = (f.x)"-(f^).y by RFUNCT_1:def 8 .=(f.x)"-(f.y)" by A11,RFUNCT_1:def 8; A13:f.x<>0 & f.y<>0 & abs(f.x)<>0 & abs(f.y)<>0 proof thus f.x<>0 & f.y<>0 by A11,RFUNCT_1:13; hence thesis by ABSVALUE:6; end; then A14:abs((f^).x-(f^).y)=abs(f.x-f.y)/(abs(f.x)*abs(f.y)) by A12,SEQ_2:11 .=abs(f.x-f.y)/abs(f.x)*(1/abs(f.y)) by XCMPLX_1:104 .=abs(f.x-f.y)*(1/abs(f.x))*(1/abs(f.y)) by XCMPLX_1:100; A15:abs(f.x-f.y)>=0 by ABSVALUE:5; 0<=1/abs(f.x) &0<=1/abs(f.y) & 1/abs(f.x)<=r & 1/abs(f.y)<=r proof abs(f.x)>0 & abs(f.y)>0 by A13,ABSVALUE:6; hence 0<=1/abs(f.x) &0<=1/abs(f.y) by REAL_2:127; reconsider x,y as Element of A by A10; x in A /\ dom(f^) & y in A /\ dom(f^) by A11,XBOOLE_0:def 3; then abs((f^).x)<=r & abs((f^).y)<=r by A5; then abs(1*(f.x)")<=r & abs(1*(f.y)")<=r by A11,RFUNCT_1:def 8; then abs(1/(f.x))<=r & abs(1/(f.y))<=r by XCMPLX_0:def 9; hence thesis by ABSVALUE:15; end; then (1/abs(f.x))*(1/abs(f.y))<=r*r by REAL_2:197; then (1/abs(f.x))*(1/abs(f.y))<=r^2 by SQUARE_1:def 3; then abs(f.x-f.y)*((1/abs(f.x))*(1/abs(f.y)))<=abs(f.x-f.y)*r^2 by A15,AXIOMS:25; hence thesis by A14,XCMPLX_1:4; end; per cases by SQUARE_1:72; suppose A16:r^2=0; for x,y st x in A & y in A holds abs((f^).x-(f^).y)<=1*abs(f.x-f.y) proof let x,y; assume x in A & y in A; then abs((f^).x-(f^).y)<=0*abs(f.x-f.y) by A9,A16; hence thesis by ABSVALUE:5; end; hence thesis by A1,A2,A4,A8,Th27; suppose r^2>0; hence thesis by A1,A2,A4,A8,A9,Th27; end;