Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Jing-Chao Chen
- Received June 15, 1999
- MML identifier: SCMP_GCD
- [
Mizar article,
MML identifier index
]
environ
vocabulary AMI_3, SCMPDS_2, AMI_1, SCMPDS_4, ARYTM_3, NAT_1, INT_1, INT_2,
ABSVALUE, SCMPDS_3, AMI_2, ARYTM_1, CARD_1, SCMFSA6A, SCMFSA_7, FUNCT_1,
RELAT_1, SCMPDS_1, FUNCOP_1, FUNCT_4, BOOLE, SCMP_GCD;
notation XBOOLE_0, ENUMSET1, XCMPLX_0, XREAL_0, RELAT_1, FUNCT_1, INT_1,
NAT_1, STRUCT_0, FUNCT_4, AMI_1, AMI_2, AMI_3, SCMPDS_1, SCMPDS_2,
SCMPDS_3, CARD_1, SCMPDS_4, GROUP_1, INT_2;
constructors DOMAIN_1, NAT_1, SCMPDS_1, SCMPDS_4, INT_2;
clusters AMI_1, INT_1, SCMPDS_2, SCMFSA_4, FRAENKEL, ORDINAL2, NUMBERS;
requirements NUMERALS, REAL, SUBSET, ARITHM;
begin :: Preliminaries
reserve m,n for Nat,
a,b for Int_position,
i,j for Instruction of SCMPDS,
s,s1,s2 for State of SCMPDS,
I,J for Program-block;
theorem :: SCMP_GCD:1
m>0 implies n hcf m= m hcf (n mod m);
theorem :: SCMP_GCD:2
for i,j being Integer st i>=0 & j>0 holds
i gcd j= j gcd (i mod j);
theorem :: SCMP_GCD:3
for m being Nat,j being Integer st inspos m=j holds
inspos(m+2) = 2*(abs(j) div 2)+4;
definition let k be Nat;
func intpos k -> Int_position equals
:: SCMP_GCD:def 1
dl.k;
end;
theorem :: SCMP_GCD:4
for n1,n2 be Nat st n1 <> n2 holds intpos n1 <> intpos n2;
theorem :: SCMP_GCD:5
for n1,n2 be Nat holds DataLoc(n1,n2) = intpos(n1+n2);
theorem :: SCMP_GCD:6
for s being State of SCMPDS,m1,m2 being Nat st IC s=inspos (m1+m2)
holds ICplusConst(s,-m2)=inspos m1;
:: GBP:Global Base Pointer
definition
func GBP -> Int_position equals
:: SCMP_GCD:def 2
intpos 0;
:: SBP:Stack Base(bottom) Pointer
func SBP -> Int_position equals
:: SCMP_GCD:def 3
intpos 1;
end;
theorem :: SCMP_GCD:7
GBP <> SBP;
theorem :: SCMP_GCD:8
card (I ';' i)= card I + 1;
theorem :: SCMP_GCD:9
card (i ';' j)= 2;
theorem :: SCMP_GCD:10
(I ';' i).inspos card I =i & inspos card I in dom (I ';' i);
theorem :: SCMP_GCD:11
(I ';' i ';' J).inspos card I =i;
begin :: The Construction of Recursive Euclide Algorithm
:: Greatest Common Divisor
:: gcd(x,y) < x=(SBP,2) y=(SBP,3) >
:: BEGIN
:: if y=0 then gcd:=x else
:: gcd:=gcd(y, x mod y)
:: END
definition
func GCD-Algorithm -> Program-block equals
:: SCMP_GCD:def 4
::Def04
(((GBP:=0) ';' (SBP := 7) ';' saveIC(SBP,RetIC) ';'
goto 2 ';' halt SCMPDS ) ';' (SBP,3)<=0_goto 9 ';'
((SBP,6):=(SBP,3)) ';' Divide(SBP,2,SBP,3) ';'
((SBP,7):=(SBP,3)) ';' ((SBP,4+RetSP):=(GBP,1))) ';'
AddTo(GBP,1,4) ';' saveIC(SBP,RetIC) ';'
(goto -7) ';' ((SBP,2):=(SBP,6)) ';' return SBP;
end;
begin :: The Computation of Recursive Euclide Algorithm
theorem :: SCMP_GCD:12
card GCD-Algorithm = 15;
theorem :: SCMP_GCD:13
n < 15 iff inspos n in dom GCD-Algorithm;
theorem :: SCMP_GCD:14
GCD-Algorithm.inspos 0=GBP:=0 &
GCD-Algorithm.inspos 1=SBP:= 7 &
GCD-Algorithm.inspos 2=saveIC(SBP,RetIC) &
GCD-Algorithm.inspos 3=goto 2 &
GCD-Algorithm.inspos 4=halt SCMPDS &
GCD-Algorithm.inspos 5=(SBP,3)<=0_goto 9 &
GCD-Algorithm.inspos 6=(SBP,6):=(SBP,3) &
GCD-Algorithm.inspos 7=Divide(SBP,2,SBP,3) &
GCD-Algorithm.inspos 8=(SBP,7):=(SBP,3) &
GCD-Algorithm.inspos 9=(SBP,4+RetSP):=(GBP,1) &
GCD-Algorithm.inspos 10=AddTo(GBP,1,4) &
GCD-Algorithm.inspos 11=saveIC(SBP,RetIC) &
GCD-Algorithm.inspos 12=goto -7 &
GCD-Algorithm.inspos 13=(SBP,2):=(SBP,6) &
GCD-Algorithm.inspos 14=return SBP;
theorem :: SCMP_GCD:15
for s being State of SCMPDS st Initialized GCD-Algorithm c= s
holds IC (Computation s).4 = inspos 5 &
(Computation s).4.GBP = 0 &
(Computation s).4.SBP = 7 &
(Computation s).4.intpos(7+RetIC) = inspos 2 &
(Computation s).4.intpos 9 = s.intpos 9 &
(Computation s).4.intpos 10 = s.intpos 10;
theorem :: SCMP_GCD:16
for s being State of SCMPDS st GCD-Algorithm c= s
& IC s = inspos 5 & s.SBP >0 & s.GBP=0 &
s.DataLoc(s.SBP,3) >= 0 & s.DataLoc(s.SBP,2) >= s.DataLoc(s.SBP,3)
holds
ex n st CurInstr (Computation s).n = return SBP &
s.SBP=(Computation s).n.SBP & (Computation s).n.DataLoc(s.SBP,2)
=s.DataLoc(s.SBP,2) gcd s.DataLoc(s.SBP,3) &
(for j be Nat st 1<j & j <= s.SBP+1 holds
s.intpos j=(Computation s).n.intpos j);
theorem :: SCMP_GCD:17
for s being State of SCMPDS st GCD-Algorithm c= s
& IC s = inspos 5 & s.SBP >0 & s.GBP=0 &
s.DataLoc(s.SBP,3) >= 0 & s.DataLoc(s.SBP,2) >= 0
holds
ex n st CurInstr (Computation s).n = return SBP &
s.SBP=(Computation s).n.SBP & (Computation s).n.DataLoc(s.SBP,2)
=s.DataLoc(s.SBP,2) gcd s.DataLoc(s.SBP,3) &
(for j be Nat st 1<j & j <= s.SBP+1 holds
s.intpos j=(Computation s).n.intpos j);
begin :: The Correctness of Recursive Euclide Algorithm
theorem :: SCMP_GCD:18
for s being State of SCMPDS st Initialized GCD-Algorithm c= s
for x, y being Integer st s.intpos 9 = x & s.intpos 10 = y
& x >= 0 & y >= 0 holds (Result s).intpos 9 = x gcd y;
begin :: The Autonomy of Recursive Euclide Algorithm
theorem :: SCMP_GCD:19
for p being FinPartState of SCMPDS,x,y being Integer st y >= 0 & x >= y
& p=(intpos 9,intpos 10) --> (x,y)
holds Initialized GCD-Algorithm +* p is autonomic;
Back to top