Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Jing-Chao Chen
- Received June 15, 1999
- MML identifier: SCMPDS_3
- [
Mizar article,
MML identifier index
]
environ
vocabulary SCMPDS_2, INT_1, AMI_1, AMI_2, SCMPDS_1, ORDINAL2, ARYTM, ABSVALUE,
ARYTM_1, RELAT_1, FUNCT_1, BOOLE, AMI_5, AMI_3, NAT_1, FUNCT_4, CARD_3,
CAT_1, FUNCOP_1, RELOC, FINSET_1, SCMPDS_3;
notation TARSKI, XBOOLE_0, SUBSET_1, FUNCT_2, ORDINAL2, ORDINAL1, XCMPLX_0,
XREAL_0, CARD_3, RELAT_1, FUNCT_1, FUNCT_4, INT_1, NAT_1, STRUCT_0,
CQC_LANG, FINSET_1, CAT_3, AMI_1, AMI_2, AMI_3, AMI_5, SCMPDS_1,
SCMPDS_2, GROUP_1, BINARITH, SCMFSA_4;
constructors DOMAIN_1, AMI_5, SCMPDS_1, SCMPDS_2, BINARITH, SCMFSA_4, CAT_3,
MEMBERED;
clusters AMI_1, INT_1, FUNCT_1, RELSET_1, SCMPDS_2, FUNCT_7, PRELAMB,
SCMFSA_4, ARYTM_3, AMI_3, XBOOLE_0, FRAENKEL, MEMBERED, NUMBERS,
ORDINAL2;
requirements NUMERALS, SUBSET, BOOLE, ARITHM;
begin :: Preliminaries
reserve i, j, k, m, n for Nat,
a,b for Int_position,
k1,k2 for Integer;
theorem :: SCMPDS_3:1
for n being natural number holds
n <= 13 implies n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5
or n = 6 or n = 7 or n = 8 or n = 9 or n=10 or n=11 or n=12 or n=13;
theorem :: SCMPDS_3:2
for k1 be Integer,s1,s2 being State of SCMPDS st IC s1 = IC s2
holds ICplusConst(s1,k1)=ICplusConst(s2,k1);
theorem :: SCMPDS_3:3
for k1 be Integer,a be Int_position,s1,s2 being State of SCMPDS st
s1 | SCM-Data-Loc = s2 | SCM-Data-Loc
holds s1.DataLoc(s1.a,k1)=s2.DataLoc(s2.a,k1);
theorem :: SCMPDS_3:4
for a be Int_position,s1,s2 being State of SCMPDS st
s1 | SCM-Data-Loc = s2 | SCM-Data-Loc holds s1.a=s2.a;
theorem :: SCMPDS_3:5
the carrier of SCMPDS = {IC SCMPDS } \/ SCM-Data-Loc \/
the Instruction-Locations of SCMPDS;
theorem :: SCMPDS_3:6
not IC SCMPDS in SCM-Data-Loc;
theorem :: SCMPDS_3:7
for s1,s2 being State of SCMPDS st
s1 | (SCM-Data-Loc \/ {IC SCMPDS }) = s2 | (SCM-Data-Loc \/ {IC SCMPDS })
for l being Instruction of SCMPDS holds
Exec (l,s1) | (SCM-Data-Loc \/ {IC SCMPDS })
= Exec (l,s2) | (SCM-Data-Loc \/ {IC SCMPDS });
theorem :: SCMPDS_3:8
for i being Instruction of SCMPDS,s being State of SCMPDS
holds Exec (i, s) | SCM-Instr-Loc = s | SCM-Instr-Loc;
begin :: Finite partial states of SCMPDS
theorem :: SCMPDS_3:9
for p being FinPartState of SCMPDS
holds DataPart p = p | SCM-Data-Loc;
theorem :: SCMPDS_3:10
for p being FinPartState of SCMPDS holds
p is data-only iff dom p c= SCM-Data-Loc;
theorem :: SCMPDS_3:11
for p being FinPartState of SCMPDS
holds dom DataPart p c= SCM-Data-Loc;
theorem :: SCMPDS_3:12
for p being FinPartState of SCMPDS
holds dom ProgramPart p c= the Instruction-Locations of SCMPDS;
theorem :: SCMPDS_3:13
for i being Instruction of SCMPDS, s being State of SCMPDS ,
p being programmed FinPartState of SCMPDS
holds
Exec (i, s +* p) = Exec (i,s) +* p;
theorem :: SCMPDS_3:14
for s being State of SCMPDS ,iloc being Instruction-Location of SCMPDS ,
a being Int_position
holds s.a = (s +* Start-At iloc).a;
theorem :: SCMPDS_3:15
for s, t being State of SCMPDS
holds s +* t|(SCM-Data-Loc ) is State of SCMPDS;
begin :: Autonomic finite partial states of SCMPDS and its computation
definition
let la be Int_position;
let a be Integer;
redefine func la .--> a -> FinPartState of SCMPDS;
end;
theorem :: SCMPDS_3:16
for p being autonomic FinPartState of SCMPDS st DataPart p <> {}
holds IC SCMPDS in dom p;
definition
cluster autonomic non programmed FinPartState of SCMPDS;
end;
theorem :: SCMPDS_3:17
for p being autonomic non programmed FinPartState of SCMPDS
holds IC SCMPDS in dom p;
theorem :: SCMPDS_3:18
for s1,s2 being State of SCMPDS,k1,k2,m be Integer st
IC s1= IC s2 & k1 <> k2 & m=IC s1 & m-2+2*k1 >= 0 & m-2+2*k2 >= 0
holds
ICplusConst(s1,k1) <> ICplusConst(s2,k2);
theorem :: SCMPDS_3:19
for s1,s2 being State of SCMPDS,k1,k2 be Nat st
IC s1= IC s2 & k1 <> k2 holds
ICplusConst(s1,k1) <> ICplusConst(s2,k2);
theorem :: SCMPDS_3:20
for s being State of SCMPDS holds Next IC s= ICplusConst(s,1);
theorem :: SCMPDS_3:21
for p being autonomic FinPartState of SCMPDS st IC SCMPDS in dom p
holds IC p in dom p;
theorem :: SCMPDS_3:22
for p being autonomic non programmed FinPartState of SCMPDS ,
s being State of SCMPDS st p c= s
for i being Nat
holds IC (Computation s).i in dom ProgramPart(p);
theorem :: SCMPDS_3:23
for p being autonomic non programmed FinPartState of SCMPDS ,
s1, s2 being State of SCMPDS
st p c= s1 & p c= s2
for i being Nat
holds IC (Computation s1).i = IC (Computation s2).i &
CurInstr ((Computation s1).i) = CurInstr ((Computation s2).i);
theorem :: SCMPDS_3:24
for p being autonomic non programmed FinPartState of SCMPDS,
s1, s2 being State of SCMPDS st p c= s1 & p c= s2
for i being Nat,k1,k2 be Integer,a,b be Int_position
st CurInstr ((Computation s1).i) = (a,k1) := (b,k2) &
a in dom p & DataLoc((Computation s1).i.a,k1) in dom p
holds (Computation s1).i.DataLoc((Computation s1).i.b,k2) =
(Computation s2).i.DataLoc((Computation s2).i.b,k2);
theorem :: SCMPDS_3:25
for p being autonomic non programmed FinPartState of SCMPDS,
s1, s2 being State of SCMPDS
st p c= s1 & p c= s2
for i being Nat,k1,k2 be Integer,a,b be Int_position
st CurInstr ((Computation s1).i) = AddTo(a,k1,b,k2) &
a in dom p & DataLoc((Computation s1).i.a,k1) in dom p
holds (Computation s1).i.DataLoc((Computation s1).i.b,k2)
= (Computation s2).i.DataLoc((Computation s2).i.b,k2);
theorem :: SCMPDS_3:26
for p being autonomic non programmed FinPartState of SCMPDS,
s1, s2 being State of SCMPDS
st p c= s1 & p c= s2
for i being Nat,k1,k2 be Integer,a,b be Int_position
st CurInstr ((Computation s1).i) = SubFrom(a,k1,b,k2) &
a in dom p & DataLoc((Computation s1).i.a,k1) in dom p
holds (Computation s1).i.DataLoc((Computation s1).i.b,k2)
= (Computation s2).i.DataLoc((Computation s2).i.b,k2);
theorem :: SCMPDS_3:27
for p being autonomic non programmed FinPartState of SCMPDS,
s1, s2 being State of SCMPDS
st p c= s1 & p c= s2
for i being Nat,k1,k2 be Integer,a,b be Int_position
st CurInstr ((Computation s1).i) = MultBy(a,k1,b,k2) &
a in dom p & DataLoc((Computation s1).i.a,k1) in dom p
holds (Computation s1).i.DataLoc((Computation s1).i.a,k1)
* (Computation s1).i.DataLoc((Computation s1).i.b,k2)
= (Computation s2).i.DataLoc((Computation s2).i.a,k1)
* (Computation s2).i.DataLoc((Computation s2).i.b,k2);
theorem :: SCMPDS_3:28
for p being autonomic non programmed FinPartState of SCMPDS,
s1, s2 being State of SCMPDS
st p c= s1 & p c= s2
for i,m being Nat,a being Int_position,k1,k2 be Integer
st CurInstr ((Computation s1).i) = (a,k1)<>0_goto k2 &
m= IC (Computation s1).i & m-2+2*k2 >= 0 & k2 <> 1
holds ((Computation s1).i.DataLoc((Computation s1).i.a,k1) = 0 iff
(Computation s2).i.DataLoc((Computation s2).i.a,k1) = 0 );
theorem :: SCMPDS_3:29
for p being autonomic non programmed FinPartState of SCMPDS,
s1, s2 being State of SCMPDS st p c= s1 & p c= s2
for i,m being Nat,a being Int_position,k1,k2 be Integer
st CurInstr ((Computation s1).i) = (a,k1)<=0_goto k2 &
m= IC (Computation s1).i & m-2+2*k2 >= 0 & k2 <> 1
holds ((Computation s1).i.DataLoc((Computation s1).i.a,k1) > 0 iff
(Computation s2).i.DataLoc((Computation s2).i.a,k1) > 0 );
theorem :: SCMPDS_3:30
for p being autonomic non programmed FinPartState of SCMPDS,
s1, s2 being State of SCMPDS
st p c= s1 & p c= s2
for i,m being Nat,a being Int_position,k1,k2 be Integer
st CurInstr ((Computation s1).i) = (a,k1)>=0_goto k2 &
m= IC (Computation s1).i & m-2+2*k2 >= 0 & k2 <> 1
holds ((Computation s1).i.DataLoc((Computation s1).i.a,k1) < 0 iff
(Computation s2).i.DataLoc((Computation s2).i.a,k1) < 0 );
begin :: Program Shift in the SCMPDS Computer
definition let k;
canceled;
func inspos k -> Instruction-Location of SCMPDS equals
:: SCMPDS_3:def 2
il.k;
end;
theorem :: SCMPDS_3:31 ::SF2_18
for k1,k2 be Nat st k1 <> k2 holds inspos k1 <> inspos k2;
theorem :: SCMPDS_3:32 ::SF2_21
for il being Instruction-Location of SCMPDS ex i being Nat
st il = inspos i;
definition
let loc be Instruction-Location of SCMPDS , k be Nat;
func loc + k -> Instruction-Location of SCMPDS means
:: SCMPDS_3:def 3
ex m being Nat st loc = inspos m & it = inspos(m+k);
func loc -' k -> Instruction-Location of SCMPDS means
:: SCMPDS_3:def 4
ex m being Nat st loc = inspos m & it = inspos (m -' k);
end;
theorem :: SCMPDS_3:33
for l being Instruction-Location of SCMPDS,m,n
holds l+m+n = l+(m+n);
theorem :: SCMPDS_3:34
for loc being Instruction-Location of SCMPDS,k being Nat
holds loc + k -' k = loc;
theorem :: SCMPDS_3:35
for l1,l2 being Instruction-Location of SCMPDS, k being Nat
holds
Start-At(l1 + k) = Start-At(l2 +k) iff Start-At l1 = Start-At l2;
theorem :: SCMPDS_3:36
for l1,l2 being Instruction-Location of SCMPDS, k being Nat
st Start-At l1 = Start-At l2
holds
Start-At(l1 -' k) = Start-At(l2 -' k);
definition let IT be FinPartState of SCMPDS;
attr IT is initial means
:: SCMPDS_3:def 5
for m,n st inspos n in dom IT & m < n holds inspos m in dom IT;
end;
definition
func SCMPDS-Stop -> FinPartState of SCMPDS equals
:: SCMPDS_3:def 6
(inspos 0).--> halt SCMPDS;
end;
definition
cluster SCMPDS-Stop -> non empty initial programmed;
end;
definition
cluster initial programmed non empty FinPartState of SCMPDS;
end;
definition
let p be programmed FinPartState of SCMPDS , k be Nat;
func Shift(p,k) -> programmed FinPartState of SCMPDS means
:: SCMPDS_3:def 7
dom it = { inspos(m+k):inspos m in dom p } &
for m st inspos m in dom p holds it.inspos(m+k) = p.inspos m;
end;
theorem :: SCMPDS_3:37
for l being Instruction-Location of SCMPDS, k being Nat,
p being programmed FinPartState of SCMPDS st l in dom p
holds Shift(p,k).(l + k) = p.l;
reserve l,p,q for Nat;
theorem :: SCMPDS_3:38
for p being programmed FinPartState of SCMPDS, k being Nat
holds dom Shift(p,k) =
{ il+k where il is Instruction-Location of SCMPDS: il in dom p};
theorem :: SCMPDS_3:39
for I being programmed FinPartState of SCMPDS
holds Shift(Shift(I,m),n) = Shift(I,m+n);
theorem :: SCMPDS_3:40
for s be programmed FinPartState of SCMPDS,
f be Function of the Instructions of SCMPDS, the Instructions of SCMPDS
for n holds Shift(f*s,n) = f*Shift(s,n);
theorem :: SCMPDS_3:41
for I,J being programmed FinPartState of SCMPDS holds
Shift(I +* J, n) = Shift(I,n) +* Shift(J,n);
Back to top