environ vocabulary SEQ_1, PARTFUN1, ARYTM, ARYTM_1, RELAT_1, BOOLE, ARYTM_3, SEQ_2, ORDINAL2, FUNCT_1, SEQM_3, LIMFUNC1, RCOMP_1, ABSVALUE, RFUNCT_1, RFUNCT_2, FINSEQ_1, LATTICES, LIMFUNC2; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, ABSVALUE, SEQ_1, SEQ_2, SEQM_3, RELSET_1, RCOMP_1, PARTFUN1, RFUNCT_1, RFUNCT_2, LIMFUNC1; constructors REAL_1, NAT_1, ABSVALUE, SEQ_2, SEQM_3, PROB_1, RCOMP_1, RFUNCT_1, RFUNCT_2, LIMFUNC1, PARTFUN1, MEMBERED, XBOOLE_0; clusters RELSET_1, XREAL_0, SEQ_1, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve r,r1,r2,g,g1,g2,x0 for Real; reserve n,k for Nat; reserve seq for Real_Sequence; reserve f,f1,f2 for PartFunc of REAL,REAL; theorem :: LIMFUNC2:1 seq is convergent & r<lim seq implies ex n st for k st n<=k holds r<seq.k; theorem :: LIMFUNC2:2 seq is convergent & lim seq<r implies ex n st for k st n<=k holds seq.k<r; theorem :: LIMFUNC2:3 0<r2 & ].r1-r2,r1.[ c= dom f implies for r st r<r1 ex g st r<g & g<r1 & g in dom f; theorem :: LIMFUNC2:4 0<r2 & ].r1,r1+r2.[ c= dom f implies for r st r1<r ex g st g<r & r1<g & g in dom f; theorem :: LIMFUNC2:5 (for n holds x0-1/(n+1)<seq.n & seq.n<x0 & seq.n in dom f) implies seq is convergent & lim seq=x0 & rng seq c= dom f & rng seq c= dom f /\ left_open_halfline(x0); theorem :: LIMFUNC2:6 (for n holds x0<seq.n & seq.n<x0+1/(n+1) & seq.n in dom f) implies seq is convergent & lim seq=x0 & rng seq c= dom f & rng seq c= dom f /\ right_open_halfline(x0); definition let f,x0; pred f is_left_convergent_in x0 means :: LIMFUNC2:def 1 (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & ex g st for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g; pred f is_left_divergent_to+infty_in x0 means :: LIMFUNC2:def 2 (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is divergent_to+infty; pred f is_left_divergent_to-infty_in x0 means :: LIMFUNC2:def 3 (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is divergent_to-infty; pred f is_right_convergent_in x0 means :: LIMFUNC2:def 4 (for r st x0<r ex g st g<r & x0<g & g in dom f) & ex g st for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g; pred f is_right_divergent_to+infty_in x0 means :: LIMFUNC2:def 5 (for r st x0<r ex g st g<r & x0<g & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is divergent_to+infty; pred f is_right_divergent_to-infty_in x0 means :: LIMFUNC2:def 6 (for r st x0<r ex g st g<r & x0<g & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is divergent_to-infty; end; canceled 6; theorem :: LIMFUNC2:13 f is_left_convergent_in x0 iff (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & ex g st for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1; theorem :: LIMFUNC2:14 f is_left_divergent_to+infty_in x0 iff (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds g1<f.r1; theorem :: LIMFUNC2:15 f is_left_divergent_to-infty_in x0 iff (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds f.r1<g1; theorem :: LIMFUNC2:16 f is_right_convergent_in x0 iff (for r st x0<r ex g st g<r & x0<g & g in dom f) & ex g st for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1; theorem :: LIMFUNC2:17 f is_right_divergent_to+infty_in x0 iff (for r st x0<r ex g st g<r & x0<g & g in dom f) & for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds g1<f.r1; theorem :: LIMFUNC2:18 f is_right_divergent_to-infty_in x0 iff (for r st x0<r ex g st g<r & x0<g & g in dom f) & for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds f.r1<g1; theorem :: LIMFUNC2:19 f1 is_left_divergent_to+infty_in x0 & f2 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f1 /\ dom f2) implies f1+f2 is_left_divergent_to+infty_in x0 & f1(#) f2 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:20 f1 is_left_divergent_to-infty_in x0 & f2 is_left_divergent_to-infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f1 /\ dom f2) implies f1+f2 is_left_divergent_to-infty_in x0 & f1(#)f2 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:21 f1 is_right_divergent_to+infty_in x0 & f2 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f1 /\ dom f2) implies f1+f2 is_right_divergent_to+infty_in x0 & f1(#)f2 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:22 f1 is_right_divergent_to-infty_in x0 & f2 is_right_divergent_to-infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f1 /\ dom f2) implies f1+f2 is_right_divergent_to-infty_in x0 & f1(#)f2 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:23 f1 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1+f2)) & (ex r st 0<r & f2 is_bounded_below_on ].x0-r,x0.[) implies f1+f2 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:24 f1 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2)) & (ex r,r1 st 0<r & 0<r1 & for g st g in dom f2 /\ ].x0-r,x0.[ holds r1<= f2.g) implies f1(#)f2 is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:25 f1 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1+f2)) & (ex r st 0<r & f2 is_bounded_below_on ].x0,x0+r.[) implies f1+f2 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:26 f1 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2)) & (ex r,r1 st 0<r & 0<r1 & for g st g in dom f2 /\ ].x0,x0+r.[ holds r1<= f2.g) implies f1(#)f2 is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:27 (f is_left_divergent_to+infty_in x0 & r>0 implies r(#)f is_left_divergent_to+infty_in x0 ) & (f is_left_divergent_to+infty_in x0 & r<0 implies r(#)f is_left_divergent_to-infty_in x0 ) & (f is_left_divergent_to-infty_in x0 & r>0 implies r(#)f is_left_divergent_to-infty_in x0 ) & (f is_left_divergent_to-infty_in x0 & r<0 implies r(#)f is_left_divergent_to+infty_in x0 ); theorem :: LIMFUNC2:28 (f is_right_divergent_to+infty_in x0 & r>0 implies r(#)f is_right_divergent_to+infty_in x0 ) & (f is_right_divergent_to+infty_in x0 & r<0 implies r(#)f is_right_divergent_to-infty_in x0 ) & (f is_right_divergent_to-infty_in x0 & r>0 implies r(#)f is_right_divergent_to-infty_in x0 ) & (f is_right_divergent_to-infty_in x0 & r<0 implies r(#)f is_right_divergent_to+infty_in x0); theorem :: LIMFUNC2:29 (f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0) implies abs(f) is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:30 (f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0) implies abs(f) is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:31 (ex r st 0<r & f is_non_decreasing_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:32 (ex r st 0<r & f is_increasing_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:33 (ex r st 0<r & f is_non_increasing_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to-infty_in x0; theorem :: LIMFUNC2:34 (ex r st 0<r & f is_decreasing_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to-infty_in x0; theorem :: LIMFUNC2:35 (ex r st 0<r & f is_non_increasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:36 (ex r st 0<r & f is_decreasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:37 (ex r st 0<r & f is_non_decreasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to-infty_in x0; theorem :: LIMFUNC2:38 (ex r st 0<r & f is_increasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to-infty_in x0; theorem :: LIMFUNC2:39 f1 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (ex r st 0<r & dom f /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & for g st g in dom f /\ ].x0-r,x0.[ holds f1.g<=f.g) implies f is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:40 f1 is_left_divergent_to-infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (ex r st 0<r & dom f /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & for g st g in dom f /\ ].x0-r,x0.[ holds f.g<=f1.g) implies f is_left_divergent_to-infty_in x0; theorem :: LIMFUNC2:41 f1 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f) & (ex r st 0<r & dom f /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & for g st g in dom f /\ ].x0,x0+r.[ holds f1.g<=f.g) implies f is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:42 f1 is_right_divergent_to-infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f) & (ex r st 0<r & dom f /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & for g st g in dom f /\ ].x0,x0+r.[ holds f.g<=f1.g) implies f is_right_divergent_to-infty_in x0; theorem :: LIMFUNC2:43 f1 is_left_divergent_to+infty_in x0 & (ex r st 0<r & ].x0-r,x0.[ c= dom f /\ dom f1 & for g st g in ].x0-r,x0.[ holds f1.g<= f.g) implies f is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:44 f1 is_left_divergent_to-infty_in x0 & (ex r st 0<r & ].x0-r,x0.[ c= dom f /\ dom f1 & for g st g in ].x0-r,x0.[ holds f.g<= f1.g) implies f is_left_divergent_to-infty_in x0; theorem :: LIMFUNC2:45 f1 is_right_divergent_to+infty_in x0 & (ex r st 0<r & ].x0,x0+r.[ c= dom f /\ dom f1 & for g st g in ].x0,x0+r.[ holds f1.g<= f.g) implies f is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:46 f1 is_right_divergent_to-infty_in x0 & (ex r st 0<r & ].x0,x0+r.[ c= dom f /\ dom f1 & for g st g in ].x0,x0+r.[ holds f.g<= f1.g) implies f is_right_divergent_to-infty_in x0; definition let f,x0; assume f is_left_convergent_in x0; func lim_left(f,x0)->Real means :: LIMFUNC2:def 7 for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=it; end; definition let f,x0; assume f is_right_convergent_in x0; func lim_right(f,x0)->Real means :: LIMFUNC2:def 8 for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=it; end; canceled 2; theorem :: LIMFUNC2:49 f is_left_convergent_in x0 implies (lim_left(f,x0)=g iff for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1); theorem :: LIMFUNC2:50 f is_right_convergent_in x0 implies (lim_right(f,x0)=g iff for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1); theorem :: LIMFUNC2:51 f is_left_convergent_in x0 implies r(#)f is_left_convergent_in x0 & lim_left(r(#)f,x0)=r*(lim_left(f,x0)); theorem :: LIMFUNC2:52 f is_left_convergent_in x0 implies -f is_left_convergent_in x0 & lim_left(-f,x0)=-(lim_left(f,x0)); theorem :: LIMFUNC2:53 f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1+f2)) implies f1+f2 is_left_convergent_in x0 & lim_left(f1+f2,x0)=lim_left(f1,x0)+lim_left(f2,x0); theorem :: LIMFUNC2:54 f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1-f2)) implies f1-f2 is_left_convergent_in x0 & lim_left(f1-f2,x0)=(lim_left(f1,x0))-(lim_left(f2,x0)); theorem :: LIMFUNC2:55 f is_left_convergent_in x0 & f"{0}={} & lim_left(f,x0)<>0 implies f^ is_left_convergent_in x0 & lim_left(f^,x0)=(lim_left(f,x0))"; theorem :: LIMFUNC2:56 f is_left_convergent_in x0 implies abs(f) is_left_convergent_in x0 & lim_left(abs(f),x0)=abs(lim_left(f,x0)); theorem :: LIMFUNC2:57 f is_left_convergent_in x0 & lim_left(f,x0)<>0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) implies f^ is_left_convergent_in x0 & lim_left(f^,x0)=(lim_left(f,x0))"; theorem :: LIMFUNC2:58 f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2)) implies f1(#)f2 is_left_convergent_in x0 & lim_left(f1(#)f2,x0)=(lim_left(f1,x0))*(lim_left(f2,x0)); theorem :: LIMFUNC2:59 f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f2,x0)<> 0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1/f2)) implies f1/f2 is_left_convergent_in x0 & lim_left(f1/f2,x0)=(lim_left(f1,x0))/(lim_left(f2,x0)); theorem :: LIMFUNC2:60 f is_right_convergent_in x0 implies r(#)f is_right_convergent_in x0 & lim_right(r(#)f,x0)=r*(lim_right(f,x0)); theorem :: LIMFUNC2:61 f is_right_convergent_in x0 implies -f is_right_convergent_in x0 & lim_right(-f,x0)=-(lim_right(f,x0)); theorem :: LIMFUNC2:62 f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1+f2)) implies f1+f2 is_right_convergent_in x0 & lim_right(f1+f2,x0)=(lim_right(f1,x0))+(lim_right(f2,x0)); theorem :: LIMFUNC2:63 f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1-f2)) implies f1-f2 is_right_convergent_in x0 & lim_right(f1-f2,x0)=(lim_right(f1,x0))-(lim_right(f2,x0)); theorem :: LIMFUNC2:64 f is_right_convergent_in x0 & f"{0}={} & lim_right(f,x0)<>0 implies f^ is_right_convergent_in x0 & lim_right(f^,x0)=(lim_right(f,x0))"; theorem :: LIMFUNC2:65 f is_right_convergent_in x0 implies abs(f) is_right_convergent_in x0 & lim_right(abs(f),x0)=abs(lim_right(f,x0)); theorem :: LIMFUNC2:66 f is_right_convergent_in x0 & lim_right(f,x0)<>0 & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) implies f^ is_right_convergent_in x0 & lim_right(f^,x0)=(lim_right(f,x0))"; theorem :: LIMFUNC2:67 f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2)) implies f1(#)f2 is_right_convergent_in x0 & lim_right(f1(#)f2,x0)=(lim_right(f1,x0))*(lim_right(f2,x0)); theorem :: LIMFUNC2:68 f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f2,x0)<>0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1/f2)) implies f1/f2 is_right_convergent_in x0 & lim_right(f1/f2,x0)=(lim_right(f1,x0))/(lim_right(f2,x0)); theorem :: LIMFUNC2:69 f1 is_left_convergent_in x0 & lim_left(f1,x0)=0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2)) & (ex r st 0<r & f2 is_bounded_on ].x0-r,x0.[) implies f1(#)f2 is_left_convergent_in x0 & lim_left(f1(#)f2,x0)=0; theorem :: LIMFUNC2:70 f1 is_right_convergent_in x0 & lim_right(f1,x0)=0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2)) & (ex r st 0<r & f2 is_bounded_on ].x0,x0+r.[) implies f1(#)f2 is_right_convergent_in x0 & lim_right(f1(#)f2,x0)=0; theorem :: LIMFUNC2:71 f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f1,x0)=lim_left(f2,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (ex r st 0<r & (for g st g in dom f /\ ].x0-r,x0.[ holds f1.g<=f.g & f.g<=f2.g) & ((dom f1 /\ ].x0-r,x0.[ c= dom f2 /\ ].x0-r,x0.[ & dom f /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[) or (dom f2 /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & dom f /\ ].x0-r,x0.[ c= dom f2 /\ ].x0-r,x0.[))) implies f is_left_convergent_in x0 & lim_left(f,x0)=lim_left(f1,x0); theorem :: LIMFUNC2:72 f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f1,x0)=lim_left(f2,x0) & (ex r st 0<r & ].x0-r,x0.[ c= dom f1 /\ dom f2 /\ dom f & for g st g in ].x0-r,x0.[ holds f1.g<=f.g & f.g<=f2.g) implies f is_left_convergent_in x0 & lim_left(f,x0)=lim_left(f1,x0); theorem :: LIMFUNC2:73 f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f1,x0)=lim_right(f2,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom f) & (ex r st 0<r & (for g st g in dom f /\ ].x0,x0+r.[ holds f1.g<=f.g & f.g<=f2.g) & ((dom f1 /\ ].x0,x0+r.[ c= dom f2 /\ ].x0,x0+r.[ & dom f /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[) or (dom f2 /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & dom f /\ ].x0,x0+r.[ c= dom f2 /\ ].x0,x0+r.[))) implies f is_right_convergent_in x0 & lim_right(f,x0)=lim_right(f1,x0); theorem :: LIMFUNC2:74 f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f1,x0)=lim_right(f2,x0) & (ex r st 0<r & ].x0,x0+r.[ c= dom f1 /\ dom f2 /\ dom f & for g st g in ].x0,x0+r.[ holds f1.g<=f.g & f.g<=f2.g) implies f is_right_convergent_in x0 & lim_right(f,x0)=lim_right(f1,x0); theorem :: LIMFUNC2:75 f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (ex r st 0<r & ((dom f1 /\ ].x0-r,x0.[ c= dom f2 /\ ].x0-r,x0.[ & for g st g in dom f1 /\ ].x0-r,x0.[ holds f1.g<=f2.g) or (dom f2 /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & for g st g in dom f2 /\ ].x0-r,x0.[ holds f1.g<=f2.g))) implies lim_left(f1,x0)<=lim_left(f2,x0); theorem :: LIMFUNC2:76 f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (ex r st 0<r & ((dom f1 /\ ].x0,x0+r.[ c= dom f2 /\ ].x0,x0+r.[ & for g st g in dom f1 /\ ].x0,x0+r.[ holds f1.g<=f2.g) or (dom f2 /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & for g st g in dom f2 /\ ].x0,x0+r.[ holds f1.g<=f2.g))) implies lim_right(f1,x0)<=lim_right(f2,x0); theorem :: LIMFUNC2:77 (f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) implies f^ is_left_convergent_in x0 & lim_left(f^,x0)=0; theorem :: LIMFUNC2:78 (f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0) & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) implies f^ is_right_convergent_in x0 & lim_right(f^,x0)=0; theorem :: LIMFUNC2:79 f is_left_convergent_in x0 & lim_left(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds 0<f.g) implies f^ is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:80 f is_left_convergent_in x0 & lim_left(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds f.g<0) implies f^ is_left_divergent_to-infty_in x0; theorem :: LIMFUNC2:81 f is_right_convergent_in x0 & lim_right(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds 0<f.g) implies f^ is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:82 f is_right_convergent_in x0 & lim_right(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds f.g<0) implies f^ is_right_divergent_to-infty_in x0; theorem :: LIMFUNC2:83 f is_left_convergent_in x0 & lim_left(f,x0)=0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds 0<=f.g) implies f^ is_left_divergent_to+infty_in x0; theorem :: LIMFUNC2:84 f is_left_convergent_in x0 & lim_left(f,x0)=0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds f.g<=0) implies f^ is_left_divergent_to-infty_in x0; theorem :: LIMFUNC2:85 f is_right_convergent_in x0 & lim_right(f,x0)=0 & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds 0<=f.g) implies f^ is_right_divergent_to+infty_in x0; theorem :: LIMFUNC2:86 f is_right_convergent_in x0 & lim_right(f,x0)=0 & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds f.g<=0) implies f^ is_right_divergent_to-infty_in x0;