Copyright (c) 1990 Association of Mizar Users
environ vocabulary SEQ_1, PARTFUN1, ARYTM, ARYTM_1, RELAT_1, BOOLE, ARYTM_3, SEQ_2, ORDINAL2, FUNCT_1, SEQM_3, LIMFUNC1, RCOMP_1, ABSVALUE, RFUNCT_1, RFUNCT_2, FINSEQ_1, LATTICES, LIMFUNC2; notation TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, ABSVALUE, SEQ_1, SEQ_2, SEQM_3, RELSET_1, RCOMP_1, PARTFUN1, RFUNCT_1, RFUNCT_2, LIMFUNC1; constructors REAL_1, NAT_1, ABSVALUE, SEQ_2, SEQM_3, PROB_1, RCOMP_1, RFUNCT_1, RFUNCT_2, LIMFUNC1, PARTFUN1, MEMBERED, XBOOLE_0; clusters RELSET_1, XREAL_0, SEQ_1, NAT_1, MEMBERED, ZFMISC_1, XBOOLE_0; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; theorems TARSKI, AXIOMS, REAL_1, NAT_1, ABSVALUE, SEQ_1, SEQ_2, SEQM_3, SEQ_4, SQUARE_1, RFUNCT_1, RFUNCT_2, LIMFUNC1, PROB_1, RCOMP_1, FUNCT_1, XREAL_0, XBOOLE_0, XBOOLE_1, XCMPLX_0, XCMPLX_1; schemes SEQ_1, RCOMP_1; begin reserve r,r1,r2,g,g1,g2,x0 for Real; reserve n,k for Nat; reserve seq for Real_Sequence; reserve f,f1,f2 for PartFunc of REAL,REAL; Lm1: for r,g,r1 be real number holds 0<g & r<=r1 implies r-g<r1 & r<r1+g proof let r,g,r1 be real number; assume A1: 0<g & r<=r1; then r-g<r1-0 by REAL_1:92; hence r-g<r1; r+0<r1+g by A1,REAL_1:67; hence thesis; end; Lm2: for X be Subset of REAL st rng seq c=dom(f1(#)f2)/\X holds rng seq c=dom(f1(#)f2) & rng seq c= X & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1 & rng seq c=dom f2 & rng seq c=dom f1/\X & rng seq c=dom f2/\X proof let X be Subset of REAL such that A1: rng seq c=dom(f1(#)f2)/\X; dom(f1(#)f2)/\X c=dom(f1(#)f2) & dom(f1(#)f2)/\X c=X by XBOOLE_1:17; hence A2: rng seq c=dom(f1(#)f2) & rng seq c=X by A1,XBOOLE_1:1; thus dom(f1(#)f2)=dom f1/\dom f2 by SEQ_1:def 5; then dom(f1(#)f2)c=dom f1 & dom(f1(#)f2)c=dom f2 by XBOOLE_1:17; hence rng seq c=dom f1 & rng seq c=dom f2 by A2,XBOOLE_1:1; hence rng seq c=dom f1/\X & rng seq c=dom f2/\X by A2,XBOOLE_1:19; end; Lm3: r-1/(n+1)<r & r<r+1/(n+1) proof 0<n+1 by NAT_1:19; then 0<1/(n+1) by SEQ_2:6; hence thesis by Lm1; end; Lm4: for X be Subset of REAL st rng seq c=dom(f1+f2)/\X holds rng seq c=dom(f1+f2) & rng seq c= X & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1/\X & rng seq c=dom f2/\X proof let X be Subset of REAL such that A1: rng seq c=dom(f1+f2)/\X; dom(f1+f2)/\X c=dom(f1+f2) & dom(f1+f2)/\X c=X by XBOOLE_1:17; hence A2: rng seq c=dom(f1+f2) & rng seq c=X by A1,XBOOLE_1:1; thus dom(f1+f2)=dom f1/\dom f2 by SEQ_1:def 3; then dom(f1+f2)c=dom f1 & dom(f1+f2)c=dom f2 by XBOOLE_1:17; then rng seq c=dom f1 & rng seq c=dom f2 by A2,XBOOLE_1:1; hence rng seq c=dom f1/\X & rng seq c=dom f2/\X by A2,XBOOLE_1:19; end; theorem Th1: seq is convergent & r<lim seq implies ex n st for k st n<=k holds r<seq.k proof assume A1: seq is convergent & r<lim seq; deffunc U(Nat) = r; consider s be Real_Sequence such that A2: for n holds s.n= U(n) from ExRealSeq; now let n; s.n=r & s.(n+1)=r by A2; hence s.n=s.(n+1); end; then A3: s is constant by SEQM_3:16; then A4: s is convergent by SEQ_4:39; then A5: seq-s is convergent by A1,SEQ_2:25; s.0=r by A2; then lim s=r by A3,SEQ_4:40; then lim(seq-s)=lim seq -r by A1,A4,SEQ_2:26; then 0<lim(seq-s) by A1,SQUARE_1 :11; then consider n such that A6: for k st n<= k holds 0<(seq-s).k by A5,LIMFUNC1:29; take n; let k; assume n<=k; then 0<(seq-s).k by A6; then 0<seq.k-s.k by RFUNCT_2:6; then 0<seq.k-r by A2; then 0+r<seq.k by REAL_1 :86; hence r<seq.k; end; theorem Th2: seq is convergent & lim seq<r implies ex n st for k st n<=k holds seq.k<r proof assume A1: seq is convergent & lim seq<r; deffunc U(Nat) = r; consider s be Real_Sequence such that A2: for n holds s.n= U(n) from ExRealSeq; now let n; s.n=r & s.(n+1)=r by A2; hence s.n=s.(n+1); end; then A3: s is constant by SEQM_3:16; then A4: s is convergent by SEQ_4:39; then A5: s-seq is convergent by A1,SEQ_2:25; s.0=r by A2; then lim s=r by A3,SEQ_4:40; then lim(s-seq)=r-lim seq by A1,A4,SEQ_2:26; then 0<lim(s-seq) by A1,SQUARE_1:11; then consider n such that A6: for k st n<=k holds 0<(s-seq).k by A5,LIMFUNC1:29 ; take n; let k;assume n<=k; then 0<(s-seq).k by A6; then 0<s.k-seq.k by RFUNCT_2:6; then 0<r-seq.k by A2; then 0+seq.k<r by REAL_1:86; hence seq.k<r; end; Lm5: (for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds f.r1<g1) & seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0) implies f*seq is divergent_to-infty proof assume that A1: for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds f.r1<g1 and A2: seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0); dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then A3: rng seq c=dom f by A2,XBOOLE_1:1; now let g1; consider r such that A4: x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds f.r1<g1 by A1; consider n such that A5: for k st n<=k holds seq.k<r by A2,A4,Th2; take n; let k; assume n<=k; then A6: seq.k<r by A5; seq.k in rng seq by RFUNCT_2:10 ; then A7: seq.k in right_open_halfline(x0) & seq.k in dom f by A2,XBOOLE_0:def 3 ; then seq.k in {g2: x0<g2} by LIMFUNC1:def 3; then ex g2 st g2=seq.k & x0<g2 ; then f.(seq.k)<g1 by A4,A6,A7; hence (f*seq).k<g1 by A3,RFUNCT_2:21; end; hence thesis by LIMFUNC1:def 5; end; theorem Th3: 0<r2 & ].r1-r2,r1.[ c= dom f implies for r st r<r1 ex g st r<g & g<r1 & g in dom f proof assume A1: 0<r2 & ].r1-r2,r1.[c=dom f; let r such that A2: r<r1; now per cases; suppose A3: r1-r2<=r; consider g being real number such that A4: r<g & g<r1 by A2,REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus r<g & g<r1 by A4; r1-r2<g by A3,A4,AXIOMS:22; then g in {g2: r1-r2<g2 & g2<r1} by A4; then g in ].r1-r2,r1.[ by RCOMP_1:def 2; hence g in dom f by A1; suppose A5: r<=r1-r2; r1-r2<r1 by A1,Lm1; then consider g being real number such that A6: r1-r2<g & g<r1 by REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus r<g & g<r1 by A5,A6,AXIOMS:22; g in {g2: r1-r2<g2 & g2<r1} by A6; then g in ].r1-r2,r1.[ by RCOMP_1:def 2; hence g in dom f by A1; end; hence thesis; end; theorem Th4: 0<r2 & ].r1,r1+r2.[ c= dom f implies for r st r1<r ex g st g<r & r1<g & g in dom f proof assume A1: 0<r2 & ].r1,r1+r2.[ c=dom f; let r such that A2: r1<r; now per cases; suppose A3: r1+r2<=r; r1<r1+r2 by A1,Lm1; then consider g being real number such that A4: r1<g & g<r1+r2 by REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus g<r & r1<g by A3,A4,AXIOMS:22; g in {g2: r1<g2 & g2<r1+r2} by A4; then g in ].r1,r1+r2.[ by RCOMP_1:def 2; hence g in dom f by A1; suppose A5: r<=r1+r2; consider g being real number such that A6: r1<g & g<r by A2,REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus g<r & r1<g by A6; r1<g & g<r1+r2 by A5,A6,AXIOMS:22; then g in {g2: r1<g2 & g2<r1+r2}; then g in ].r1,r1+r2.[ by RCOMP_1:def 2; hence g in dom f by A1; end; hence thesis; end; theorem Th5: (for n holds x0-1/(n+1)<seq.n & seq.n<x0 & seq.n in dom f) implies seq is convergent & lim seq=x0 & rng seq c= dom f & rng seq c= dom f /\ left_open_halfline(x0) proof assume A1: for n holds x0-1/(n+1)<seq.n & seq.n<x0 & seq.n in dom f; deffunc U(Nat) = 1/($1+1); consider s1 be Real_Sequence such that A2: for n holds s1.n=U(n) from ExRealSeq; deffunc U(Nat) = x0; consider s2 be Real_Sequence such that A3: for n holds s2.n=U(n) from ExRealSeq; now let n; s2.n=x0 & s2.(n+1)=x0 by A3; hence s2.n=s2.(n+1); end; then A4: s2 is constant by SEQM_3:16; then A5: s2 is convergent by SEQ_4:39; s2.0=x0 by A3; then A6: lim s2=x0 by A4,SEQ_4:40; A7: s1 is convergent & lim s1=0 by A2,SEQ_4:45; then A8: s2-s1 is convergent by A5,SEQ_2:25; A9: lim(s2-s1)=x0-0 by A5,A6,A7,SEQ_2:26 .=x0; A10: now let n; A11: x0-1/(n+1)<=seq.n & seq.n<=x0 by A1; (s2-s1).n=s2.n-s1.n by RFUNCT_2:6 .=x0-s1.n by A3 .=x0-1/(n+1) by A2; hence (s2-s1).n<=seq.n & seq.n<=s2.n by A3,A11; end; hence seq is convergent by A5,A6,A8,A9,SEQ_2:33; thus lim seq=x0 by A5,A6,A8,A9,A10,SEQ_2:34; now let x be set; assume x in rng seq; then consider n such that A12: x=seq.n by RFUNCT_2:9; seq.n<x0 by A1; then seq.n in {g2:g2<x0}; hence x in left_open_halfline(x0) by A12,PROB_1:def 15; end; then A13: rng seq c=left_open_halfline(x0) by TARSKI:def 3; now let x be set; assume x in rng seq; then ex n st seq.n=x by RFUNCT_2:9; hence x in dom f by A1; end; hence rng seq c=dom f by TARSKI:def 3; hence thesis by A13,XBOOLE_1:19; end; theorem Th6: (for n holds x0<seq.n & seq.n<x0+1/(n+1) & seq.n in dom f) implies seq is convergent & lim seq=x0 & rng seq c= dom f & rng seq c= dom f /\ right_open_halfline(x0) proof assume A1: for n holds x0<seq.n & seq.n<x0+1/(n+1) & seq.n in dom f; deffunc U(Nat) = 1/($1+1); consider s1 be Real_Sequence such that A2: for n holds s1.n=U(n) from ExRealSeq; deffunc U(Nat) = x0; consider s2 be Real_Sequence such that A3: for n holds s2.n=U(n)from ExRealSeq; now let n; s2.n=x0 & s2.(n+1)=x0 by A3; hence s2.n=s2.(n+1); end; then A4: s2 is constant by SEQM_3:16; then A5: s2 is convergent by SEQ_4:39; s2.0=x0 by A3; then A6: lim s2=x0 by A4,SEQ_4:40; A7: s1 is convergent & lim s1=0 by A2,SEQ_4:45; then A8: s2+s1 is convergent by A5,SEQ_2:19; A9: lim(s2+s1)=x0+0 by A5,A6,A7,SEQ_2:20 .=x0; A10: now let n; A11: x0<=seq.n & seq.n<=x0+1/(n+1) by A1; (s2+s1).n=s2.n+s1.n by SEQ_1:11 .=x0+s1.n by A3 .=x0+1/(n+1) by A2; hence s2.n<=seq.n & seq.n<=(s2+s1).n by A3,A11; end; hence seq is convergent by A5,A6,A8,A9,SEQ_2:33; thus lim seq=x0 by A5,A6,A8,A9,A10,SEQ_2:34; now let x be set; assume x in rng seq; then consider n such that A12: x=seq.n by RFUNCT_2:9; x0<seq.n by A1; then seq.n in {g2:x0<g2}; hence x in right_open_halfline(x0) by A12,LIMFUNC1:def 3; end; then A13: rng seq c=right_open_halfline(x0) by TARSKI:def 3; now let x be set; assume x in rng seq; then ex n st seq.n=x by RFUNCT_2:9; hence x in dom f by A1; end; hence rng seq c=dom f by TARSKI:def 3; hence thesis by A13,XBOOLE_1:19; end; definition let f,x0; pred f is_left_convergent_in x0 means :Def1: (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & ex g st for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g; pred f is_left_divergent_to+infty_in x0 means :Def2: (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is divergent_to+infty; pred f is_left_divergent_to-infty_in x0 means :Def3: (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is divergent_to-infty; pred f is_right_convergent_in x0 means :Def4: (for r st x0<r ex g st g<r & x0<g & g in dom f) & ex g st for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g; pred f is_right_divergent_to+infty_in x0 means :Def5: (for r st x0<r ex g st g<r & x0<g & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is divergent_to+infty; pred f is_right_divergent_to-infty_in x0 means :Def6: (for r st x0<r ex g st g<r & x0<g & g in dom f) & for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is divergent_to-infty; end; canceled 6; theorem f is_left_convergent_in x0 iff (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & ex g st for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1 proof thus f is_left_convergent_in x0 implies (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & ex g st for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1 proof assume that A1: f is_left_convergent_in x0 and A2: (not for r st r<x0 ex g st r<g & g<x0 & g in dom f) or for g ex g1 st 0<g1 & for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & abs(f.r1-g)>=g1; consider g such that A3: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f/\ left_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g by A1,Def1; consider g1 such that A4: 0<g1 & for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & abs(f.r1-g)>=g1 by A1,A2,Def1; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f & abs(f.($2)-g)>=g1; A5: now let n; x0-1/(n+1)<x0 by Lm3; then consider g2 such that A6: x0-1/(n+1)<g2 & g2<x0 & g2 in dom f & abs(f.g2-g)>=g1 by A4; reconsider g2 as real number; take g2; thus X[n,g2] by A6; end; consider s be Real_Sequence such that A7: for n holds X[n,s.n] from RealSeqChoice(A5); A8: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\left_open_halfline(x0) by A7,Th5; then f*s is convergent & lim(f*s)=g by A3; then consider n such that A9: for k st n<=k holds abs((f*s).k-g)<g1 by A4,SEQ_2:def 7; abs((f*s).n-g)<g1 by A9; then abs(f.(s.n)-g)<g1 by A8,RFUNCT_2:21; hence contradiction by A7; end; assume A10: for r st r<x0 ex g st r<g & g<x0 & g in dom f; given g such that A11: for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1; now let s be Real_Sequence such that A12: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0); dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then A13: rng s c=dom f by A12,XBOOLE_1:1; A14: now let g1 be real number; A15: g1 is Real by XREAL_0:def 1; assume 0<g1; then consider r such that A16: r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1 by A11,A15; consider n such that A17: for k st n<=k holds r<s.k by A12,A16,Th1; take n; let k; assume n<=k; then A18: r<s.k by A17; s.k in rng s by RFUNCT_2:10; then A19: s.k in left_open_halfline(x0) & s.k in dom f by A12,XBOOLE_0:def 3 ; then s.k in {g2: g2<x0} by PROB_1:def 15; then ex g2 st g2=s.k & g2<x0; then abs(f.(s.k)-g)<g1 by A16,A18,A19; hence abs((f*s).k-g)<g1 by A13,RFUNCT_2:21; end; hence f*s is convergent by SEQ_2:def 6; hence lim(f*s)=g by A14,SEQ_2: def 7; end; hence thesis by A10,Def1; end; theorem f is_left_divergent_to+infty_in x0 iff (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds g1<f.r1 proof thus f is_left_divergent_to+infty_in x0 implies (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds g1<f.r1 proof assume that A1: f is_left_divergent_to+infty_in x0 and A2: (not for r st r<x0 ex g st r<g & g<x0 & g in dom f) or ex g1 st for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & g1>=f.r1; consider g1 such that A3: for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & g1>=f.r1 by A1,A2,Def2; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f & f.($2)<=g1; A4: now let n; x0-1/(n+1)<x0 by Lm3; then consider g2 such that A5: x0-1/(n+1)<g2 & g2<x0 & g2 in dom f & f.g2<=g1 by A3; reconsider g2 as real number; take g2; thus X[n,g2] by A5; end; consider s be Real_Sequence such that A6: for n holds X[n,s.n] from RealSeqChoice(A4); A7: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\left_open_halfline(x0) by A6,Th5; then f*s is divergent_to+infty by A1,Def2; then consider n such that A8: for k st n<=k holds g1<(f*s).k by LIMFUNC1:def 4; g1<(f*s).n by A8; then g1<f.(s.n) by A7,RFUNCT_2:21; hence contradiction by A6; end; assume that A9: for r st r<x0 ex g st r<g & g<x0 & g in dom f and A10: for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds g1<f.r1; now let s be Real_Sequence such that A11: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0); dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then A12: rng s c=dom f by A11,XBOOLE_1:1; now let g1; consider r such that A13: r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds g1<f.r1 by A10; consider n such that A14: for k st n<=k holds r<s.k by A11,A13,Th1; take n; let k; assume n<=k; then A15: r<s.k by A14 ; s.k in rng s by RFUNCT_2:10; then A16: s.k in left_open_halfline(x0) & s.k in dom f by A11,XBOOLE_0:def 3 ; then s.k in {g2: g2<x0} by PROB_1:def 15; then ex g2 st g2=s.k & g2<x0; then g1<f.(s.k) by A13,A15,A16; hence g1<(f*s).k by A12,RFUNCT_2:21; end; hence f*s is divergent_to+infty by LIMFUNC1:def 4; end; hence thesis by A9,Def2; end; theorem f is_left_divergent_to-infty_in x0 iff (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds f.r1<g1 proof thus f is_left_divergent_to-infty_in x0 implies (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds f.r1<g1 proof assume that A1: f is_left_divergent_to-infty_in x0 and A2: (not for r st r<x0 ex g st r<g & g<x0 & g in dom f) or ex g1 st for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & g1<=f.r1; consider g1 such that A3: for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & g1<=f.r1 by A1,A2,Def3; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f & g1<=f.($2); A4: now let n; x0-1/(n+1)<x0 by Lm3; then consider g2 such that A5: x0-1/(n+1)<g2 & g2<x0 & g2 in dom f & g1<=f.g2 by A3; reconsider g2 as real number; take g2; thus X[n,g2] by A5; end; consider s be Real_Sequence such that A6: for n holds X[n,s.n] from RealSeqChoice(A4); A7: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\left_open_halfline(x0) by A6,Th5; then f*s is divergent_to-infty by A1,Def3; then consider n such that A8: for k st n<=k holds (f*s).k<g1 by LIMFUNC1:def 5; (f*s).n<g1 by A8; then f.(s.n)<g1 by A7,RFUNCT_2:21; hence contradiction by A6; end; assume that A9: for r st r<x0 ex g st r<g & g<x0 & g in dom f and A10: for g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds f.r1<g1; now let s be Real_Sequence such that A11: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0); dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then A12: rng s c=dom f by A11,XBOOLE_1:1; now let g1; consider r such that A13: r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds f.r1<g1 by A10; consider n such that A14: for k st n<=k holds r<s.k by A11,A13,Th1; take n; let k; assume n<=k; then A15: r<s.k by A14 ; s.k in rng s by RFUNCT_2:10; then A16: s.k in left_open_halfline(x0) & s.k in dom f by A11,XBOOLE_0:def 3 ; then s.k in {g2: g2<x0} by PROB_1:def 15; then ex g2 st g2=s.k & g2<x0; then f.(s.k)<g1 by A13,A15,A16; hence (f*s).k<g1 by A12,RFUNCT_2:21; end; hence f*s is divergent_to-infty by LIMFUNC1:def 5; end; hence thesis by A9,Def3; end; theorem f is_right_convergent_in x0 iff (for r st x0<r ex g st g<r & x0<g & g in dom f) & ex g st for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1 proof thus f is_right_convergent_in x0 implies (for r st x0<r ex g st g<r & x0<g & g in dom f) & ex g st for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1 proof assume that A1: f is_right_convergent_in x0 and A2: (not for r st x0<r ex g st g<r & x0<g & g in dom f) or for g ex g1 st 0<g1 & for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & abs(f.r1-g)>=g1; consider g such that A3: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f/\ right_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g by A1,Def4; consider g1 such that A4: 0<g1 & for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & abs(f.r1-g)>=g1 by A1,A2,Def4; defpred X[Nat,real number] means x0<$2 & $2<x0+1/($1+1) & $2 in dom f & g1<=abs(f.($2)-g); A5: now let n; x0<x0+1/(n+1) by Lm3; then consider r1 such that A6: r1<x0+(1/(n+1)) & x0<r1 & r1 in dom f & g1<=abs(f.r1-g) by A4; reconsider r1 as real number; take r1; thus X[n,r1] by A6; end; consider s be Real_Sequence such that A7: for n holds X[n,s.n] from RealSeqChoice(A5); A8: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\right_open_halfline(x0) by A7,Th6; then f*s is convergent & lim(f*s)=g by A3; then consider n such that A9: for k st n<=k holds abs((f*s).k-g)<g1 by A4,SEQ_2:def 7; abs((f*s).n-g)<g1 by A9; then abs(f.(s.n)-g)<g1 by A8,RFUNCT_2:21; hence contradiction by A7; end; assume A10: for r st x0<r ex g st g<r & x0<g & g in dom f; given g such that A11: for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1; now let s be Real_Sequence such that A12: s is convergent & lim s=x0 & rng s c=dom f/\right_open_halfline(x0); dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then A13: rng s c=dom f by A12,XBOOLE_1:1; A14: now let g1 be real number; A15: g1 is Real by XREAL_0:def 1; assume 0<g1; then consider r such that A16: x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1 by A11,A15; consider n such that A17: for k st n<=k holds s.k<r by A12,A16,Th2; take n; let k; assume n<=k; then A18: s.k<r by A17; s.k in rng s by RFUNCT_2:10; then A19: s.k in right_open_halfline(x0) & s.k in dom f by A12,XBOOLE_0:def 3 ; then s.k in {g2: x0<g2} by LIMFUNC1:def 3; then ex g2 st g2=s.k & x0<g2; then abs(f.(s.k)-g)<g1 by A16,A18,A19; hence abs((f*s).k-g)<g1 by A13,RFUNCT_2:21; end; hence f*s is convergent by SEQ_2:def 6; hence lim(f*s)=g by A14,SEQ_2: def 7; end; hence thesis by A10,Def4; end; theorem f is_right_divergent_to+infty_in x0 iff (for r st x0<r ex g st g<r & x0<g & g in dom f) & for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds g1<f.r1 proof thus f is_right_divergent_to+infty_in x0 implies (for r st x0<r ex g st g<r & x0<g & g in dom f) & for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds g1<f.r1 proof assume that A1: f is_right_divergent_to+infty_in x0 and A2: (not for r st x0<r ex g st g<r & x0<g & g in dom f) or ex g1 st for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & f.r1<=g1; consider g1 such that A3: for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & f.r1<=g1 by A1,A2,Def5; defpred X[Nat,real number] means x0<$2 & $2<x0+1/($1+1) & $2 in dom f & f.($2)<=g1; A4: now let n; x0<x0+1/(n+1) by Lm3; then consider r1 such that A5: r1<x0+(1/(n+1)) & x0<r1 & r1 in dom f & f.r1<=g1 by A3; reconsider r1 as real number; take r1; thus X[n,r1] by A5; end; consider s be Real_Sequence such that A6: for n holds X[n,s.n] from RealSeqChoice(A4); A7: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\right_open_halfline(x0) by A6,Th6; then f*s is divergent_to+infty by A1,Def5; then consider n such that A8: for k st n<=k holds g1<(f*s).k by LIMFUNC1:def 4; g1<(f*s).n by A8; then g1<f.(s.n) by A7,RFUNCT_2:21; hence contradiction by A6; end; assume that A9: for r st x0<r ex g st g<r & x0<g & g in dom f and A10: for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds g1<f.r1; now let s be Real_Sequence such that A11: s is convergent & lim s=x0 & rng s c=dom f/\right_open_halfline(x0); dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then A12: rng s c=dom f by A11,XBOOLE_1:1; now let g1; consider r such that A13: x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds g1<f.r1 by A10; consider n such that A14: for k st n<=k holds s.k<r by A11,A13,Th2; take n; let k; assume n<=k; then A15: s.k<r by A14 ; s.k in rng s by RFUNCT_2:10; then A16: s.k in right_open_halfline(x0) & s.k in dom f by A11,XBOOLE_0:def 3 ; then s.k in {g2: x0<g2} by LIMFUNC1:def 3; then ex g2 st g2=s.k & x0<g2; then g1<f.(s.k) by A13,A15,A16; hence g1<(f*s).k by A12,RFUNCT_2:21; end; hence f*s is divergent_to+infty by LIMFUNC1:def 4; end; hence thesis by A9,Def5; end; theorem f is_right_divergent_to-infty_in x0 iff (for r st x0<r ex g st g<r & x0<g & g in dom f) & for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds f.r1<g1 proof thus f is_right_divergent_to-infty_in x0 implies (for r st x0<r ex g st g<r & x0<g & g in dom f) & for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds f.r1<g1 proof assume that A1: f is_right_divergent_to-infty_in x0 and A2: (not for r st x0<r ex g st g<r & x0<g & g in dom f) or ex g1 st for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & g1<=f.r1; consider g1 such that A3: for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & g1<=f.r1 by A1,A2,Def6; defpred X[Nat,real number] means x0<$2 & $2<x0+1/($1+1) & $2 in dom f & g1<=f.($2); A4: now let n; x0<x0+1/(n+1) by Lm3; then consider r1 such that A5: r1<x0+(1/(n+1)) & x0<r1 & r1 in dom f & g1<=f.r1 by A3; reconsider r1 as real number; take r1; thus X[n,r1] by A5; end; consider s be Real_Sequence such that A6: for n holds X[n,s.n] from RealSeqChoice(A4); A7: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\right_open_halfline(x0) by A6,Th6; then f*s is divergent_to-infty by A1,Def6; then consider n such that A8: for k st n<=k holds (f*s).k<g1 by LIMFUNC1:def 5; (f*s).n<g1 by A8; then f.(s.n)<g1 by A7,RFUNCT_2:21; hence contradiction by A6; end; assume that A9: for r st x0<r ex g st g<r & x0<g & g in dom f and A10: for g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds f.r1<g1; for s be Real_Sequence holds s is convergent & lim s=x0 & rng s c=dom f/\right_open_halfline(x0) implies f*s is divergent_to-infty by A10,Lm5; hence thesis by A9,Def6; end; theorem f1 is_left_divergent_to+infty_in x0 & f2 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f1 /\ dom f2) implies f1+f2 is_left_divergent_to+infty_in x0 & f1(#) f2 is_left_divergent_to+infty_in x0 proof assume A1: f1 is_left_divergent_to+infty_in x0 & f2 is_left_divergent_to+infty_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom f1/\dom f2; A2: now let r; assume r<x0; then consider g such that A3: r<g & g<x0 & g in dom f1/\dom f2 by A1; take g; thus r<g & g<x0 & g in dom(f1+f2) by A3,SEQ_1:def 3; end; now let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\left_open_halfline(x0); then A5: rng seq c=dom(f1+f2) & rng seq c=left_open_halfline(x0) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1/\left_open_halfline(x0) & rng seq c=dom f2/\left_open_halfline(x0) by Lm4; then A6: f1*seq is divergent_to+infty by A1,A4,Def2; f2*seq is divergent_to+infty by A1,A4,A5,Def2; then f1*seq+f2*seq is divergent_to+infty by A6,LIMFUNC1:35; hence (f1+f2)*seq is divergent_to+infty by A5,RFUNCT_2:23; end; hence f1+f2 is_left_divergent_to+infty_in x0 by A2,Def2; A7: now let r; assume r<x0; then consider g such that A8: r<g & g<x0 & g in dom f1/\dom f2 by A1; take g; thus r<g & g<x0 & g in dom(f1(#)f2) by A8,SEQ_1:def 5; end; now let seq; assume A9: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\left_open_halfline(x0); then A10: rng seq c=dom(f1(#)f2) & rng seq c=left_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1/\left_open_halfline(x0) & rng seq c=dom f2/\left_open_halfline(x0) by Lm2; then A11: f1*seq is divergent_to+infty by A1,A9,Def2; f2*seq is divergent_to+infty by A1,A9,A10,Def2; then (f1*seq)(#)(f2*seq) is divergent_to+infty by A11,LIMFUNC1:37; hence (f1(#)f2)*seq is divergent_to+infty by A10,RFUNCT_2:23; end; hence thesis by A7,Def2; end; theorem f1 is_left_divergent_to-infty_in x0 & f2 is_left_divergent_to-infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f1 /\ dom f2) implies f1+f2 is_left_divergent_to-infty_in x0 & f1(#)f2 is_left_divergent_to+infty_in x0 proof assume A1: f1 is_left_divergent_to-infty_in x0 & f2 is_left_divergent_to-infty_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom f1/\dom f2; A2: now let r; assume r<x0; then consider g such that A3: r<g & g<x0 & g in dom f1/\dom f2 by A1; take g; thus r<g & g<x0 & g in dom(f1+f2) by A3,SEQ_1:def 3; end; now let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\left_open_halfline(x0); then A5: rng seq c=dom(f1+f2) & rng seq c=left_open_halfline(x0) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1/\left_open_halfline(x0) & rng seq c=dom f2/\left_open_halfline(x0) by Lm4; then A6: f1*seq is divergent_to-infty by A1,A4,Def3; f2*seq is divergent_to-infty by A1,A4,A5,Def3; then f1*seq+f2*seq is divergent_to-infty by A6,LIMFUNC1:38; hence (f1+f2)*seq is divergent_to-infty by A5,RFUNCT_2:23; end; hence f1+f2 is_left_divergent_to-infty_in x0 by A2,Def3; A7: now let r; assume r<x0; then consider g such that A8: r<g & g<x0 & g in dom f1/\dom f2 by A1; take g; thus r<g & g<x0 & g in dom(f1(#)f2) by A8,SEQ_1:def 5; end; now let seq; assume A9: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\left_open_halfline(x0); then A10: rng seq c=dom(f1(#)f2) & rng seq c=left_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1/\left_open_halfline(x0) & rng seq c=dom f2/\left_open_halfline(x0) by Lm2; then A11: f1*seq is divergent_to-infty by A1,A9,Def3; f2*seq is divergent_to-infty by A1,A9,A10,Def3; then (f1*seq)(#)(f2*seq) is divergent_to+infty by A11,LIMFUNC1:51; hence (f1(#)f2)*seq is divergent_to+infty by A10,RFUNCT_2:23; end; hence thesis by A7,Def2; end; theorem f1 is_right_divergent_to+infty_in x0 & f2 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f1 /\ dom f2) implies f1+f2 is_right_divergent_to+infty_in x0 & f1(#)f2 is_right_divergent_to+infty_in x0 proof assume A1: f1 is_right_divergent_to+infty_in x0 & f2 is_right_divergent_to+infty_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom f1/\dom f2; A2: now let r; assume x0<r; then consider g such that A3: g<r & x0<g & g in dom f1/\dom f2 by A1; take g; thus g<r & x0<g & g in dom(f1+f2) by A3,SEQ_1:def 3; end; now let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\right_open_halfline(x0); then A5: rng seq c=dom(f1+f2) & rng seq c=right_open_halfline(x0) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1/\right_open_halfline(x0) & rng seq c=dom f2/\right_open_halfline(x0) by Lm4; then A6: f1*seq is divergent_to+infty by A1,A4,Def5; f2*seq is divergent_to+infty by A1,A4,A5,Def5; then f1*seq+f2*seq is divergent_to+infty by A6,LIMFUNC1:35; hence (f1+f2)*seq is divergent_to+infty by A5,RFUNCT_2:23; end; hence f1+f2 is_right_divergent_to+infty_in x0 by A2,Def5; A7: now let r; assume x0<r; then consider g such that A8: g<r & x0<g & g in dom f1/\dom f2 by A1; take g; thus g<r & x0<g & g in dom(f1(#)f2) by A8,SEQ_1:def 5; end; now let seq; assume A9: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\right_open_halfline(x0); then A10: rng seq c=dom(f1(#)f2) & rng seq c=right_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1/\right_open_halfline(x0) & rng seq c=dom f2/\right_open_halfline(x0) by Lm2; then A11: f1*seq is divergent_to+infty by A1,A9,Def5; f2*seq is divergent_to+infty by A1,A9,A10,Def5; then (f1*seq)(#)(f2*seq) is divergent_to+infty by A11,LIMFUNC1:37; hence (f1(#)f2)*seq is divergent_to+infty by A10,RFUNCT_2:23; end; hence thesis by A7,Def5; end; theorem f1 is_right_divergent_to-infty_in x0 & f2 is_right_divergent_to-infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f1 /\ dom f2) implies f1+f2 is_right_divergent_to-infty_in x0 & f1(#)f2 is_right_divergent_to+infty_in x0 proof assume A1: f1 is_right_divergent_to-infty_in x0 & f2 is_right_divergent_to-infty_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom f1/\dom f2; A2: now let r; assume x0<r; then consider g such that A3: g<r & x0<g & g in dom f1/\dom f2 by A1; take g; thus g<r & x0<g & g in dom(f1+f2) by A3,SEQ_1:def 3; end; now let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\right_open_halfline(x0); then A5: rng seq c=dom(f1+f2) & rng seq c=right_open_halfline(x0) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1/\right_open_halfline(x0) & rng seq c=dom f2/\right_open_halfline(x0) by Lm4; then A6: f1*seq is divergent_to-infty by A1,A4,Def6; f2*seq is divergent_to-infty by A1,A4,A5,Def6; then f1*seq+f2*seq is divergent_to-infty by A6,LIMFUNC1:38; hence (f1+f2)*seq is divergent_to-infty by A5,RFUNCT_2:23; end; hence f1+f2 is_right_divergent_to-infty_in x0 by A2,Def6; A7: now let r; assume x0<r; then consider g such that A8: g<r & x0<g & g in dom f1/\dom f2 by A1; take g; thus g<r & x0<g & g in dom(f1(#)f2) by A8,SEQ_1:def 5; end; now let seq; assume A9: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\right_open_halfline(x0); then A10: rng seq c=dom(f1(#)f2) & rng seq c=right_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1/\right_open_halfline(x0) & rng seq c=dom f2/\right_open_halfline(x0) by Lm2; then A11: f1*seq is divergent_to-infty by A1,A9,Def6; f2*seq is divergent_to-infty by A1,A9,A10,Def6; then (f1*seq)(#)(f2*seq) is divergent_to+infty by A11,LIMFUNC1:51; hence (f1(#)f2)*seq is divergent_to+infty by A10,RFUNCT_2:23; end; hence thesis by A7,Def5; end; theorem f1 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1+f2)) & (ex r st 0<r & f2 is_bounded_below_on ].x0-r,x0.[) implies f1+f2 is_left_divergent_to+infty_in x0 proof assume A1: f1 is_left_divergent_to+infty_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom(f1+f2); given r such that A2: 0<r & f2 is_bounded_below_on ].x0-r,x0.[; now let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A4: for n st k<=n holds x0-r<seq.n by A3,Th1; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; rng(seq^\k)c=rng seq by RFUNCT_2:7; then A6: rng(seq^\k)c=dom(f1+f2)/\left_open_halfline(x0) by A3,XBOOLE_1:1; A7: dom(f1+f2)/\left_open_halfline(x0) c=dom(f1+f2) & dom(f1+f2)/\left_open_halfline(x0) c=left_open_halfline(x0) by XBOOLE_1:17 ; then A8: rng(seq^\k)c=dom(f1+f2) & rng(seq^\k)c=left_open_halfline(x0) by A6,XBOOLE_1:1; dom(f1+f2)=dom f1/\dom f2 by SEQ_1:def 3; then dom(f1+f2)c=dom f1 & dom(f1+f2)c=dom f2 by XBOOLE_1:17; then A9: rng(seq^\k)c=dom f1 & rng(seq^\k)c=dom f2 by A8,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\left_open_halfline(x0) by A8,XBOOLE_1:19; then A10: f1*(seq^\k) is divergent_to+infty by A1,A5,Def2; A11: rng(seq^\k)c=dom f1/\dom f2 by A9,XBOOLE_1:19; A12: rng seq c=dom(f1+f2) by A3,A7,XBOOLE_1:1; now consider r1 be real number such that A13: for g st g in ].x0-r,x0.[/\dom f2 holds r1<=f2.g by A2,RFUNCT_1:def 10; take r2=r1-1; let n; k<=n+k by NAT_1:37; then x0-r<seq.(n+k) by A4; then A14: x0-r<(seq^\k).n by SEQM_3:def 9; A15: (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then (seq^\k).n in left_open_halfline(x0) by A8; then (seq^\k).n in {g1: g1<x0} by PROB_1:def 15; then ex g st g=(seq^\k).n & g<x0; then (seq^\k).n in {g2: x0-r<g2 & g2<x0} by A14; then (seq^\k).n in ].x0-r,x0.[ by RCOMP_1:def 2; then (seq^\k).n in ].x0-r,x0.[/\dom f2 by A9,A15,XBOOLE_0:def 3; then r1<=f2.((seq^\k).n) by A13; then r1-1<f2.((seq^\k).n)-0 by REAL_1:92; hence r2<(f2*(seq^\k)).n by A9,RFUNCT_2:21; end; then f2*(seq^\k) is bounded_below by SEQ_2:def 4; then A16: f1*(seq^\k)+f2*(seq^\k) is divergent_to+infty by A10,LIMFUNC1:36; f1*(seq^\k)+f2*(seq^\k)=(f1+f2)*(seq^\k) by A11,RFUNCT_2:23 .=((f1+f2)*seq)^\k by A12,RFUNCT_2:22; hence (f1+f2)*seq is divergent_to+infty by A16,LIMFUNC1:34; end; hence thesis by A1,Def2; end; theorem f1 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2)) & (ex r,r1 st 0<r & 0<r1 & for g st g in dom f2 /\ ].x0-r,x0.[ holds r1<= f2.g) implies f1(#)f2 is_left_divergent_to+infty_in x0 proof assume A1: f1 is_left_divergent_to+infty_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2); given r,t be Real such that A2: 0<r & 0<t & for g st g in dom f2/\].x0-r,x0.[ holds t<=f2.g; now let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A4: for n st k<=n holds x0-r<seq.n by A3,Th1; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; rng(seq^\k)c=rng seq by RFUNCT_2:7; then rng(seq^\k)c=dom(f1(#)f2)/\left_open_halfline(x0) by A3,XBOOLE_1:1; then A6: rng(seq^\k)c=dom(f1(#)f2) & rng(seq^\k)c=left_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng(seq^\k)c=dom f1 & rng(seq^\k)c=dom f2 & rng(seq^\k)c=dom f1/\left_open_halfline(x0) by Lm2; then A7: f1*(seq^\k) is divergent_to+infty by A1,A5,Def2; A8: rng seq c=dom(f1(#)f2) by A3,Lm2; now thus 0<t by A2; let n; k<=n+k by NAT_1:37; then x0-r<seq.(n+k) by A4; then A9: x0-r<(seq^\k).n by SEQM_3:def 9; A10: (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then (seq^\k).n in left_open_halfline(x0) by A6; then (seq^\k).n in {g1: g1<x0} by PROB_1:def 15; then ex g st g=(seq^\k).n & g<x0; then (seq^\k).n in {g2: x0-r<g2 & g2<x0} by A9; then (seq^\k).n in ].x0-r,x0.[ by RCOMP_1:def 2; then (seq^\k).n in dom f2/\].x0-r,x0.[ by A6,A10,XBOOLE_0:def 3; then t<=f2.((seq^\k).n) by A2; hence t<=(f2*(seq^\k)).n by A6,RFUNCT_2:21; end; then A11: (f1*(seq^\k))(#)(f2*(seq^\k)) is divergent_to+infty by A7,LIMFUNC1:49; (f1*(seq^\k))(#)(f2*(seq^\k))=(f1(#)f2)*(seq^\k) by A6,RFUNCT_2:23 .=((f1(#)f2)*seq)^\k by A8,RFUNCT_2:22; hence (f1(#)f2)*seq is divergent_to+infty by A11,LIMFUNC1:34; end; hence thesis by A1,Def2; end; theorem f1 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1+f2)) & (ex r st 0<r & f2 is_bounded_below_on ].x0,x0+r.[) implies f1+f2 is_right_divergent_to+infty_in x0 proof assume A1: f1 is_right_divergent_to+infty_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom(f1+f2); given r such that A2: 0<r & f2 is_bounded_below_on ].x0,x0+r.[; now let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A4: for n st k<=n holds seq.n<x0+r by A3,Th2; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; rng(seq^\k)c=rng seq by RFUNCT_2:7; then A6: rng(seq^\k)c=dom(f1+f2)/\right_open_halfline(x0) by A3,XBOOLE_1:1; A7: dom(f1+f2)/\right_open_halfline(x0) c=dom(f1+f2) & dom(f1+f2)/\ right_open_halfline(x0) c=right_open_halfline(x0) by XBOOLE_1:17; then A8: rng(seq^\k)c=dom(f1+f2) & rng(seq^\k)c=right_open_halfline(x0) by A6,XBOOLE_1:1; dom(f1+f2)=dom f1/\dom f2 by SEQ_1:def 3; then dom(f1+f2)c=dom f1 & dom(f1+f2)c=dom f2 by XBOOLE_1:17; then A9: rng(seq^\k)c=dom f1 & rng(seq^\k)c=dom f2 by A8,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\right_open_halfline(x0) by A8,XBOOLE_1:19; then A10: f1*(seq^\k) is divergent_to+infty by A1,A5,Def5; A11: rng(seq^\k)c=dom f1/\dom f2 by A9,XBOOLE_1:19; A12: rng seq c=dom(f1+f2) by A3,A7,XBOOLE_1:1; now consider r1 be real number such that A13: for g st g in ].x0,x0+r.[/\dom f2 holds r1<=f2.g by A2,RFUNCT_1:def 10; take r2=r1-1; let n; k<=n+k by NAT_1:37; then seq.(n+k)<x0+r by A4; then A14: (seq^\k).n<x0+r by SEQM_3:def 9; A15: (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then (seq^\k).n in right_open_halfline(x0) by A8; then (seq^\k).n in {g1: x0<g1} by LIMFUNC1:def 3; then ex g st g=(seq^\k).n & x0<g; then (seq^\k).n in {g2: x0<g2 & g2<x0+r} by A14; then (seq^\k).n in ].x0,x0+r.[ by RCOMP_1:def 2; then (seq^\k).n in ].x0,x0+r.[/\dom f2 by A9,A15,XBOOLE_0:def 3; then r1<=f2.((seq^\k).n) by A13; then r1-1<f2.((seq^\k).n)-0 by REAL_1:92; hence r2<(f2*(seq^\k)).n by A9,RFUNCT_2:21; end; then f2*(seq^\k) is bounded_below by SEQ_2:def 4; then A16: f1*(seq^\k)+f2*(seq^\k) is divergent_to+infty by A10,LIMFUNC1:36; f1*(seq^\k)+f2*(seq^\k)=(f1+f2)*(seq^\k) by A11,RFUNCT_2:23 .=((f1+f2)*seq)^\k by A12,RFUNCT_2:22; hence (f1+f2)*seq is divergent_to+infty by A16,LIMFUNC1:34; end; hence thesis by A1,Def5; end; theorem f1 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2)) & (ex r,r1 st 0<r & 0<r1 & for g st g in dom f2 /\ ].x0,x0+r.[ holds r1<= f2.g) implies f1(#)f2 is_right_divergent_to+infty_in x0 proof assume A1: f1 is_right_divergent_to+infty_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2); given r,t be Real such that A2: 0<r & 0<t & for g st g in dom f2/\].x0,x0+r.[ holds t<=f2.g; now let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A4: for n st k<=n holds seq.n<x0+r by A3,Th2; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; rng(seq^\k)c=rng seq by RFUNCT_2:7; then rng(seq^\k)c=dom(f1(#)f2)/\right_open_halfline(x0) by A3,XBOOLE_1:1; then A6: rng(seq^\k)c=dom(f1(#)f2) & rng(seq^\k)c=right_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng(seq^\k)c=dom f1 & rng(seq^\k)c=dom f2 & rng(seq^\k)c=dom f1/\right_open_halfline(x0) by Lm2; then A7: f1*(seq^\k) is divergent_to+infty by A1,A5,Def5; A8: rng seq c=dom(f1(#)f2) by A3,Lm2; now thus 0<t by A2; let n; k<=n+k by NAT_1:37; then seq.(n+k)<x0+r by A4; then A9: (seq^\k).n<x0+r by SEQM_3:def 9; A10: (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then (seq^\k).n in right_open_halfline(x0) by A6; then (seq^\k).n in {g1: x0<g1} by LIMFUNC1:def 3; then ex g st g=(seq^\k).n & x0<g; then (seq^\k).n in {g2: x0<g2 & g2<x0+r} by A9; then (seq^\k).n in ].x0,x0+r.[ by RCOMP_1:def 2; then (seq^\k).n in dom f2/\].x0,x0+r.[ by A6,A10,XBOOLE_0:def 3; then t<=f2.((seq^\k).n) by A2; hence t<=(f2*(seq^\k)).n by A6,RFUNCT_2:21; end; then A11: (f1*(seq^\k))(#)(f2*(seq^\k)) is divergent_to+infty by A7,LIMFUNC1:49; (f1*(seq^\k))(#)(f2*(seq^\k))=(f1(#)f2)*(seq^\k) by A6,RFUNCT_2:23 .=((f1(#)f2)*seq)^\k by A8,RFUNCT_2:22; hence (f1(#)f2)*seq is divergent_to+infty by A11,LIMFUNC1:34; end; hence thesis by A1,Def5; end; theorem (f is_left_divergent_to+infty_in x0 & r>0 implies r(#)f is_left_divergent_to+infty_in x0 ) & (f is_left_divergent_to+infty_in x0 & r<0 implies r(#)f is_left_divergent_to-infty_in x0 ) & (f is_left_divergent_to-infty_in x0 & r>0 implies r(#)f is_left_divergent_to-infty_in x0 ) & (f is_left_divergent_to-infty_in x0 & r<0 implies r(#)f is_left_divergent_to+infty_in x0 ) proof thus f is_left_divergent_to+infty_in x0 & r>0 implies r(#)f is_left_divergent_to+infty_in x0 proof assume A1: f is_left_divergent_to+infty_in x0 & r>0; thus for r1 st r1<x0 ex g st r1<g & g<x0 & g in dom(r(#)f) proof let r1; assume r1<x0; then consider g such that A2: r1<g & g<x0 & g in dom f by A1,Def2; take g; thus thesis by A2,SEQ_1:def 6; end; let seq; assume A3: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\left_open_halfline(x0); then A4: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to+infty by A1,A3,Def2; then A5: r(#)(f*seq) is divergent_to+infty by A1,LIMFUNC1:40; dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A4,XBOOLE_1:1; hence thesis by A5,RFUNCT_2:24; end; thus f is_left_divergent_to+infty_in x0 & r<0 implies r(#)f is_left_divergent_to-infty_in x0 proof assume A6: f is_left_divergent_to+infty_in x0 & r<0; thus for r1 st r1<x0 ex g st r1<g & g<x0 & g in dom(r(#)f) proof let r1; assume r1<x0; then consider g such that A7: r1<g & g<x0 & g in dom f by A6,Def2; take g; thus thesis by A7,SEQ_1:def 6; end; let seq; assume A8: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\left_open_halfline(x0); then A9: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to+infty by A6,A8,Def2; then A10: r(#)(f*seq) is divergent_to-infty by A6,LIMFUNC1:40; dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A9,XBOOLE_1:1; hence thesis by A10,RFUNCT_2:24; end; thus f is_left_divergent_to-infty_in x0 & r>0 implies r(#)f is_left_divergent_to-infty_in x0 proof assume A11: f is_left_divergent_to-infty_in x0 & r>0; thus for r1 st r1<x0 ex g st r1<g & g<x0 & g in dom(r(#)f) proof let r1; assume r1<x0; then consider g such that A12: r1<g & g<x0 & g in dom f by A11,Def3; take g; thus thesis by A12,SEQ_1: def 6; end; let seq; assume A13: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\left_open_halfline(x0); then A14: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to-infty by A11,A13,Def3; then A15: r(#)(f*seq) is divergent_to-infty by A11,LIMFUNC1:41; dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A14,XBOOLE_1:1; hence thesis by A15,RFUNCT_2:24; end; assume A16: f is_left_divergent_to-infty_in x0 & r<0; thus for r1 st r1<x0 ex g st r1<g & g<x0 & g in dom(r(#)f) proof let r1; assume r1<x0; then consider g such that A17: r1<g & g<x0 & g in dom f by A16,Def3; take g;thus thesis by A17,SEQ_1:def 6; end; let seq; assume A18: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\left_open_halfline(x0); then A19: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to-infty by A16,A18,Def3; then A20: r(#)(f*seq) is divergent_to+infty by A16,LIMFUNC1:41; dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A19,XBOOLE_1:1; hence thesis by A20,RFUNCT_2:24; end; theorem (f is_right_divergent_to+infty_in x0 & r>0 implies r(#)f is_right_divergent_to+infty_in x0 ) & (f is_right_divergent_to+infty_in x0 & r<0 implies r(#)f is_right_divergent_to-infty_in x0 ) & (f is_right_divergent_to-infty_in x0 & r>0 implies r(#)f is_right_divergent_to-infty_in x0 ) & (f is_right_divergent_to-infty_in x0 & r<0 implies r(#)f is_right_divergent_to+infty_in x0) proof thus f is_right_divergent_to+infty_in x0 & r>0 implies r(#)f is_right_divergent_to+infty_in x0 proof assume A1: f is_right_divergent_to+infty_in x0 & r>0; thus for r1 st x0<r1 ex g st g<r1 & x0<g & g in dom(r(#)f) proof let r1; assume x0<r1; then consider g such that A2: g<r1 & x0<g & g in dom f by A1,Def5; take g; thus thesis by A2,SEQ_1:def 6; end; let seq; assume A3: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\right_open_halfline(x0); then A4: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to+infty by A1,A3,Def5; then A5: r(#)(f*seq) is divergent_to+infty by A1,LIMFUNC1:40; dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A4,XBOOLE_1:1; hence thesis by A5,RFUNCT_2:24; end; thus f is_right_divergent_to+infty_in x0 & r<0 implies r(#)f is_right_divergent_to-infty_in x0 proof assume A6: f is_right_divergent_to+infty_in x0 & r<0; thus for r1 st x0<r1 ex g st g<r1 & x0<g & g in dom(r(#)f) proof let r1; assume x0<r1; then consider g such that A7: g<r1 & x0<g & g in dom f by A6,Def5; take g; thus thesis by A7,SEQ_1:def 6; end; let seq; assume A8: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\right_open_halfline(x0); then A9: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to+infty by A6,A8,Def5; then A10: r(#)(f*seq) is divergent_to-infty by A6,LIMFUNC1:40; dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A9,XBOOLE_1:1; hence thesis by A10,RFUNCT_2:24; end; thus f is_right_divergent_to-infty_in x0 & r>0 implies r(#)f is_right_divergent_to-infty_in x0 proof assume A11: f is_right_divergent_to-infty_in x0 & r>0; thus for r1 st x0<r1 ex g st g<r1 & x0<g & g in dom(r(#)f) proof let r1; assume x0<r1; then consider g such that A12: g<r1 & x0<g & g in dom f by A11,Def6; take g; thus thesis by A12,SEQ_1: def 6; end; let seq; assume A13: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\right_open_halfline(x0); then A14: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to-infty by A11,A13,Def6; then A15: r(#)(f*seq) is divergent_to-infty by A11,LIMFUNC1:41; dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A14,XBOOLE_1:1; hence thesis by A15,RFUNCT_2:24; end; assume A16: f is_right_divergent_to-infty_in x0 & r<0; thus for r1 st x0<r1 ex g st g<r1 & x0<g & g in dom(r(#)f) proof let r1; assume x0<r1; then consider g such that A17: g<r1 & x0<g & g in dom f by A16,Def6; take g; thus thesis by A17,SEQ_1:def 6; end; let seq; assume A18: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\right_open_halfline(x0); then A19: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 6; then f*seq is divergent_to-infty by A16,A18,Def6; then A20: r(#)(f*seq) is divergent_to+infty by A16,LIMFUNC1:41; dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A19,XBOOLE_1:1; hence thesis by A20,RFUNCT_2:24; end; theorem (f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0) implies abs(f) is_left_divergent_to+infty_in x0 proof assume A1: f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0; now per cases by A1; suppose A2: f is_left_divergent_to+infty_in x0; A3: now let r; assume r<x0; then consider g such that A4: r<g & g<x0 & g in dom f by A2,Def2; take g; thus r<g & g<x0 & g in dom abs(f) by A4,SEQ_1:def 10; end; now let seq; assume A5: seq is convergent & lim seq=x0 & rng seq c=dom abs(f)/\left_open_halfline(x0); then A6: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 10; then f*seq is divergent_to+infty by A2,A5,Def2; then A7: abs(f*seq) is divergent_to+infty by LIMFUNC1:52; dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A6,XBOOLE_1:1; hence abs(f)*seq is divergent_to+infty by A7,RFUNCT_2:25; end; hence thesis by A3,Def2; suppose A8: f is_left_divergent_to-infty_in x0; A9: now let r; assume r<x0; then consider g such that A10: r<g & g<x0 & g in dom f by A8,Def3; take g; thus r<g & g<x0 & g in dom abs(f) by A10,SEQ_1:def 10; end; now let seq; assume A11: seq is convergent & lim seq=x0 & rng seq c=dom abs(f)/\left_open_halfline(x0); then A12: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 10; then f*seq is divergent_to-infty by A8,A11,Def3; then A13: abs(f*seq) is divergent_to+infty by LIMFUNC1:52; dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A12,XBOOLE_1:1; hence abs(f)*seq is divergent_to+infty by A13,RFUNCT_2:25; end; hence thesis by A9,Def2; end; hence thesis; end; theorem (f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0) implies abs(f) is_right_divergent_to+infty_in x0 proof assume A1: f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0; now per cases by A1; suppose A2: f is_right_divergent_to+infty_in x0; A3: now let r; assume x0<r; then consider g such that A4: g<r & x0<g & g in dom f by A2,Def5; take g; thus g<r & x0<g & g in dom abs(f) by A4,SEQ_1:def 10; end; now let seq; assume A5: seq is convergent & lim seq=x0 & rng seq c=dom abs(f)/\right_open_halfline(x0); then A6: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 10; then f*seq is divergent_to+infty by A2,A5,Def5; then A7: abs(f*seq) is divergent_to+infty by LIMFUNC1:52; dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A6,XBOOLE_1:1; hence abs(f)*seq is divergent_to+infty by A7,RFUNCT_2:25; end; hence thesis by A3,Def5; suppose A8: f is_right_divergent_to-infty_in x0; A9: now let r; assume x0<r; then consider g such that A10: g<r & x0<g & g in dom f by A8,Def6; take g; thus g<r & x0<g & g in dom abs(f) by A10,SEQ_1:def 10; end; now let seq; assume A11: seq is convergent & lim seq=x0 & rng seq c=dom abs(f)/\right_open_halfline(x0); then A12: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 10; then f*seq is divergent_to-infty by A8,A11,Def6; then A13: abs(f*seq) is divergent_to+infty by LIMFUNC1:52; dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A12,XBOOLE_1:1; hence abs(f)*seq is divergent_to+infty by A13,RFUNCT_2:25; end; hence thesis by A9,Def5; end; hence thesis; end; theorem Th31: (ex r st 0<r & f is_non_decreasing_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to+infty_in x0 proof given r such that A1: 0<r & f is_non_decreasing_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0-r,x0.[; assume for r st r<x0 ex g st r<g & g<x0 & g in dom f; hence for r st r<x0 ex g st r<g & g<x0 & g in dom f; let seq such that A2: seq is convergent & lim seq=x0 & rng seq c=dom f/\left_open_halfline(x0); now let t be Real; consider g1 such that A3: g1 in ].x0-r,x0.[/\dom f & t<f.g1 by A1,RFUNCT_1:def 9; g1 in ].x0-r,x0.[ by A3,XBOOLE_0:def 3 ; then g1 in {r1: x0-r<r1 & r1<x0} by RCOMP_1:def 2; then A4: ex r1 st r1=g1 & x0-r<r1 & r1<x0; then consider n such that A5: for k st n<=k holds g1<seq.k by A2,Th1; take n; let k; seq.k in rng seq by RFUNCT_2:10; then A6: seq.k in dom f/\left_open_halfline(x0) by A2; assume n<=k; then A7: g1<seq.k by A5; then A8: x0-r<seq.k by A4,AXIOMS:22; A9: dom f/\left_open_halfline(x0)c=dom f & dom f/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then seq.k in dom f & seq.k in left_open_halfline(x0) by A6; then seq.k in {r2: r2<x0} by PROB_1:def 15; then ex r2 st r2=seq.k & r2<x0; then seq.k in {g2: x0-r<g2 & g2<x0} by A8; then seq.k in ].x0-r,x0.[ by RCOMP_1:def 2 ; then seq.k in ].x0-r,x0.[/\dom f by A6,A9,XBOOLE_0:def 3; then f.g1<=f.(seq.k) by A1,A3,A7,RFUNCT_2:def 4; then A10: t<f.(seq.k) by A3,AXIOMS:22; rng seq c=dom f by A2,A9,XBOOLE_1:1; hence t<(f*seq).k by A10,RFUNCT_2:21; end; hence thesis by LIMFUNC1:def 4; end; theorem (ex r st 0<r & f is_increasing_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to+infty_in x0 proof given r such that A1: 0<r & f is_increasing_on ].x0-r,x0.[ & not f is_bounded_above_on ].x0-r,x0.[; assume A2: for r st r<x0 ex g st r<g & g<x0 & g in dom f; f is_non_decreasing_on ].x0-r,x0.[ by A1,RFUNCT_2:55; hence thesis by A1,A2, Th31 ; end; theorem Th33: (ex r st 0<r & f is_non_increasing_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to-infty_in x0 proof given r such that A1: 0<r & f is_non_increasing_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0-r,x0.[; assume for r st r<x0 ex g st r<g & g<x0 & g in dom f; hence for r st r<x0 ex g st r<g & g<x0 & g in dom f; let seq such that A2: seq is convergent & lim seq=x0 & rng seq c=dom f/\left_open_halfline(x0); now let t be Real; consider g1 such that A3: g1 in ].x0-r,x0.[/\dom f & f.g1<t by A1,RFUNCT_1:def 10 ; g1 in ].x0-r,x0.[ by A3,XBOOLE_0:def 3 ; then g1 in {r1: x0-r<r1 & r1<x0} by RCOMP_1:def 2; then A4: ex r1 st r1=g1 & x0-r<r1 & r1<x0; then consider n such that A5: for k st n<=k holds g1<seq.k by A2,Th1; take n; let k; seq.k in rng seq by RFUNCT_2:10; then A6: seq.k in dom f/\left_open_halfline(x0) by A2; assume n<=k; then A7: g1<seq.k by A5; then A8: x0-r<seq.k by A4,AXIOMS:22; A9: dom f/\left_open_halfline(x0)c=dom f & dom f/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then seq.k in dom f & seq.k in left_open_halfline(x0) by A6; then seq.k in {r2: r2<x0} by PROB_1:def 15; then ex r2 st r2=seq.k & r2<x0; then seq.k in {g2: x0-r<g2 & g2<x0} by A8; then seq.k in ].x0-r,x0.[ by RCOMP_1:def 2 ; then seq.k in ].x0-r,x0.[/\dom f by A6,A9,XBOOLE_0:def 3; then f.(seq.k)<=f.g1 by A1,A3,A7,RFUNCT_2:def 5; then A10: f.(seq.k)<t by A3,AXIOMS:22; rng seq c=dom f by A2,A9,XBOOLE_1:1; hence (f*seq).k<t by A10,RFUNCT_2:21; end; hence thesis by LIMFUNC1:def 5; end; theorem (ex r st 0<r & f is_decreasing_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0-r,x0.[) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) implies f is_left_divergent_to-infty_in x0 proof given r such that A1: 0<r & f is_decreasing_on ].x0-r,x0.[ & not f is_bounded_below_on ].x0-r,x0.[; assume A2: for r st r<x0 ex g st r<g & g<x0 & g in dom f; f is_non_increasing_on ].x0-r,x0.[ by A1,RFUNCT_2:56; hence thesis by A1,A2, Th33 ; end; theorem Th35: (ex r st 0<r & f is_non_increasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to+infty_in x0 proof given r such that A1: 0<r & f is_non_increasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0,x0+r.[; assume for r st x0<r ex g st g<r & x0<g & g in dom f; hence for r st x0<r ex g st g<r & x0<g & g in dom f; let seq such that A2: seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0); now let t be Real; consider g1 such that A3: g1 in ].x0,x0+r.[/\dom f & t<f.g1 by A1,RFUNCT_1:def 9; g1 in ].x0,x0+r.[ by A3,XBOOLE_0:def 3 ; then g1 in {r1: x0<r1 & r1<x0+r} by RCOMP_1:def 2; then A4: ex r1 st r1=g1 & x0<r1 & r1<x0+r; then consider n such that A5: for k st n<=k holds seq.k<g1 by A2,Th2; take n; let k; seq.k in rng seq by RFUNCT_2:10; then A6: seq.k in dom f/\right_open_halfline(x0) by A2; assume n<=k; then A7: seq.k<g1 by A5; then A8: seq.k<x0+r by A4,AXIOMS:22; A9: dom f/\right_open_halfline(x0)c=dom f & dom f/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then seq.k in dom f & seq.k in right_open_halfline(x0) by A6; then seq.k in {r2: x0<r2} by LIMFUNC1:def 3; then ex r2 st r2=seq.k & x0<r2 ; then seq.k in {g2: x0<g2 & g2<x0+r} by A8; then seq.k in ].x0,x0+r.[ by RCOMP_1:def 2 ; then seq.k in ].x0,x0+r.[/\dom f by A6,A9,XBOOLE_0:def 3; then f.g1<=f.(seq.k) by A1,A3,A7,RFUNCT_2:def 5; then A10: t<f.(seq.k) by A3,AXIOMS:22; rng seq c=dom f by A2,A9,XBOOLE_1:1; hence t<(f*seq).k by A10,RFUNCT_2:21; end; hence thesis by LIMFUNC1:def 4; end; theorem (ex r st 0<r & f is_decreasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to+infty_in x0 proof given r such that A1: 0<r & f is_decreasing_on ].x0,x0+r.[ & not f is_bounded_above_on ].x0,x0+r.[; assume A2: for r st x0<r ex g st g<r & x0<g & g in dom f; f is_non_increasing_on ].x0,x0+r.[ by A1,RFUNCT_2:56; hence thesis by A1,A2, Th35 ; end; theorem Th37: (ex r st 0<r & f is_non_decreasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to-infty_in x0 proof given r such that A1: 0<r & f is_non_decreasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0,x0+r.[; assume for r st x0<r ex g st g<r & x0<g & g in dom f; hence for r st x0<r ex g st g<r & x0<g & g in dom f; let seq such that A2: seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0); now let t be Real; consider g1 such that A3: g1 in ].x0,x0+r.[/\dom f & f.g1<t by A1,RFUNCT_1:def 10; g1 in ].x0,x0+r.[ by A3,XBOOLE_0:def 3 ; then g1 in {r1: x0<r1 & r1<x0+r} by RCOMP_1:def 2; then A4: ex r1 st r1=g1 & x0<r1 & r1<x0+r; then consider n such that A5: for k st n<=k holds seq.k<g1 by A2,Th2; take n; let k; seq.k in rng seq by RFUNCT_2:10; then A6: seq.k in dom f/\right_open_halfline(x0) by A2; assume n<=k; then A7: seq.k<g1 by A5; then A8: seq.k<x0+r by A4,AXIOMS:22; A9: dom f/\right_open_halfline(x0)c=dom f & dom f/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then seq.k in dom f & seq.k in right_open_halfline(x0) by A6; then seq.k in {r2: x0<r2} by LIMFUNC1:def 3; then ex r2 st r2=seq.k & x0<r2 ; then seq.k in {g2: x0<g2 & g2<x0+r} by A8; then seq.k in ].x0,x0+r.[ by RCOMP_1:def 2 ; then seq.k in ].x0,x0+r.[/\dom f by A6,A9,XBOOLE_0:def 3; then f.(seq.k)<=f.g1 by A1,A3,A7,RFUNCT_2:def 4; then A10: f.(seq.k)<t by A3,AXIOMS:22; rng seq c=dom f by A2,A9,XBOOLE_1:1; hence (f*seq).k<t by A10,RFUNCT_2:21; end; hence thesis by LIMFUNC1:def 5; end; theorem (ex r st 0<r & f is_increasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0,x0+r.[) & (for r st x0<r ex g st g<r & x0<g & g in dom f) implies f is_right_divergent_to-infty_in x0 proof given r such that A1: 0<r & f is_increasing_on ].x0,x0+r.[ & not f is_bounded_below_on ].x0,x0+r.[; assume A2: for r st x0<r ex g st g<r & x0<g & g in dom f; f is_non_decreasing_on ].x0,x0+r.[ by A1,RFUNCT_2:55; hence thesis by A1,A2, Th37 ; end; theorem Th39: f1 is_left_divergent_to+infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (ex r st 0<r & dom f /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & for g st g in dom f /\ ].x0-r,x0.[ holds f1.g<=f.g) implies f is_left_divergent_to+infty_in x0 proof assume A1: f1 is_left_divergent_to+infty_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom f; given r such that A2: 0<r & dom f/\].x0-r,x0.[c=dom f1/\].x0-r,x0.[ & for g st g in dom f/\].x0-r,x0.[ holds f1.g<=f.g; thus for r st r<x0 ex g st r<g & g<x0 & g in dom f by A1; let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom f/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A4: for n st k<=n holds x0-r<seq.n by A3,Th1; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; dom f/\left_open_halfline(x0)c=dom f & dom f/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A6: rng seq c=dom f & rng seq c=left_open_halfline(x0) by A3,XBOOLE_1:1; rng(seq^\k)c= rng seq by RFUNCT_2:7; then A7: rng(seq^\k)c=dom f & rng(seq^\k)c=left_open_halfline(x0) by A6, XBOOLE_1:1; now let x be set; assume A8: x in rng(seq^\k); then consider n such that A9: (seq^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<seq.(n+k) by A4; then A10: x0-r<(seq^\k).n by SEQM_3:def 9; (seq^\k).n in left_open_halfline(x0) by A7,A8,A9; then (seq^\k).n in {g: g<x0} by PROB_1:def 15; then ex r1 st r1=(seq^\k).n & r1<x0; then x in {g1: x0-r<g1 & g1<x0} by A9,A10; hence x in ].x0-r,x0.[ by RCOMP_1:def 2; end; then rng(seq^\k)c=].x0-r,x0.[ by TARSKI:def 3; then A11: rng(seq^\k)c=dom f/\].x0-r,x0.[ by A7,XBOOLE_1:19; then A12: rng(seq^\k)c=dom f1/\].x0-r,x0.[ by A2,XBOOLE_1:1; dom f1/\].x0-r,x0.[c=dom f1 by XBOOLE_1:17; then A13: rng(seq^\k)c=dom f1 by A12,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\left_open_halfline(x0) by A7,XBOOLE_1:19; then A14: f1*(seq^\k) is divergent_to+infty by A1,A5,Def2; now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f1.((seq^\k).n)<=f.((seq^\k).n) by A2,A11; then (f1*(seq^\k)).n<=f.((seq^\k).n) by A13,RFUNCT_2:21; hence (f1*(seq^\k)).n<=(f*(seq^\k)).n by A7,RFUNCT_2:21; end; then f*(seq^\k) is divergent_to+infty by A14,LIMFUNC1:69; then (f*seq)^\k is divergent_to+infty by A6,RFUNCT_2:22; hence thesis by LIMFUNC1:34; end; theorem Th40: f1 is_left_divergent_to-infty_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (ex r st 0<r & dom f /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & for g st g in dom f /\ ].x0-r,x0.[ holds f.g<=f1.g) implies f is_left_divergent_to-infty_in x0 proof assume A1: f1 is_left_divergent_to-infty_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom f; given r such that A2: 0<r & dom f/\].x0-r,x0.[c=dom f1/\].x0-r,x0.[ & for g st g in dom f/\].x0-r,x0.[ holds f.g<=f1.g; thus for r st r<x0 ex g st r<g & g<x0 & g in dom f by A1; let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom f/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A4: for n st k<=n holds x0-r<seq.n by A3,Th1; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; dom f/\left_open_halfline(x0)c=dom f & dom f/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A6: rng seq c=dom f & rng seq c=left_open_halfline(x0) by A3,XBOOLE_1:1; rng(seq^\k)c= rng seq by RFUNCT_2:7; then A7: rng(seq^\k)c=dom f & rng(seq^\k)c=left_open_halfline(x0) by A6, XBOOLE_1:1; now let x be set; assume A8: x in rng(seq^\k); then consider n such that A9: (seq^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<seq.(n+k) by A4; then A10: x0-r<(seq^\k).n by SEQM_3:def 9; (seq^\k).n in left_open_halfline(x0) by A7,A8,A9; then (seq^\k).n in {g: g<x0} by PROB_1:def 15; then ex r1 st r1=(seq^\k).n & r1<x0; then x in {g1: x0-r<g1 & g1<x0} by A9,A10; hence x in ].x0-r,x0.[ by RCOMP_1:def 2; end; then rng(seq^\k)c=].x0-r,x0.[ by TARSKI:def 3; then A11: rng(seq^\k)c=dom f/\].x0-r,x0.[ by A7,XBOOLE_1:19; then A12: rng(seq^\k)c=dom f1/\].x0-r,x0.[ by A2,XBOOLE_1:1; dom f1/\].x0-r,x0.[c=dom f1 by XBOOLE_1:17; then A13: rng(seq^\k)c=dom f1 by A12,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\left_open_halfline(x0) by A7,XBOOLE_1:19; then A14: f1*(seq^\k) is divergent_to-infty by A1,A5,Def3; now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f.((seq^\k).n)<=f1.((seq^\k).n) by A2,A11; then (f*(seq^\k)).n<=f1.((seq^\k).n) by A7,RFUNCT_2:21; hence (f*(seq^\k)).n<=(f1*(seq^\k)).n by A13,RFUNCT_2:21; end; then f*(seq^\k) is divergent_to-infty by A14,LIMFUNC1:70; then (f*seq)^\k is divergent_to-infty by A6,RFUNCT_2:22; hence thesis by LIMFUNC1:34; end; theorem Th41: f1 is_right_divergent_to+infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f) & (ex r st 0<r & dom f /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & for g st g in dom f /\ ].x0,x0+r.[ holds f1.g<=f.g) implies f is_right_divergent_to+infty_in x0 proof assume A1: f1 is_right_divergent_to+infty_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom f; given r such that A2: 0<r & dom f/\].x0,x0+r.[c=dom f1/\].x0,x0+r.[ & for g st g in dom f/\].x0,x0+r.[ holds f1.g<=f.g; thus for r st x0<r ex g st g<r & x0<g & g in dom f by A1; let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A4: for n st k<=n holds seq.n<x0+r by A3,Th2; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; dom f/\right_open_halfline(x0)c=dom f & dom f/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A6: rng seq c=dom f & rng seq c=right_open_halfline(x0) by A3,XBOOLE_1:1; rng(seq^\k)c= rng seq by RFUNCT_2:7; then A7: rng(seq^\k)c=dom f & rng(seq^\k)c=right_open_halfline(x0) by A6, XBOOLE_1:1 ; now let x be set; assume A8: x in rng(seq^\k); then consider n such that A9: (seq^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then seq.(n+k)<x0+r by A4; then A10: (seq^\k).n<x0+r by SEQM_3:def 9; (seq^\k).n in right_open_halfline(x0) by A7,A8,A9; then (seq^\k).n in {g: x0<g} by LIMFUNC1:def 3; then ex r1 st r1=(seq^\k).n & x0<r1; then x in {g1: x0<g1 & g1<x0+r} by A9,A10; hence x in ].x0,x0+r.[ by RCOMP_1:def 2; end; then rng(seq^\k)c=].x0,x0+r.[ by TARSKI:def 3; then A11: rng(seq^\k)c=dom f/\].x0,x0+r.[ by A7,XBOOLE_1:19; then A12: rng(seq^\k)c=dom f1/\].x0,x0+r.[ by A2,XBOOLE_1:1; dom f1/\].x0,x0+r.[c=dom f1 by XBOOLE_1:17; then A13: rng(seq^\k)c=dom f1 by A12,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\right_open_halfline(x0) by A7,XBOOLE_1:19; then A14: f1*(seq^\k) is divergent_to+infty by A1,A5,Def5; now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f1.((seq^\k).n)<=f.((seq^\k).n) by A2,A11; then (f1*(seq^\k)).n<=f.((seq^\k).n) by A13,RFUNCT_2:21; hence (f1*(seq^\k)).n<=(f*(seq^\k)).n by A7,RFUNCT_2:21; end; then f*(seq^\k) is divergent_to+infty by A14,LIMFUNC1:69; then (f*seq)^\k is divergent_to+infty by A6,RFUNCT_2:22; hence thesis by LIMFUNC1:34; end; theorem Th42: f1 is_right_divergent_to-infty_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom f) & (ex r st 0<r & dom f /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & for g st g in dom f /\ ].x0,x0+r.[ holds f.g<=f1.g) implies f is_right_divergent_to-infty_in x0 proof assume A1: f1 is_right_divergent_to-infty_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom f; given r such that A2: 0<r & dom f/\].x0,x0+r.[c=dom f1/\].x0,x0+r.[ & for g st g in dom f/\].x0,x0+r.[ holds f.g<=f1.g; thus for r st x0<r ex g st g<r & x0<g & g in dom f by A1; let seq such that A3: seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A4: for n st k<=n holds seq.n<x0+r by A3,Th2; A5: seq^\k is convergent & lim(seq^\k)=x0 by A3,SEQ_4:33; dom f/\right_open_halfline(x0)c=dom f & dom f/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A6: rng seq c=dom f & rng seq c=right_open_halfline(x0) by A3,XBOOLE_1:1; rng(seq^\k)c= rng seq by RFUNCT_2:7; then A7: rng(seq^\k)c=dom f & rng(seq^\k)c=right_open_halfline(x0) by A6, XBOOLE_1:1 ; now let x be set; assume A8: x in rng(seq^\k); then consider n such that A9: (seq^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then seq.(n+k)<x0+r by A4; then A10: (seq^\k).n<x0+r by SEQM_3:def 9; (seq^\k).n in right_open_halfline(x0) by A7,A8,A9; then (seq^\k).n in {g: x0<g} by LIMFUNC1:def 3; then ex r1 st r1=(seq^\k).n & x0<r1; then x in {g1: x0<g1 & g1<x0+r} by A9,A10; hence x in ].x0,x0+r.[ by RCOMP_1:def 2; end; then rng(seq^\k)c=].x0,x0+r.[ by TARSKI:def 3; then A11: rng(seq^\k)c=dom f/\].x0,x0+r.[ by A7,XBOOLE_1:19; then A12: rng(seq^\k)c=dom f1/\].x0,x0+r.[ by A2,XBOOLE_1:1; dom f1/\].x0,x0+r.[c=dom f1 by XBOOLE_1:17; then A13: rng(seq^\k)c=dom f1 by A12,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\right_open_halfline(x0) by A7,XBOOLE_1:19; then A14: f1*(seq^\k) is divergent_to-infty by A1,A5,Def6; now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f.((seq^\k).n)<=f1.((seq^\k).n) by A2,A11; then (f*(seq^\k)).n<=f1.((seq^\k).n) by A7,RFUNCT_2:21; hence (f*(seq^\k)).n<=(f1*(seq^\k)).n by A13,RFUNCT_2:21; end; then f*(seq^\k) is divergent_to-infty by A14,LIMFUNC1:70; then (f*seq)^\k is divergent_to-infty by A6,RFUNCT_2:22; hence thesis by LIMFUNC1:34; end; theorem f1 is_left_divergent_to+infty_in x0 & (ex r st 0<r & ].x0-r,x0.[ c= dom f /\ dom f1 & for g st g in ].x0-r,x0.[ holds f1.g<= f.g) implies f is_left_divergent_to+infty_in x0 proof assume A1: f1 is_left_divergent_to+infty_in x0; given r such that A2: 0<r & ].x0-r,x0.[ c=dom f/\dom f1 & for g st g in ].x0-r,x0.[ holds f1.g<=f.g; dom f/\dom f1 c=dom f & dom f/\dom f1 c=dom f1 by XBOOLE_1:17; then A3: ].x0-r,x0.[c=dom f & ].x0-r,x0.[c=dom f1 by A2,XBOOLE_1:1; then A4: ].x0-r,x0.[=dom f/\].x0-r,x0.[ & ].x0-r,x0.[=dom f1/\].x0-r,x0.[ by XBOOLE_1:28; for r st r<x0 ex g st r<g & g<x0 & g in dom f by A2,A3,Th3; hence thesis by A1,A2,A4,Th39; end; theorem f1 is_left_divergent_to-infty_in x0 & (ex r st 0<r & ].x0-r,x0.[ c= dom f /\ dom f1 & for g st g in ].x0-r,x0.[ holds f.g<= f1.g) implies f is_left_divergent_to-infty_in x0 proof assume A1: f1 is_left_divergent_to-infty_in x0; given r such that A2: 0<r & ].x0-r,x0.[c=dom f/\dom f1 & for g st g in ].x0-r,x0.[ holds f.g<=f1.g; dom f/\dom f1 c=dom f & dom f/\dom f1 c=dom f1 by XBOOLE_1:17; then A3: ].x0-r,x0.[c=dom f & ].x0-r,x0.[c=dom f1 by A2,XBOOLE_1:1; then A4: ].x0-r,x0.[=dom f/\].x0-r,x0.[ & ].x0-r,x0.[=dom f1/\].x0-r,x0.[ by XBOOLE_1:28; for r st r<x0 ex g st r<g & g<x0 & g in dom f by A2,A3,Th3; hence thesis by A1,A2,A4,Th40; end; theorem f1 is_right_divergent_to+infty_in x0 & (ex r st 0<r & ].x0,x0+r.[ c= dom f /\ dom f1 & for g st g in ].x0,x0+r.[ holds f1.g<= f.g) implies f is_right_divergent_to+infty_in x0 proof assume A1: f1 is_right_divergent_to+infty_in x0; given r such that A2: 0<r & ].x0,x0+r.[c=dom f/\dom f1 & for g st g in ].x0,x0+r.[ holds f1.g<=f.g; dom f/\dom f1 c=dom f & dom f/\dom f1 c=dom f1 by XBOOLE_1:17; then A3: ].x0,x0+r.[c=dom f & ].x0,x0+r.[c=dom f1 by A2,XBOOLE_1:1; then A4: ].x0,x0+r.[=dom f/\].x0,x0+r.[ & ].x0,x0+r.[=dom f1/\].x0,x0+r.[ by XBOOLE_1:28; for r st x0<r ex g st g<r & x0<g & g in dom f by A2,A3,Th4; hence thesis by A1,A2,A4,Th41; end; theorem f1 is_right_divergent_to-infty_in x0 & (ex r st 0<r & ].x0,x0+r.[ c= dom f /\ dom f1 & for g st g in ].x0,x0+r.[ holds f.g<= f1.g) implies f is_right_divergent_to-infty_in x0 proof assume A1: f1 is_right_divergent_to-infty_in x0; given r such that A2: 0<r & ].x0,x0+r.[c=dom f/\dom f1 & for g st g in ].x0,x0+r.[ holds f.g<=f1.g; dom f/\dom f1 c=dom f & dom f/\dom f1 c=dom f1 by XBOOLE_1:17; then A3: ].x0,x0+r.[c=dom f & ].x0,x0+r.[c=dom f1 by A2,XBOOLE_1:1; then A4: ].x0,x0+r.[=dom f/\].x0,x0+r.[ & ].x0,x0+r.[=dom f1/\].x0,x0+r.[ by XBOOLE_1:28; for r st x0<r ex g st g<r & x0<g & g in dom f by A2,A3,Th4; hence thesis by A1,A2,A4,Th42; end; definition let f,x0; assume A1: f is_left_convergent_in x0; func lim_left(f,x0)->Real means :Def7: for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ left_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=it; existence by A1,Def1; uniqueness proof defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f; A2: now let n; x0-1/(n+1)<x0 by Lm3; then consider g such that A3: x0-1/(n+1)<g & g<x0 & g in dom f by A1,Def1; reconsider g as real number; take g; thus X[n,g] by A3; end; consider s be Real_Sequence such that A4: for n holds X[n,s.n] from RealSeqChoice(A2); A5: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0) by A4,Th5; let g1,g2 such that A6: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f/\left_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g1 and A7: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f/\left_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g2; lim(f*s)=g1 by A5,A6; hence thesis by A5,A7; end; end; definition let f,x0; assume A1: f is_right_convergent_in x0; func lim_right(f,x0)->Real means :Def8: for seq st seq is convergent & lim seq=x0 & rng seq c= dom f /\ right_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=it; existence by A1,Def4; uniqueness proof defpred X[Nat,real number] means x0<$2 & $2<x0+1/($1+1) & $2 in dom f; A2: now let n; x0<x0+1/(n+1) by Lm3; then consider g such that A3: g<x0+(1/(n+1)) & x0<g & g in dom f by A1,Def4; reconsider g as real number; take g; thus X[n,g] by A3; end; consider s be Real_Sequence such that A4: for n holds X[n,s.n] from RealSeqChoice(A2); A5: s is convergent & lim s=x0 & rng s c=dom f/\right_open_halfline(x0) by A4,Th6; let g1,g2 such that A6: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g1 and A7: for seq st seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0) holds f*seq is convergent & lim(f*seq)=g2; lim(f*s)=g1 by A5,A6; hence thesis by A5,A7; end; end; canceled 2; theorem f is_left_convergent_in x0 implies (lim_left(f,x0)=g iff for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1) proof assume A1: f is_left_convergent_in x0; thus lim_left(f,x0)=g implies for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1 proof assume that A2: lim_left(f,x0)=g and A3: ex g1 st 0<g1 & for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & abs(f.r1-g)>=g1; consider g1 such that A4: 0<g1 & for r st r<x0 ex r1 st r<r1 & r1<x0 & r1 in dom f & abs(f.r1-g)>=g1 by A3; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f & abs(f.($2)-g)>=g1; A5: now let n; x0-1/(n+1)<x0 by Lm3; then consider g2 such that A6: x0-1/(n+1)<g2 & g2<x0 & g2 in dom f & abs(f.g2-g)>=g1 by A4; reconsider g2 as real number; take g2; thus X[n,g2] by A6; end; consider s be Real_Sequence such that A7: for n holds X[n,s.n] from RealSeqChoice(A5); A8: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\left_open_halfline(x0) by A7,Th5; then f*s is convergent & lim(f*s)=g by A1,A2,Def7; then consider n such that A9: for k st n<=k holds abs((f*s).k-g)<g1 by A4,SEQ_2:def 7; abs((f*s).n-g)<g1 by A9; then abs(f.(s.n)-g)<g1 by A8,RFUNCT_2:21; hence contradiction by A7; end; assume A10: for g1 st 0<g1 ex r st r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1; now let s be Real_Sequence such that A11: s is convergent & lim s=x0 & rng s c=dom f/\left_open_halfline(x0); dom f/\left_open_halfline(x0)c=dom f by XBOOLE_1:17; then A12: rng s c=dom f by A11,XBOOLE_1:1; A13: now let g1 be real number; A14: g1 is Real by XREAL_0:def 1; assume 0<g1; then consider r such that A15: r<x0 & for r1 st r<r1 & r1<x0 & r1 in dom f holds abs(f.r1-g)<g1 by A10,A14; consider n such that A16: for k st n<=k holds r<s.k by A11,A15,Th1; take n; let k; assume n<=k; then A17: r<s.k by A16 ; s.k in rng s by RFUNCT_2:10; then A18: s.k in left_open_halfline(x0) & s.k in dom f by A11,XBOOLE_0:def 3 ; then s.k in {g2: g2<x0} by PROB_1:def 15; then ex g2 st g2=s.k & g2<x0; then abs(f.(s.k)-g)<g1 by A15,A17,A18; hence abs((f*s).k-g)<g1 by A12, RFUNCT_2:21; end; hence f*s is convergent by SEQ_2:def 6; hence lim(f*s)=g by A13,SEQ_2: def 7; end; hence thesis by A1,Def7; end; theorem f is_right_convergent_in x0 implies (lim_right(f,x0)=g iff for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1) proof assume A1: f is_right_convergent_in x0; thus lim_right(f,x0)=g implies for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1 proof assume that A2: lim_right(f,x0)=g and A3: ex g1 st 0<g1 & for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & abs(f.r1-g)>=g1; consider g1 such that A4: 0<g1 & for r st x0<r ex r1 st r1<r & x0<r1 & r1 in dom f & abs(f.r1-g)>=g1 by A3; defpred X[Nat,real number] means x0<$2 & $2<x0+1/($1+1) & $2 in dom f & g1<=abs(f.($2)-g); A5: now let n; x0<x0+1/(n+1) by Lm3; then consider r1 such that A6: r1<x0+(1/(n+1)) & x0<r1 & r1 in dom f & g1<=abs(f.r1-g) by A4; reconsider r1 as real number; take r1; thus X[n,r1] by A6; end; consider s be Real_Sequence such that A7: for n holds X[n,s.n] from RealSeqChoice(A5); A8: s is convergent & lim s=x0 & rng s c=dom f & rng s c=dom f/\right_open_halfline(x0) by A7,Th6; then f*s is convergent & lim(f*s)=g by A1,A2,Def8; then consider n such that A9: for k st n<=k holds abs((f*s).k-g)<g1 by A4,SEQ_2:def 7; abs((f*s).n-g)<g1 by A9; then abs(f.(s.n)-g)<g1 by A8,RFUNCT_2:21; hence contradiction by A7; end; assume A10: for g1 st 0<g1 ex r st x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1; now let s be Real_Sequence such that A11: s is convergent & lim s=x0 & rng s c=dom f/\right_open_halfline(x0); dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then A12: rng s c=dom f by A11,XBOOLE_1:1; A13: now let g1 be real number; A14: g1 is Real by XREAL_0:def 1; assume 0<g1; then consider r such that A15: x0<r & for r1 st r1<r & x0<r1 & r1 in dom f holds abs(f.r1-g)<g1 by A10,A14 ; consider n such that A16: for k st n<=k holds s.k<r by A11,A15,Th2; take n; let k; assume n<=k; then A17: s.k<r by A16 ; s.k in rng s by RFUNCT_2:10; then A18: s.k in right_open_halfline(x0) & s.k in dom f by A11,XBOOLE_0:def 3 ; then s.k in {g2: x0<g2} by LIMFUNC1:def 3; then ex g2 st g2=s.k & x0<g2; then abs(f.(s.k)-g)<g1 by A15,A17,A18; hence abs((f*s).k-g)<g1 by A12, RFUNCT_2:21; end; hence f*s is convergent by SEQ_2:def 6; hence lim(f*s)=g by A13,SEQ_2: def 7; end; hence thesis by A1,Def8; end; theorem Th51: f is_left_convergent_in x0 implies r(#)f is_left_convergent_in x0 & lim_left(r(#)f,x0)=r*(lim_left(f,x0)) proof assume A1: f is_left_convergent_in x0; A2: now let r1; assume r1<x0; then consider g such that A3: r1<g & g<x0 & g in dom f by A1,Def1; take g; thus r1<g & g<x0 & g in dom(r(#)f) by A3,SEQ_1:def 6; end; A4: now let seq; A5: lim_left(f,x0)=lim_left(f,x0); assume A6: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\left_open_halfline(x0); then A7: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 6; then A8: f*seq is convergent & lim(f*seq)=lim_left(f,x0) by A1,A5,A6,Def7; then A9: r(#)(f*seq) is convergent by SEQ_2:21; dom f/\left_open_halfline(x0) c=dom f by XBOOLE_1:17; then A10: rng seq c=dom f by A7,XBOOLE_1:1; then A11: r(#)(f*seq)=(r(#) f)*seq by RFUNCT_2:24; thus (r(#)f)*seq is convergent by A9,A10,RFUNCT_2:24; thus lim((r(#)f)*seq)=r*(lim_left(f,x0)) by A8,A11,SEQ_2:22; end; hence r(#)f is_left_convergent_in x0 by A2,Def1; hence thesis by A4,Def7; end; theorem Th52: f is_left_convergent_in x0 implies -f is_left_convergent_in x0 & lim_left(-f,x0)=-(lim_left(f,x0)) proof assume A1: f is_left_convergent_in x0; A2: (-1)(#)f=-f by RFUNCT_1:38; hence -f is_left_convergent_in x0 by A1,Th51; thus lim_left(-f,x0)=(-1)*(lim_left(f,x0)) by A1,A2,Th51 .=-(1*(lim_left(f,x0))) by XCMPLX_1:175 .=-(lim_left(f,x0)); end; theorem Th53: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1+f2)) implies f1+f2 is_left_convergent_in x0 & lim_left(f1+f2,x0)=lim_left(f1,x0)+lim_left(f2,x0) proof assume A1: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom(f1+f2); A2: now A3: lim_left(f1,x0)=lim_left(f1,x0) & lim_left(f2,x0)=lim_left(f2,x0); let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\left_open_halfline(x0); then A5: rng seq c=dom(f1+f2) & rng seq c=left_open_halfline(x0) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1/\left_open_halfline(x0) & rng seq c=dom f2/\left_open_halfline(x0) by Lm4; then A6: f1*seq is convergent & lim(f1*seq)=lim_left(f1,x0) by A1,A3,A4,Def7; A7: f2*seq is convergent & lim(f2*seq)=lim_left(f2,x0) by A1,A3,A4,A5,Def7; A8: f1*seq+f2*seq=(f1+f2)*seq by A5,RFUNCT_2:23; hence (f1+f2)*seq is convergent by A6,A7,SEQ_2:19; thus lim((f1+f2)*seq)=lim_left(f1,x0)+lim_left(f2,x0) by A6,A7,A8,SEQ_2:20; end; hence f1+f2 is_left_convergent_in x0 by A1,Def1; hence thesis by A2,Def7; end; theorem f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1-f2)) implies f1-f2 is_left_convergent_in x0 & lim_left(f1-f2,x0)=(lim_left(f1,x0))-(lim_left(f2,x0)) proof assume A1: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom(f1-f2); A2: f1-f2=f1+-f2 by RFUNCT_1:40; A3: -f2 is_left_convergent_in x0 by A1,Th52; hence f1-f2 is_left_convergent_in x0 by A1,A2,Th53; thus lim_left(f1-f2,x0)=lim_left(f1,x0)+lim_left(-f2,x0) by A1,A2,A3,Th53 .=(lim_left(f1,x0))+-lim_left(f2,x0) by A1,Th52 .=(lim_left(f1,x0))-lim_left(f2,x0) by XCMPLX_0:def 8; end; theorem f is_left_convergent_in x0 & f"{0}={} & lim_left(f,x0)<>0 implies f^ is_left_convergent_in x0 & lim_left(f^,x0)=(lim_left(f,x0))" proof assume A1: f is_left_convergent_in x0 & f"{0}={} & lim_left(f,x0)<>0; then A2: dom f=dom f\f"{0} .=dom(f^) by RFUNCT_1:def 8; then A3: for r st r<x0 ex g st r<g & g<x0 & g in dom(f^) by A1,Def1; A4: now let seq; assume A5: seq is convergent & lim seq=x0 & rng seq c=dom(f^)/\left_open_halfline(x0); then A6: f*seq is convergent & lim(f*seq)=lim_left(f,x0) by A1,A2,Def7; dom f/\left_open_halfline(x0) c=dom f by XBOOLE_1:17; then A7: rng seq c=dom f by A2,A5,XBOOLE_1:1; then A8: f*seq is_not_0 by A2,RFUNCT_2:26; A9: (f*seq)"=(f^)*seq by A2,A7,RFUNCT_2:27; hence (f^)*seq is convergent by A1,A6,A8,SEQ_2:35; thus lim((f^)*seq)=(lim_left(f,x0))" by A1,A6,A8,A9,SEQ_2:36; end; hence f^ is_left_convergent_in x0 by A3,Def1; hence thesis by A4,Def7; end; theorem f is_left_convergent_in x0 implies abs(f) is_left_convergent_in x0 & lim_left(abs(f),x0)=abs(lim_left(f,x0)) proof assume A1: f is_left_convergent_in x0; A2: now let r; assume r<x0; then consider g such that A3: r<g & g<x0 & g in dom f by A1,Def1; take g; thus r<g & g<x0 & g in dom abs(f) by A3,SEQ_1:def 10; end; A4: now A5: lim_left(f,x0)=lim_left(f,x0); let seq; assume A6: seq is convergent & lim seq=x0 & rng seq c=dom(abs(f))/\left_open_halfline(x0); then A7: rng seq c=dom f/\left_open_halfline(x0) by SEQ_1:def 10; then A8: f*seq is convergent & lim(f*seq)=lim_left(f,x0) by A1,A5,A6,Def7; dom f/\left_open_halfline(x0) c=dom f by XBOOLE_1:17; then rng seq c=dom f by A7,XBOOLE_1:1; then A9: abs(f*seq)=abs(f)*seq by RFUNCT_2:25; hence abs(f)*seq is convergent by A8,SEQ_4:26; thus lim(abs(f)*seq)=abs(lim_left(f,x0)) by A8,A9,SEQ_4:27; end; hence abs(f) is_left_convergent_in x0 by A2,Def1; hence thesis by A4,Def7; end; theorem Th57: f is_left_convergent_in x0 & lim_left(f,x0)<>0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) implies f^ is_left_convergent_in x0 & lim_left(f^,x0)=(lim_left(f,x0))" proof assume A1: f is_left_convergent_in x0 & lim_left(f,x0)<>0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0); A2: dom f\f"{0}=dom(f^) by RFUNCT_1:def 8; A3: now let r; assume r<x0; then consider g such that A4: r<g & g<x0 & g in dom f & f.g<>0 by A1; take g; not f.g in {0} by A4,TARSKI:def 1; then not g in f"{0} by FUNCT_1:def 13; hence r<g & g<x0 & g in dom(f^) by A2,A4,XBOOLE_0:def 4; end; A5: now let seq such that A6: seq is convergent & lim seq=x0 & rng seq c=dom(f^)/\left_open_halfline(x0); dom(f^)/\left_open_halfline(x0)c=dom(f^) & dom(f^)/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A7: rng seq c=dom(f^) & rng seq c=left_open_halfline(x0) by A6,XBOOLE_1: 1; dom(f^)c=dom f by A2,XBOOLE_1:36; then rng seq c=dom f by A7,XBOOLE_1:1; then rng seq c=dom f/\left_open_halfline(x0) by A7,XBOOLE_1:19; then A8: f*seq is convergent & lim(f*seq)=lim_left(f,x0) by A1,A6,Def7; A9: f*seq is_not_0 by A7,RFUNCT_2:26; A10: (f*seq)"=(f^)*seq by A7,RFUNCT_2:27; hence (f^)*seq is convergent by A1,A8,A9,SEQ_2:35; thus lim((f^)*seq)=(lim_left(f,x0))" by A1,A8,A9,A10,SEQ_2:36; end; hence f^ is_left_convergent_in x0 by A3,Def1; hence thesis by A5,Def7; end; theorem Th58: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2)) implies f1(#)f2 is_left_convergent_in x0 & lim_left(f1(#)f2,x0)=(lim_left(f1,x0))*(lim_left(f2,x0)) proof assume A1: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2); A2: now A3: lim_left(f1,x0)=lim_left(f1,x0) & lim_left(f2,x0)=lim_left(f2,x0); let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\left_open_halfline(x0); then A5: rng seq c=dom(f1(#)f2) & rng seq c=left_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1/\left_open_halfline(x0) & rng seq c=dom f2/\left_open_halfline(x0) by Lm2; then A6: f1*seq is convergent & lim(f1*seq)=lim_left(f1,x0) by A1,A3,A4,Def7; A7: f2*seq is convergent & lim(f2*seq)=lim_left(f2,x0) by A1,A3,A4,A5,Def7; A8: (f1*seq)(#)(f2*seq)=(f1(#)f2)*seq by A5,RFUNCT_2:23; hence (f1(#)f2)*seq is convergent by A6,A7,SEQ_2:28; thus lim((f1(#)f2)*seq)=lim_left(f1,x0)*lim_left(f2,x0) by A6,A7,A8,SEQ_2:29 ; end; hence f1(#) f2 is_left_convergent_in x0 by A1,Def1; hence thesis by A2,Def7; end; theorem f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f2,x0)<> 0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1/f2)) implies f1/f2 is_left_convergent_in x0 & lim_left(f1/f2,x0)=(lim_left(f1,x0))/(lim_left(f2,x0)) proof assume A1: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f2,x0)<>0 & for r st r<x0 ex g st r<g & g<x0 & g in dom(f1/f2); A2: f1/f2=f1(#)(f2^) by RFUNCT_1:47; now let r; assume r<x0; then consider g such that A3: r<g & g<x0 & g in dom(f1/f2) by A1; take g; thus r<g & g<x0 by A3; dom(f1/f2)=dom f1/\(dom f2\f2"{0}) by RFUNCT_1:def 4; then A4: g in dom f2\f2"{0} by A3,XBOOLE_0:def 3; then g in dom f2 & not g in f2"{0} by XBOOLE_0:def 4; then not f2.g in {0} by FUNCT_1:def 13; hence g in dom f2 & f2.g<>0 by A4,TARSKI:def 1,XBOOLE_0:def 4; end; then A5: f2^ is_left_convergent_in x0 & lim_left(f2^,x0)=(lim_left(f2,x0))" by A1,Th57; hence f1/f2 is_left_convergent_in x0 by A1,A2,Th58; thus lim_left(f1/f2,x0)=lim_left(f1,x0)*((lim_left(f2,x0))") by A1,A2,A5,Th58 .=lim_left(f1,x0)/(lim_left(f2,x0)) by XCMPLX_0:def 9; end; theorem Th60: f is_right_convergent_in x0 implies r(#)f is_right_convergent_in x0 & lim_right(r(#)f,x0)=r*(lim_right(f,x0)) proof assume A1: f is_right_convergent_in x0; A2: now let r1; assume x0<r1; then consider g such that A3: g<r1 & x0<g & g in dom f by A1,Def4; take g; thus g<r1 & x0<g & g in dom(r(#)f) by A3,SEQ_1:def 6; end; A4: now let seq; A5: lim_right(f,x0)=lim_right(f,x0); assume A6: seq is convergent & lim seq=x0 & rng seq c=dom(r(#)f)/\right_open_halfline(x0); then A7: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 6; then A8: f*seq is convergent & lim(f*seq)=lim_right(f,x0) by A1,A5,A6,Def8; then A9: r(#)(f*seq) is convergent by SEQ_2:21; dom f/\right_open_halfline(x0) c=dom f by XBOOLE_1:17; then A10: rng seq c=dom f by A7,XBOOLE_1:1; then A11: r(#)(f*seq)=(r(#) f)*seq by RFUNCT_2:24; thus (r(#)f)*seq is convergent by A9,A10,RFUNCT_2:24; thus lim((r(#)f)*seq)=r*(lim_right(f,x0)) by A8,A11,SEQ_2:22; end; hence r(#) f is_right_convergent_in x0 by A2,Def4; hence thesis by A4,Def8; end; theorem Th61: f is_right_convergent_in x0 implies -f is_right_convergent_in x0 & lim_right(-f,x0)=-(lim_right(f,x0)) proof assume A1: f is_right_convergent_in x0; A2: (-1)(#)f=-f by RFUNCT_1:38; hence -f is_right_convergent_in x0 by A1,Th60; thus lim_right(-f,x0)=(-1)*(lim_right(f,x0)) by A1,A2,Th60 .=-(1*(lim_right(f,x0))) by XCMPLX_1:175 .=-(lim_right(f,x0)); end; theorem Th62: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1+f2)) implies f1+f2 is_right_convergent_in x0 & lim_right(f1+f2,x0)=(lim_right(f1,x0))+(lim_right(f2,x0)) proof assume A1: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom(f1+f2); A2: now A3: lim_right(f1,x0)=lim_right(f1,x0) & lim_right(f2,x0)=lim_right(f2,x0); let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1+f2)/\right_open_halfline(x0); then A5: rng seq c=dom(f1+f2) & rng seq c=right_open_halfline(x0) & dom(f1+f2)=dom f1/\dom f2 & rng seq c=dom f1/\right_open_halfline(x0) & rng seq c=dom f2/\right_open_halfline(x0) by Lm4; then A6: f1*seq is convergent & lim(f1*seq)=lim_right(f1,x0) by A1,A3,A4,Def8 ; A7: f2*seq is convergent & lim(f2*seq)=lim_right(f2,x0) by A1,A3,A4,A5,Def8; A8: f1*seq+f2*seq=(f1+f2)*seq by A5,RFUNCT_2:23; hence (f1+f2)*seq is convergent by A6,A7,SEQ_2:19; thus lim((f1+f2)*seq)=lim_right(f1,x0)+lim_right(f2,x0) by A6,A7,A8,SEQ_2:20 ; end; hence f1+f2 is_right_convergent_in x0 by A1,Def4; hence thesis by A2,Def8 ; end; theorem f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1-f2)) implies f1-f2 is_right_convergent_in x0 & lim_right(f1-f2,x0)=(lim_right(f1,x0))-(lim_right(f2,x0)) proof assume A1: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom(f1-f2); A2: f1-f2=f1+-f2 by RFUNCT_1:40; A3: -f2 is_right_convergent_in x0 by A1,Th61; hence f1-f2 is_right_convergent_in x0 by A1,A2,Th62; thus lim_right(f1-f2,x0)=lim_right(f1,x0)+lim_right(-f2,x0) by A1,A2,A3,Th62 .=(lim_right(f1,x0))+-lim_right(f2,x0) by A1,Th61 .=(lim_right(f1,x0))-lim_right(f2,x0) by XCMPLX_0:def 8; end; theorem f is_right_convergent_in x0 & f"{0}={} & lim_right(f,x0)<>0 implies f^ is_right_convergent_in x0 & lim_right(f^,x0)=(lim_right(f,x0))" proof assume A1: f is_right_convergent_in x0 & f"{0}={} & lim_right(f,x0)<>0; then A2: dom f=dom f\f"{0} .=dom(f^) by RFUNCT_1:def 8; then A3: for r st x0<r ex g st g<r & x0<g & g in dom(f^) by A1,Def4; A4: now let seq; assume A5: seq is convergent & lim seq=x0 & rng seq c=dom(f^)/\right_open_halfline(x0); then A6: f*seq is convergent & lim(f*seq)=lim_right(f,x0) by A1,A2,Def8; dom f/\right_open_halfline(x0) c=dom f by XBOOLE_1:17; then A7: rng seq c=dom f by A2,A5,XBOOLE_1:1; then A8: f*seq is_not_0 by A2,RFUNCT_2:26; A9: (f*seq)"=(f^)*seq by A2,A7,RFUNCT_2:27; hence (f^)*seq is convergent by A1,A6,A8,SEQ_2:35; thus lim((f^)*seq)=(lim_right(f,x0))" by A1,A6,A8,A9,SEQ_2:36; end; hence f^ is_right_convergent_in x0 by A3,Def4; hence thesis by A4,Def8; end; theorem f is_right_convergent_in x0 implies abs(f) is_right_convergent_in x0 & lim_right(abs(f),x0)=abs(lim_right(f,x0)) proof assume A1: f is_right_convergent_in x0; A2: now let r; assume x0<r; then consider g such that A3: g<r & x0<g & g in dom f by A1,Def4; take g; thus g<r & x0<g & g in dom abs(f) by A3,SEQ_1:def 10; end; A4: now A5: lim_right(f,x0)=lim_right(f,x0); let seq; assume A6: seq is convergent & lim seq=x0 & rng seq c=dom(abs(f))/\right_open_halfline(x0); then A7: rng seq c=dom f/\right_open_halfline(x0) by SEQ_1:def 10; then A8: f*seq is convergent & lim(f*seq)=lim_right(f,x0) by A1,A5,A6,Def8; dom f/\right_open_halfline(x0)c=dom f by XBOOLE_1:17; then rng seq c=dom f by A7,XBOOLE_1:1; then A9: abs(f*seq)=abs(f)*seq by RFUNCT_2:25; hence abs(f)*seq is convergent by A8,SEQ_4:26; thus lim(abs(f)*seq)=abs(lim_right(f,x0)) by A8,A9,SEQ_4:27; end; hence abs(f) is_right_convergent_in x0 by A2,Def4; hence thesis by A4,Def8 ; end; theorem Th66: f is_right_convergent_in x0 & lim_right(f,x0)<>0 & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) implies f^ is_right_convergent_in x0 & lim_right(f^,x0)=(lim_right(f,x0))" proof assume A1: f is_right_convergent_in x0 & lim_right(f,x0)<>0 & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0); A2: dom f\f"{0}=dom(f^) by RFUNCT_1:def 8; A3: now let r; assume x0<r; then consider g such that A4: g<r & x0<g & g in dom f & f.g<>0 by A1; take g; not f.g in {0} by A4,TARSKI:def 1; then not g in f"{0} by FUNCT_1:def 13; hence g<r & x0<g & g in dom(f^) by A2,A4,XBOOLE_0:def 4; end; A5: now let seq such that A6: seq is convergent & lim seq=x0 & rng seq c=dom(f^)/\right_open_halfline(x0); dom(f^)/\right_open_halfline(x0)c=dom(f^) & dom(f^)/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17 ; then A7: rng seq c=dom(f^) & rng seq c=right_open_halfline(x0) by A6,XBOOLE_1 :1; dom(f^) c=dom f by A2,XBOOLE_1:36; then rng seq c=dom f by A7,XBOOLE_1:1 ; then rng seq c=dom f/\right_open_halfline(x0) by A7,XBOOLE_1:19; then A8: f*seq is convergent & lim(f*seq)=lim_right(f,x0) by A1,A6,Def8; A9: f*seq is_not_0 by A7,RFUNCT_2:26; A10: (f*seq)"=(f^)*seq by A7,RFUNCT_2:27; hence (f^)*seq is convergent by A1,A8,A9,SEQ_2:35; thus lim((f^)*seq)=(lim_right(f,x0))" by A1,A8,A9,A10,SEQ_2:36; end; hence f^ is_right_convergent_in x0 by A3,Def4; hence thesis by A5,Def8; end; theorem Th67: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2)) implies f1(#)f2 is_right_convergent_in x0 & lim_right(f1(#)f2,x0)=(lim_right(f1,x0))*(lim_right(f2,x0)) proof assume A1: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2); A2: now A3: lim_right(f1,x0)=lim_right(f1,x0) & lim_right(f2,x0)=lim_right(f2,x0); let seq; assume A4: seq is convergent & lim seq=x0 & rng seq c=dom(f1(#)f2)/\right_open_halfline(x0); then A5: rng seq c=dom(f1(#)f2) & rng seq c=right_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng seq c=dom f1/\right_open_halfline(x0) & rng seq c=dom f2/\right_open_halfline(x0) by Lm2; then A6: f1*seq is convergent & lim(f1*seq)=lim_right(f1,x0) by A1,A3,A4,Def8 ; A7: f2*seq is convergent & lim(f2*seq)=lim_right(f2,x0) by A1,A3,A4,A5,Def8; A8: (f1*seq)(#)(f2*seq)=(f1(#)f2)*seq by A5,RFUNCT_2:23; hence (f1(#)f2)*seq is convergent by A6,A7,SEQ_2:28; thus lim((f1(#) f2)*seq)=lim_right(f1,x0)*lim_right(f2,x0) by A6,A7,A8,SEQ_2:29; end; hence f1(#) f2 is_right_convergent_in x0 by A1,Def4; hence thesis by A2,Def8 ; end; theorem f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f2,x0)<>0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1/f2)) implies f1/f2 is_right_convergent_in x0 & lim_right(f1/f2,x0)=(lim_right(f1,x0))/(lim_right(f2,x0)) proof assume A1: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f2,x0)<>0 & for r st x0<r ex g st g<r & x0<g & g in dom(f1/f2); A2: f1/f2=f1(#)(f2^) by RFUNCT_1:47; now let r; assume x0<r; then consider g such that A3: g<r & x0<g & g in dom(f1/f2) by A1; take g; thus g<r & x0<g by A3; dom(f1/f2)=dom f1/\(dom f2\f2"{0}) by RFUNCT_1:def 4; then A4: g in dom f2\f2"{0} by A3,XBOOLE_0:def 3; then g in dom f2 & not g in f2"{0} by XBOOLE_0:def 4; then not f2.g in {0} by FUNCT_1:def 13; hence g in dom f2 & f2.g<>0 by A4,TARSKI:def 1,XBOOLE_0:def 4; end; then A5: f2^ is_right_convergent_in x0 & lim_right(f2^,x0)=(lim_right(f2,x0))" by A1,Th66; hence f1/f2 is_right_convergent_in x0 by A1,A2,Th67; thus lim_right(f1/f2,x0)=lim_right(f1,x0)*((lim_right(f2,x0))") by A1,A2,A5, Th67 .=lim_right(f1,x0)/(lim_right(f2,x0)) by XCMPLX_0:def 9; end; theorem f1 is_left_convergent_in x0 & lim_left(f1,x0)=0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2)) & (ex r st 0<r & f2 is_bounded_on ].x0-r,x0.[) implies f1(#)f2 is_left_convergent_in x0 & lim_left(f1(#)f2,x0)=0 proof assume A1: f1 is_left_convergent_in x0 & lim_left(f1,x0)=0 & for r st r<x0 ex g st r<g & g<x0 & g in dom(f1(#)f2); given r such that A2: 0<r & f2 is_bounded_on ].x0-r,x0.[; consider g be real number such that A3: for r1 st r1 in ].x0-r,x0.[/\dom f2 holds abs(f2.r1)<=g by A2,RFUNCT_1:90; A4: now let s be Real_Sequence; assume A5: s is convergent & lim s=x0 & rng s c=dom(f1(#)f2)/\left_open_halfline(x0); then A6: rng s c=dom(f1(#)f2) & rng s c=left_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng s c=dom f1 & rng s c=dom f2 & rng s c=dom f1/\left_open_halfline(x0) & rng s c=dom f2/\left_open_halfline(x0) by Lm2; x0-r<x0 by A2,Lm1; then consider k such that A7: for n st k<=n holds x0-r<s.n by A5,Th1; A8: s^\k is convergent & lim(s^\k)=x0 by A5,SEQ_4:33; set L=left_open_halfline(x0); rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom f1/\dom f2 & rng(s^\k)c=dom f1 & rng(s^\k)c=dom f2 & rng(s^\k)c=dom f1/\L & rng(s^\k)c=L & rng(s^\k)c=dom f2/\ L by A6,XBOOLE_1:1; then A10: f1*(s^\k) is convergent & lim(f1*(s^\k))=0 by A1,A8,Def7; now set t=abs(g)+1; 0<=abs(g) by ABSVALUE:5; hence 0<t by Lm1; let n; A11: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then A12: (s^\k).n in dom f2 & (s^\k).n in L by A9; k<=n+k by NAT_1:37; then x0-r<s.(n+k) by A7; then A13: x0-r<(s^\k).n by SEQM_3:def 9; (s^\k).n in {g1: g1<x0} by A12,PROB_1:def 15; then ex g1 st g1=(s^\k).n & g1<x0; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A13; then (s^\k).n in ].x0-r,x0.[ by RCOMP_1:def 2; then (s^\k).n in ].x0-r,x0.[/\dom f2 by A9,A11,XBOOLE_0:def 3; then abs(f2.((s^\k).n))<=g by A3; then A14: abs((f2*(s^\k)).n)<= g by A9,RFUNCT_2:21; g<=abs(g) by ABSVALUE:11; then g<t by Lm1; hence abs((f2*(s^\k)).n)<t by A14,AXIOMS:22; end; then A15: f2*(s^\k) is bounded by SEQ_2:15; then A16: (f1*(s^\k))(#)(f2*(s^\k)) is convergent by A10,SEQ_2:39; A17: lim((f1*(s^\k))(#)(f2*(s^\k)))=0 by A10,A15,SEQ_2:40; A18: (f1*(s^\k))(#)(f2*(s^\k))=(f1(#)f2)*(s^\k) by A9,RFUNCT_2:23 .=((f1(#)f2)*s)^\k by A6,RFUNCT_2:22; hence (f1(#)f2)*s is convergent by A16,SEQ_4:35; thus lim((f1(#)f2)*s)=0 by A16,A17,A18,SEQ_4:36; end; hence f1(#) f2 is_left_convergent_in x0 by A1,Def1; hence thesis by A4,Def7; end; theorem f1 is_right_convergent_in x0 & lim_right(f1,x0)=0 & (for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2)) & (ex r st 0<r & f2 is_bounded_on ].x0,x0+r.[) implies f1(#)f2 is_right_convergent_in x0 & lim_right(f1(#)f2,x0)=0 proof assume A1: f1 is_right_convergent_in x0 & lim_right(f1,x0)=0 & for r st x0<r ex g st g<r & x0<g & g in dom(f1(#)f2); given r such that A2: 0<r & f2 is_bounded_on ].x0,x0+r.[; consider g be real number such that A3: for r1 st r1 in ].x0,x0+r.[/\dom f2 holds abs(f2.r1)<=g by A2,RFUNCT_1:90; A4: now let s be Real_Sequence; assume A5: s is convergent & lim s=x0 & rng s c=dom(f1(#)f2)/\right_open_halfline(x0); then A6: rng s c=dom(f1(#)f2) & rng s c=right_open_halfline(x0) & dom(f1(#)f2)=dom f1/\dom f2 & rng s c=dom f1 & rng s c=dom f2 & rng s c=dom f1/\right_open_halfline(x0) & rng s c=dom f2/\right_open_halfline(x0) by Lm2; x0<x0+r by A2,Lm1; then consider k such that A7: for n st k<=n holds s.n<x0+r by A5,Th2; A8: s^\k is convergent & lim(s^\k)=x0 by A5,SEQ_4:33; set L=right_open_halfline(x0); rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom f1/\dom f2 & rng(s^\k)c=dom f1 & rng(s^\k)c=dom f2 & rng(s^\k)c=dom f1/\L & rng(s^\k)c=L & rng(s^\k)c=dom f2/\ L by A6,XBOOLE_1:1; then A10: f1*(s^\k) is convergent & lim(f1*(s^\k))=0 by A1,A8,Def8; now set t=abs(g)+1; 0<=abs(g) by ABSVALUE:5; hence 0<t by Lm1; let n; A11: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then A12: (s^\k).n in dom f2 & (s^\k).n in L by A9; k<=n+k by NAT_1:37; then s.(n+k)<x0+r by A7; then A13: (s^\k).n<x0+r by SEQM_3:def 9; (s^\k).n in {g1: x0<g1} by A12,LIMFUNC1:def 3 ; then ex g1 st g1=(s^\k).n & x0<g1; then (s^\k).n in {g2: x0<g2 & g2<x0+r} by A13; then (s^\k).n in ].x0,x0+r.[ by RCOMP_1:def 2; then (s^\k).n in ].x0,x0+r.[/\dom f2 by A9,A11,XBOOLE_0:def 3; then abs(f2.((s^\k).n))<=g by A3; then A14: abs((f2*(s^\k)).n)<= g by A9,RFUNCT_2:21; g<=abs(g) by ABSVALUE:11; then g<t by Lm1; hence abs((f2*(s^\k)).n)<t by A14,AXIOMS:22; end; then A15: f2*(s^\k) is bounded by SEQ_2:15; then A16: (f1*(s^\k))(#)(f2*(s^\k)) is convergent by A10,SEQ_2:39; A17: lim((f1*(s^\k))(#)(f2*(s^\k)))=0 by A10,A15,SEQ_2:40; A18: (f1*(s^\k))(#)(f2*(s^\k))=(f1(#)f2)*(s^\k) by A9,RFUNCT_2:23 .=((f1(#)f2)*s)^\k by A6,RFUNCT_2:22; hence (f1(#)f2)*s is convergent by A16,SEQ_4:35; thus lim((f1(#)f2)*s)=0 by A16,A17,A18,SEQ_4:36; end; hence f1(#) f2 is_right_convergent_in x0 by A1,Def4; hence thesis by A4,Def8 ; end; theorem Th71: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f1,x0)=lim_left(f2,x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f) & (ex r st 0<r & (for g st g in dom f /\ ].x0-r,x0.[ holds f1.g<=f.g & f.g<=f2.g) & ((dom f1 /\ ].x0-r,x0.[ c= dom f2 /\ ].x0-r,x0.[ & dom f /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[) or (dom f2 /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & dom f /\ ].x0-r,x0.[ c= dom f2 /\ ].x0-r,x0.[))) implies f is_left_convergent_in x0 & lim_left(f,x0)=lim_left(f1,x0) proof assume A1: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f1,x0)=lim_left(f2,x0) & for r st r<x0 ex g st r<g & g<x0 & g in dom f; given r1 such that A2: 0<r1 & (for g st g in dom f/\].x0-r1,x0.[ holds f1.g<=f.g & f.g<=f2.g) and A3: (dom f1/\].x0-r1,x0.[c=dom f2/\].x0-r1,x0.[ & dom f/\].x0-r1,x0.[c=dom f1/\].x0-r1,x0.[) or (dom f2/\].x0-r1,x0.[c=dom f1/\].x0-r1,x0.[ & dom f/\].x0-r1,x0.[c=dom f2/\].x0-r1,x0.[); now per cases by A3; suppose A4: dom f1/\].x0-r1,x0.[c=dom f2/\].x0-r1,x0.[ & dom f/\].x0-r1,x0.[c=dom f1/\].x0-r1,x0.[; A5: now let seq; assume A6: seq is convergent & lim seq=x0 & rng seq c=dom f/\left_open_halfline(x0); then x0-r1<lim seq by A2,Lm1; then consider k such that A7: for n st k<=n holds x0-r1<seq.n by A6,Th1; A8: seq^\k is convergent & lim(seq^\k)= x0 by A6,SEQ_4:33; A9: rng(seq^\k)c=rng seq by RFUNCT_2:7; dom f/\left_open_halfline(x0)c=dom f & dom f/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A10: rng seq c=dom f & rng seq c=left_open_halfline(x0) by A6,XBOOLE_1: 1 ; then A11: rng(seq^\k)c=dom f & rng(seq^\k)c=left_open_halfline(x0) by A9, XBOOLE_1:1 ; A12: dom f1/\].x0-r1,x0.[c=dom f1 by XBOOLE_1:17; A13: dom f2/\].x0-r1,x0.[c=dom f2 by XBOOLE_1:17; now let x be set; assume A14: x in rng(seq^\k); then consider n such that A15: x=(seq^\k).n by RFUNCT_2:9; k<=n+k by NAT_1:37 ; then x0-r1<seq.(n+k) by A7; then A16: x0-r1<(seq^\k).n by SEQM_3:def 9; (seq^\k).n in left_open_halfline(x0) by A11,A14,A15; then (seq^\k).n in {g: g<x0} by PROB_1:def 15 ; then ex g st g=(seq^\k).n & g<x0; then x in {g1: x0-r1<g1 & g1<x0} by A15,A16; hence x in ].x0-r1,x0.[ by RCOMP_1:def 2; end; then A17: rng(seq^\k)c=].x0-r1,x0.[ by TARSKI:def 3; then A18: rng(seq^\k)c=dom f/\].x0-r1,x0.[ by A11,XBOOLE_1:19; then A19: rng(seq^\k)c=dom f1/\].x0-r1,x0.[ by A4,XBOOLE_1:1; then A20: rng(seq^\k)c=dom f1 by A12,XBOOLE_1:1; rng(seq^\k)c=dom f2/\].x0-r1,x0.[ by A4,A19,XBOOLE_1:1; then A21: rng(seq^\k)c=dom f2 by A13,XBOOLE_1:1; ].x0-r1,x0.[c=left_open_halfline(x0) by LIMFUNC1:16; then A22: rng(seq^\k)c=left_open_halfline(x0) by A17,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\left_open_halfline(x0) by A20,XBOOLE_1:19; then A23: f1*(seq^\k) is convergent & lim(f1*(seq^\k))=lim_left(f1,x0) by A1,A8,Def7; rng(seq^\k) c=dom f2/\left_open_halfline(x0) by A21,A22,XBOOLE_1:19; then A24: f2*(seq^\k) is convergent & lim(f2*(seq^\k))=lim_left(f2,x0) by A1,A8,Def7; A25: now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f1.((seq^\k).n)<=f.((seq^\k).n) & f.((seq^\k).n)<=f2.((seq^\k).n) by A2,A18 ; then f1.((seq^\k).n)<=(f*(seq^\k)).n & (f*(seq^\k)).n<=f2.((seq^\k).n) by A11,RFUNCT_2:21; hence (f1*(seq^\k)).n<=(f*(seq^\k)).n & (f*(seq^\k)).n<=(f2*(seq^\k)).n by A20,A21,RFUNCT_2:21; end; then A26: f*(seq^\k) is convergent by A1,A23,A24,SEQ_2:33; lim(f*(seq^\k))=lim_left(f1,x0) by A1,A23,A24,A25,SEQ_2:34; then A27: (f*seq)^\k is convergent & lim((f*seq)^\k)=lim_left(f1,x0) by A10,A26,RFUNCT_2:22; hence f*seq is convergent by SEQ_4:35; thus lim(f*seq)=lim_left(f1,x0) by A27,SEQ_4:36; end; hence f is_left_convergent_in x0 by A1,Def1; hence thesis by A5,Def7; suppose A28: dom f2/\].x0-r1,x0.[c=dom f1/\].x0-r1,x0.[ & dom f/\].x0-r1,x0.[c=dom f2/\].x0-r1,x0.[; A29: now let seq; assume A30: seq is convergent & lim seq=x0 & rng seq c= dom f/\left_open_halfline(x0); then x0-r1<lim seq by A2,Lm1; then consider k such that A31: for n st k<=n holds x0-r1<seq.n by A30,Th1; A32: seq^\k is convergent & lim(seq^\k)= x0 by A30,SEQ_4:33; A33: rng(seq^\k)c=rng seq by RFUNCT_2:7; dom f/\left_open_halfline(x0)c=dom f & dom f/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A34: rng seq c=dom f & rng seq c=left_open_halfline(x0) by A30,XBOOLE_1 :1 ; then A35: rng(seq^\k)c=dom f & rng(seq^\k)c=left_open_halfline(x0) by A33, XBOOLE_1:1; A36: dom f1/\].x0-r1,x0.[c=dom f1 by XBOOLE_1:17; A37: dom f2/\].x0-r1,x0.[c=dom f2 by XBOOLE_1:17; now let x be set; assume A38: x in rng(seq^\k); then consider n such that A39: x=(seq^\k).n by RFUNCT_2:9; k<=n+k by NAT_1:37 ; then x0-r1<seq.(n+k) by A31; then A40: x0-r1<(seq^\k).n by SEQM_3:def 9; (seq^\k).n in left_open_halfline(x0) by A35,A38,A39; then (seq^\k).n in {g: g<x0} by PROB_1:def 15 ; then ex g st g=(seq^\k).n & g<x0; then x in {g1: x0-r1<g1 & g1<x0} by A39,A40; hence x in ].x0-r1,x0.[ by RCOMP_1:def 2; end; then A41: rng(seq^\k)c=].x0-r1,x0.[ by TARSKI:def 3; then A42: rng(seq^\k)c=dom f/\].x0-r1,x0.[ by A35,XBOOLE_1:19; then A43: rng(seq^\k)c=dom f2/\].x0-r1,x0.[ by A28,XBOOLE_1:1; then A44: rng(seq^\k)c=dom f2 by A37,XBOOLE_1:1; rng(seq^\k)c=dom f1/\].x0-r1,x0.[ by A28,A43,XBOOLE_1:1; then A45: rng(seq^\k)c=dom f1 by A36,XBOOLE_1:1; ].x0-r1,x0.[c=left_open_halfline(x0) by LIMFUNC1:16; then A46: rng(seq^\k)c=left_open_halfline(x0) by A41,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\left_open_halfline(x0) by A45,XBOOLE_1:19; then A47: f1*(seq^\k) is convergent & lim(f1*(seq^\k))=lim_left(f1,x0) by A1,A32,Def7; rng(seq^\k)c=dom f2/\left_open_halfline(x0) by A44,A46,XBOOLE_1:19; then A48: f2*(seq^\k) is convergent & lim(f2*(seq^\k))=lim_left(f2,x0) by A1,A32,Def7; A49: now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f1.((seq^\k).n)<=f.((seq^\k).n) & f.((seq^\k).n)<=f2.((seq^\k).n) by A2,A42 ; then f1.((seq^\k).n)<=(f*(seq^\k)).n & (f*(seq^\k)).n<=f2.((seq^\k).n) by A35,RFUNCT_2:21; hence (f1*(seq^\k)).n<=(f*(seq^\k)).n & (f*(seq^\k)).n<=(f2*(seq^\k)).n by A44,A45,RFUNCT_2:21; end; then A50: f*(seq^\k) is convergent by A1,A47,A48,SEQ_2:33; lim(f*(seq^\k))=lim_left(f1,x0) by A1,A47,A48,A49,SEQ_2:34; then A51: (f*seq)^\k is convergent & lim((f*seq)^\k)=lim_left(f1,x0) by A34,A50,RFUNCT_2:22; hence f*seq is convergent by SEQ_4:35; thus lim(f*seq)=lim_left(f1,x0) by A51,SEQ_4:36; end; hence f is_left_convergent_in x0 by A1,Def1; hence thesis by A29,Def7; end; hence thesis; end; theorem f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f1,x0)=lim_left(f2,x0) & (ex r st 0<r & ].x0-r,x0.[ c= dom f1 /\ dom f2 /\ dom f & for g st g in ].x0-r,x0.[ holds f1.g<=f.g & f.g<=f2.g) implies f is_left_convergent_in x0 & lim_left(f,x0)=lim_left(f1,x0) proof assume A1: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & lim_left(f1,x0)=lim_left(f2,x0); given r such that A2: 0<r & ].x0-r,x0.[c=dom f1/\dom f2/\dom f & for g st g in ].x0-r,x0.[ holds f1.g<=f.g & f.g<=f2.g; dom f1/\dom f2/\dom f c=dom f & dom f1/\dom f2/\dom f c=dom f1/\dom f2 by XBOOLE_1:17; then A3: ].x0-r,x0.[c=dom f & ].x0-r,x0.[c=dom f1/\dom f2 by A2,XBOOLE_1:1; then A4: dom f/\].x0-r,x0.[=].x0-r,x0.[ by XBOOLE_1:28; dom f1/\dom f2 c=dom f1 & dom f1/\dom f2 c=dom f2 by XBOOLE_1:17; then ].x0-r,x0.[c=dom f1 & ].x0-r,x0.[c=dom f2 by A3,XBOOLE_1:1; then A5: dom f1/\].x0-r,x0.[=].x0-r,x0.[ & dom f2/\].x0-r,x0.[=].x0-r,x0.[ by XBOOLE_1:28; now let r1 such that A6: r1<x0; now per cases; suppose A7: r1<=x0-r; now x0-r<x0 by A2,Lm1; then consider g being real number such that A8: x0-r<g & g<x0 by REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus r1<g & g<x0 by A7,A8,AXIOMS:22; g in {g2: x0-r<g2 & g2<x0} by A8; then g in ].x0-r,x0.[ by RCOMP_1:def 2; hence g in dom f by A3; end; hence ex g st r1<g & g<x0 & g in dom f; suppose A9: x0-r<=r1; now consider g being real number such that A10: r1<g & g<x0 by A6,REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus r1<g & g<x0 by A10; x0-r<g by A9,A10,AXIOMS:22; then g in {g2: x0-r<g2 & g2<x0} by A10; then g in ].x0-r,x0.[ by RCOMP_1:def 2; hence g in dom f by A3; end; hence ex g st r1<g & g<x0 & g in dom f; end; hence ex g st r1<g & g<x0 & g in dom f; end; hence thesis by A1,A2,A4,A5,Th71; end; theorem Th73: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f1,x0)=lim_right(f2,x0) & (for r st x0<r ex g st g<r & x0<g & g in dom f) & (ex r st 0<r & (for g st g in dom f /\ ].x0,x0+r.[ holds f1.g<=f.g & f.g<=f2.g) & ((dom f1 /\ ].x0,x0+r.[ c= dom f2 /\ ].x0,x0+r.[ & dom f /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[) or (dom f2 /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & dom f /\ ].x0,x0+r.[ c= dom f2 /\ ].x0,x0+r.[))) implies f is_right_convergent_in x0 & lim_right(f,x0)=lim_right(f1,x0) proof assume A1: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f1,x0)=lim_right(f2,x0) & for r st x0<r ex g st g<r & x0<g & g in dom f; given r1 such that A2: 0<r1 & for g st g in dom f/\].x0,x0+r1.[ holds f1.g<=f.g & f.g<=f2.g and A3: (dom f1/\].x0,x0+r1.[c=dom f2/\].x0,x0+r1.[ & dom f/\].x0,x0+r1.[c=dom f1/\].x0,x0+r1.[) or (dom f2/\].x0,x0+r1.[c=dom f1/\].x0,x0+r1.[ & dom f/\].x0,x0+r1.[c=dom f2/\].x0,x0+r1.[); now per cases by A3; suppose A4: dom f1/\].x0,x0+r1.[c=dom f2/\].x0,x0+r1.[ & dom f/\].x0,x0+r1.[c=dom f1/\].x0,x0+r1.[; A5: now let seq; assume A6: seq is convergent & lim seq=x0 & rng seq c=dom f/\right_open_halfline(x0); then x0<lim seq+r1 by A2,Lm1; then consider k such that A7: for n st k<=n holds seq.n<x0+r1 by A6,Th2; A8: seq^\k is convergent & lim(seq^\k)= x0 by A6,SEQ_4:33; A9: rng(seq^\k)c=rng seq by RFUNCT_2:7; dom f/\right_open_halfline(x0)c=dom f & dom f/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A10: rng seq c=dom f & rng seq c=right_open_halfline(x0) by A6,XBOOLE_1 :1 ; then A11:rng(seq^\k)c=dom f & rng(seq^\k)c=right_open_halfline(x0) by A9, XBOOLE_1:1 ; A12: dom f1/\].x0,x0+r1.[c=dom f1 by XBOOLE_1:17; A13: dom f2/\].x0,x0+r1.[c=dom f2 by XBOOLE_1:17; now let x be set; assume A14: x in rng(seq^\k); then consider n such that A15: x=(seq^\k).n by RFUNCT_2:9; k<=n+k by NAT_1:37 ; then seq.(n+k)<x0+r1 by A7; then A16: (seq^\k).n<x0+r1 by SEQM_3:def 9; (seq^\k).n in right_open_halfline(x0) by A11,A14,A15; then (seq^\k).n in {g: x0<g} by LIMFUNC1:def 3 ; then ex g st g=(seq^\k).n & x0<g; then x in {g1: x0<g1 & g1<x0+r1} by A15,A16; hence x in ].x0,x0+r1.[ by RCOMP_1:def 2; end; then A17: rng(seq^\k)c=].x0,x0+r1.[ by TARSKI:def 3; then A18: rng(seq^\k)c=dom f/\].x0,x0+r1.[ by A11,XBOOLE_1:19; then A19: rng(seq^\k)c=dom f1/\].x0,x0+r1.[ by A4,XBOOLE_1:1; then A20: rng(seq^\k)c=dom f1 by A12,XBOOLE_1:1; rng(seq^\k)c=dom f2/\].x0,x0+r1.[ by A4,A19,XBOOLE_1:1; then A21: rng(seq^\k)c=dom f2 by A13,XBOOLE_1:1; ].x0,x0+r1.[c=right_open_halfline(x0) by LIMFUNC1:11; then A22: rng(seq^\k)c=right_open_halfline(x0) by A17,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\right_open_halfline(x0) by A20,XBOOLE_1:19; then A23:f1*(seq^\k) is convergent & lim(f1*(seq^\k))=lim_right(f1,x0) by A1,A8,Def8; rng(seq^\k)c=dom f2/\right_open_halfline(x0) by A21,A22,XBOOLE_1:19; then A24:f2*(seq^\k) is convergent & lim(f2*(seq^\k))=lim_right(f2,x0) by A1,A8,Def8; A25: now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f1.((seq^\k).n)<=f.((seq^\k).n) & f.((seq^\k).n)<=f2.((seq^\k).n) by A2,A18 ; then f1.((seq^\k).n)<=(f*(seq^\k)).n & (f*(seq^\k)).n<=f2.((seq^\k).n) by A11,RFUNCT_2:21; hence (f1*(seq^\k)).n<=(f*(seq^\k)).n & (f*(seq^\k)).n<=(f2*(seq^\k)).n by A20,A21,RFUNCT_2:21; end; then A26: f*(seq^\k) is convergent by A1,A23,A24,SEQ_2:33; lim(f*(seq^\k))=lim_right(f1,x0) by A1,A23,A24,A25,SEQ_2:34; then A27: (f*seq)^\k is convergent & lim((f*seq)^\k)=lim_right(f1,x0) by A10,A26,RFUNCT_2:22; hence f*seq is convergent by SEQ_4:35; thus lim(f*seq)=lim_right(f1,x0) by A27,SEQ_4:36; end; hence f is_right_convergent_in x0 by A1,Def4; hence thesis by A5,Def8; suppose A28: dom f2/\].x0,x0+r1.[c=dom f1/\].x0,x0+r1.[ & dom f/\].x0,x0+r1.[ c=dom f2/\].x0,x0+r1.[; A29: now let seq; assume A30: seq is convergent & lim seq=x0 & rng seq c= dom f/\right_open_halfline(x0); then x0<lim seq+r1 by A2,Lm1; then consider k such that A31: for n st k<=n holds seq.n<x0+r1 by A30,Th2; A32: seq^\k is convergent & lim(seq^\k)= x0 by A30,SEQ_4:33; A33: rng(seq^\k)c=rng seq by RFUNCT_2:7; dom f/\right_open_halfline(x0)c=dom f & dom f/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A34: rng seq c=dom f & rng seq c=right_open_halfline(x0) by A30, XBOOLE_1:1 ; then A35: rng(seq^\k)c=dom f & rng(seq^\k)c=right_open_halfline(x0) by A33,XBOOLE_1:1; A36: dom f1/\].x0,x0+r1.[c=dom f1 by XBOOLE_1:17; A37: dom f2/\].x0,x0+r1.[c=dom f2 by XBOOLE_1:17; now let x be set; assume A38: x in rng(seq^\k); then consider n such that A39: x=(seq^\k).n by RFUNCT_2:9; k<=n+k by NAT_1:37 ; then seq.(n+k)<x0+r1 by A31; then A40: (seq^\k).n<x0+r1 by SEQM_3:def 9; (seq^\k).n in right_open_halfline(x0) by A35,A38,A39; then (seq^\k).n in {g: x0<g} by LIMFUNC1:def 3 ; then ex g st g=(seq^\k).n & x0<g; then x in {g1: x0<g1 & g1<x0+r1} by A39,A40; hence x in ].x0,x0+r1.[ by RCOMP_1:def 2; end; then A41: rng(seq^\k)c=].x0,x0+r1.[ by TARSKI:def 3; then A42: rng(seq^\k)c=dom f/\].x0,x0+r1.[ by A35,XBOOLE_1:19; then A43: rng(seq^\k)c=dom f2/\].x0,x0+r1.[ by A28,XBOOLE_1:1; then A44: rng(seq^\k)c=dom f2 by A37,XBOOLE_1:1; rng(seq^\k)c=dom f1/\].x0,x0+r1.[ by A28,A43,XBOOLE_1:1; then A45: rng(seq^\k)c=dom f1 by A36,XBOOLE_1:1; ].x0,x0+r1.[c=right_open_halfline(x0) by LIMFUNC1:11; then A46: rng(seq^\k)c=right_open_halfline(x0) by A41,XBOOLE_1:1; then rng(seq^\k)c=dom f1/\right_open_halfline(x0) by A45,XBOOLE_1:19; then A47:f1*(seq^\k) is convergent & lim(f1*(seq^\k))=lim_right(f1,x0) by A1,A32,Def8; rng(seq^\k)c=dom f2/\right_open_halfline(x0) by A44,A46,XBOOLE_1:19; then A48:f2*(seq^\k) is convergent & lim(f2*(seq^\k))=lim_right(f2,x0) by A1,A32,Def8; A49: now let n; (seq^\k).n in rng(seq^\k) by RFUNCT_2:10; then f1.((seq^\k).n)<=f.((seq^\k).n) & f.((seq^\k).n)<=f2.((seq^\k).n) by A2,A42 ; then f1.((seq^\k).n)<=(f*(seq^\k)).n & (f*(seq^\k)).n<=f2.((seq^\k).n) by A35,RFUNCT_2:21; hence (f1*(seq^\k)).n<=(f*(seq^\k)).n & (f*(seq^\k)).n<=(f2*(seq^\k)).n by A44,A45,RFUNCT_2:21; end; then A50: f*(seq^\k) is convergent by A1,A47,A48,SEQ_2:33; lim(f*(seq^\k))=lim_right(f1,x0) by A1,A47,A48,A49,SEQ_2:34; then A51: (f*seq)^\k is convergent & lim((f*seq)^\k)=lim_right(f1,x0) by A34,A50,RFUNCT_2:22; hence f*seq is convergent by SEQ_4:35; thus lim(f*seq)=lim_right(f1,x0) by A51,SEQ_4:36; end; hence f is_right_convergent_in x0 by A1,Def4; hence thesis by A29,Def8 ; end; hence thesis; end; theorem f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f1,x0)=lim_right(f2,x0) & (ex r st 0<r & ].x0,x0+r.[ c= dom f1 /\ dom f2 /\ dom f & for g st g in ].x0,x0+r.[ holds f1.g<=f.g & f.g<=f2.g) implies f is_right_convergent_in x0 & lim_right(f,x0)=lim_right(f1,x0) proof assume A1: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & lim_right(f1,x0)=lim_right(f2,x0); given r such that A2: 0<r & ].x0,x0+r.[c=dom f1/\dom f2/\dom f & for g st g in ].x0,x0+r.[ holds f1.g<=f.g & f.g<=f2.g; dom f1/\dom f2/\dom f c=dom f & dom f1/\dom f2/\dom f c=dom f1/\dom f2 by XBOOLE_1:17; then A3: ].x0,x0+r.[c=dom f & ].x0,x0+r.[c=dom f1/\dom f2 by A2,XBOOLE_1:1; then A4: dom f/\].x0,x0+r.[=].x0,x0+r.[ by XBOOLE_1:28; dom f1/\dom f2 c=dom f1 & dom f1/\dom f2 c=dom f2 by XBOOLE_1:17; then ].x0,x0+r.[c=dom f1 & ].x0,x0+r.[c=dom f2 by A3,XBOOLE_1:1; then A5: dom f1/\].x0,x0+r.[=].x0,x0+r.[ & dom f2/\].x0,x0+r.[=].x0,x0+r.[ by XBOOLE_1:28; now let r1 such that A6: x0<r1; now per cases; suppose A7: r1<=x0+r; now consider g being real number such that A8: x0<g & g<r1 by A6,REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus g<r1 & x0<g by A8; g<x0+r by A7,A8,AXIOMS:22; then g in {g2: x0<g2 & g2<x0+r} by A8; then g in ].x0,x0+r.[ by RCOMP_1:def 2; hence g in dom f by A3; end; hence ex g st g<r1 & x0<g & g in dom f; suppose A9: x0+r<=r1; now x0+0<x0+r by A2,REAL_1:67; then consider g being real number such that A10: x0<g & g<x0+r by REAL_1:75; reconsider g as Real by XREAL_0:def 1; take g; thus g<r1 & x0<g by A9,A10,AXIOMS:22; g in {g2: x0<g2 & g2<x0+r} by A10; then g in ].x0,x0+r.[ by RCOMP_1:def 2; hence g in dom f by A3; end; hence ex g st g<r1 & x0<g & g in dom f; end; hence ex g st g<r1 & x0<g & g in dom f; end; hence thesis by A1,A2,A4,A5,Th73; end; theorem f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0 & (ex r st 0<r & ((dom f1 /\ ].x0-r,x0.[ c= dom f2 /\ ].x0-r,x0.[ & for g st g in dom f1 /\ ].x0-r,x0.[ holds f1.g<=f2.g) or (dom f2 /\ ].x0-r,x0.[ c= dom f1 /\ ].x0-r,x0.[ & for g st g in dom f2 /\ ].x0-r,x0.[ holds f1.g<=f2.g))) implies lim_left(f1,x0)<=lim_left(f2,x0) proof assume A1: f1 is_left_convergent_in x0 & f2 is_left_convergent_in x0; given r such that A2: 0<r and A3: (dom f1/\].x0-r,x0.[c=dom f2/\].x0-r,x0.[ & for g st g in dom f1/\].x0-r,x0.[ holds f1.g<=f2.g) or (dom f2/\].x0-r,x0.[c=dom f1/\].x0-r,x0.[ & for g st g in dom f2/\].x0-r,x0.[ holds f1.g<=f2.g); A4: lim_left(f1,x0)=lim_left(f1,x0) & lim_left(f2,x0)=lim_left(f2,x0); now per cases by A3; suppose A5: dom f1/\].x0-r,x0.[c=dom f2/\].x0-r,x0.[ & for g st g in dom f1/\].x0-r,x0.[ holds f1.g<=f2.g; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f1; A6: now let n; x0-1/(n+1)<x0 by Lm3; then consider g such that A7: x0-1/(n+1)<g & g<x0 & g in dom f1 by A1,Def1; reconsider g as real number; take g; thus X[n,g] by A7; end; consider s be Real_Sequence such that A8: for n holds X[n,s.n] from RealSeqChoice(A6); A9: s is convergent & lim s=x0 & rng s c=dom f1/\left_open_halfline(x0) by A8,Th5; x0-r<x0 by A2,Lm1; then consider k such that A10: for n st k<=n holds x0-r<s.n by A9,Th1; A11: s^\k is convergent & lim(s^\k)=x0 by A9,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then rng(s^\k)c=dom f1/\left_open_halfline(x0) by A9,XBOOLE_1:1; then A12: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim_left(f1,x0) by A1,A4, A11,Def7; now let x be set; assume x in rng(s^\k); then consider n such that A13: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<s.(n+k) by A10; then A14: x0-r<(s^\k).n by SEQM_3:def 9; s.(n+k)<x0 & s.(n+k) in dom f1 by A8; then A15: (s^\k).n<x0 & (s^\k).n in dom f1 by SEQM_3:def 9; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A14; then (s^\k).n in ].x0-r,x0 .[ by RCOMP_1:def 2; hence x in dom f1/\].x0-r,x0.[ by A13,A15,XBOOLE_0:def 3; end; then A16: rng(s^\k)c=dom f1/\].x0-r,x0.[ by TARSKI:def 3; then A17: rng(s^\k)c=dom f2/\].x0-r,x0.[ by A5,XBOOLE_1:1; dom f2/\].x0-r,x0.[c=dom f2 & dom f2/\ ].x0-r,x0.[c=].x0-r,x0.[ by XBOOLE_1:17; then A18: rng(s^\k)c=dom f2 & rng(s^\k)c=].x0-r,x0.[ by A17,XBOOLE_1:1; ].x0-r,x0.[c=left_open_halfline(x0) by LIMFUNC1:16; then rng(s^\k)c=left_open_halfline(x0) by A18,XBOOLE_1:1; then rng(s^\k)c=dom f2/\left_open_halfline(x0) by A18,XBOOLE_1:19; then A19: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim_left(f2,x0) by A1,A4, A11,Def7; dom f1/\].x0-r,x0.[c=dom f1 by XBOOLE_1:17; then A20: rng(s^\k)c=dom f1 by A16,XBOOLE_1:1; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then f1.((s^\k).n)<=f2.((s^\k).n) by A5,A16; then f1.((s^\k).n)<=(f2*(s^\k)).n by A18,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f2*(s^\k)).n by A20,RFUNCT_2:21; end; hence thesis by A12,A19,SEQ_2:32; suppose A21: dom f2/\].x0-r,x0.[c=dom f1/\].x0-r,x0.[ & for g st g in dom f2/\].x0-r,x0.[ holds f1.g<=f2.g; defpred X[Nat,real number] means x0-1/($1+1)<$2 & $2<x0 & $2 in dom f2; A22: now let n; 0<n+1 by NAT_1:19; then 0<1/(n+1) by SEQ_2:6; then x0-1/(n+1)<x0-0 by REAL_1:92; then consider g such that A23: x0-1/(n+1)<g & g<x0 & g in dom f2 by A1,Def1; reconsider g as real number; take g; thus X[n,g] by A23; end; consider s be Real_Sequence such that A24: for n holds X[n,s.n] from RealSeqChoice(A22 ); A25: s is convergent & lim s=x0 & rng s c=dom f2/\left_open_halfline(x0) by A24,Th5; x0-r<x0 by A2,Lm1; then consider k such that A26: for n st k<=n holds x0-r<s.n by A25,Th1; A27: s^\k is convergent & lim(s^\k)=x0 by A25,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then rng(s^\k)c=dom f2/\left_open_halfline(x0) by A25,XBOOLE_1:1; then A28: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim_left(f2,x0) by A1,A4, A27,Def7; A29: now let x be set; assume x in rng(s^\k); then consider n such that A30: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then x0-r<s.(n+k) by A26; then A31: x0-r<(s^\k).n by SEQM_3:def 9; s.(n+k)<x0 & s.(n+k) in dom f2 by A24; then A32: (s^\k).n<x0 & (s^\k).n in dom f2 by SEQM_3:def 9; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A31; then (s^\k).n in ].x0-r,x0 .[ by RCOMP_1:def 2; hence x in dom f2/\].x0-r,x0.[ by A30,A32,XBOOLE_0:def 3; end; then A33: rng(s^\k)c=dom f2/\].x0-r,x0.[ by TARSKI:def 3; then A34: rng(s^\k)c=dom f1/\].x0-r,x0.[ by A21,XBOOLE_1:1; dom f1/\].x0-r,x0.[c=dom f1 & dom f1/\ ].x0-r,x0.[c=].x0-r,x0.[ by XBOOLE_1:17; then A35: rng(s^\k)c=dom f1 & rng(s^\k)c=].x0-r,x0.[ by A34,XBOOLE_1:1; ].x0-r,x0.[c=left_open_halfline(x0) by LIMFUNC1:16; then rng(s^\k)c=left_open_halfline(x0) by A35,XBOOLE_1:1; then rng(s^\k)c=dom f1/\left_open_halfline(x0) by A35,XBOOLE_1:19; then A36: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim_left(f1,x0) by A1,A4, A27,Def7; dom f2/\].x0-r,x0.[c=dom f2 by XBOOLE_1:17; then A37: rng(s^\k)c=dom f2 by A33,XBOOLE_1:1; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in dom f2/\].x0-r,x0.[ by A29; then f1.((s^\k).n)<=f2.((s^\k).n) by A21; then f1.((s^\k).n)<=(f2*(s^\k)).n by A37,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f2*(s^\k)).n by A35,RFUNCT_2:21; end; hence thesis by A28,A36,SEQ_2:32; end; hence thesis; end; theorem f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0 & (ex r st 0<r & ((dom f1 /\ ].x0,x0+r.[ c= dom f2 /\ ].x0,x0+r.[ & for g st g in dom f1 /\ ].x0,x0+r.[ holds f1.g<=f2.g) or (dom f2 /\ ].x0,x0+r.[ c= dom f1 /\ ].x0,x0+r.[ & for g st g in dom f2 /\ ].x0,x0+r.[ holds f1.g<=f2.g))) implies lim_right(f1,x0)<=lim_right(f2,x0) proof assume A1: f1 is_right_convergent_in x0 & f2 is_right_convergent_in x0; given r such that A2: 0<r and A3: (dom f1/\].x0,x0+r.[c=dom f2/\].x0,x0+r.[ & for g st g in dom f1/\].x0,x0+r.[ holds f1.g<=f2.g) or (dom f2/\].x0,x0+r.[c=dom f1/\].x0,x0+r.[ & for g st g in dom f2/\].x0,x0+r.[ holds f1.g<=f2.g); A4: lim_right(f1,x0)=lim_right(f1,x0) & lim_right(f2,x0)=lim_right(f2,x0); now per cases by A3; suppose A5: dom f1/\].x0,x0+r.[c=dom f2/\].x0,x0+r.[ & for g st g in dom f1/\].x0,x0+r.[ holds f1.g<=f2.g; defpred X[Nat,real number] means x0<$2 & $2<x0+1/($1+1) & $2 in dom f1; A6: now let n; x0<x0+1/(n+1) by Lm3; then consider g such that A7: g<x0+(1/(n+1)) & x0<g & g in dom f1 by A1,Def4; reconsider g as real number; take g; thus X[n,g] by A7; end; consider s be Real_Sequence such that A8: for n holds X[n,s.n] from RealSeqChoice(A6); A9: s is convergent & lim s=x0 & rng s c=dom f1/\right_open_halfline(x0) by A8,Th6; x0<x0+r by A2,Lm1; then consider k such that A10: for n st k<=n holds s.n<x0+r by A9,Th2; A11: s^\k is convergent & lim(s^\k)=x0 by A9,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then rng(s^\k)c=dom f1/\right_open_halfline(x0) by A9,XBOOLE_1:1; then A12: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim_right(f1,x0) by A1,A4,A11,Def8; now let x be set; assume x in rng(s^\k); then consider n such that A13: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then s.(n+k)<x0+r by A10; then A14: (s^\k).n<x0+r by SEQM_3:def 9; x0<s.(n+k) & s.(n+k) in dom f1 by A8; then A15: x0<(s^\k).n & (s^\k).n in dom f1 by SEQM_3:def 9; then (s^\k).n in {g2: x0<g2 & g2<x0+r} by A14; then (s^\k).n in ].x0,x0+r .[ by RCOMP_1:def 2; hence x in dom f1/\].x0,x0+r.[ by A13,A15,XBOOLE_0:def 3; end; then A16: rng(s^\k)c=dom f1/\].x0,x0+r.[ by TARSKI:def 3; then A17: rng(s^\k)c=dom f2/\].x0,x0+r.[ by A5,XBOOLE_1:1; dom f2/\].x0,x0+r.[c=dom f2 & dom f2/\ ].x0,x0+r.[c=].x0,x0+r.[ by XBOOLE_1:17; then A18: rng(s^\k)c=dom f2 & rng(s^\k)c=].x0,x0+r.[ by A17,XBOOLE_1:1; ].x0,x0+r.[c=right_open_halfline(x0) by LIMFUNC1:11; then rng(s^\k)c=right_open_halfline(x0) by A18,XBOOLE_1:1; then rng(s^\k)c=dom f2/\right_open_halfline(x0) by A18,XBOOLE_1:19; then A19: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim_right(f2,x0) by A1,A4,A11,Def8; dom f1/\].x0,x0+r.[c=dom f1 by XBOOLE_1:17; then A20: rng(s^\k)c=dom f1 by A16,XBOOLE_1:1; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then f1.((s^\k).n)<=f2.((s^\k).n) by A5,A16; then f1.((s^\k).n)<=(f2*(s^\k)).n by A18,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f2*(s^\k)).n by A20,RFUNCT_2:21; end; hence thesis by A12,A19,SEQ_2:32; suppose A21: dom f2/\].x0,x0+r.[c=dom f1/\].x0,x0+r.[ & for g st g in dom f2/\].x0,x0+r.[ holds f1.g<=f2.g; defpred X[Nat,real number] means x0<$2 & $2<x0+1/($1+1) & $2 in dom f2; A22: now let n; 0<n+1 by NAT_1:19; then 0<1/(n+1) by SEQ_2:6; then x0+0<x0+1/(n+1) by REAL_1:67; then consider g such that A23: g<x0+(1/(n+1)) & x0<g & g in dom f2 by A1,Def4; reconsider g as real number; take g; thus X[n,g] by A23; end; consider s be Real_Sequence such that A24: for n holds X[n,s.n] from RealSeqChoice(A22); A25: s is convergent & lim s=x0 & rng s c=dom f2/\right_open_halfline(x0) by A24,Th6; x0<x0+r by A2,Lm1; then consider k such that A26: for n st k<=n holds s.n<x0+r by A25,Th2; A27: s^\k is convergent & lim(s^\k)=x0 by A25,SEQ_4:33; rng(s^\k)c=rng s by RFUNCT_2:7; then rng(s^\k)c=dom f2/\right_open_halfline(x0) by A25,XBOOLE_1:1; then A28: f2*(s^\k) is convergent & lim(f2*(s^\k))=lim_right(f2,x0) by A1,A4,A27,Def8; A29: now let x be set; assume x in rng(s^\k); then consider n such that A30: (s^\k).n=x by RFUNCT_2:9; k<=n+k by NAT_1:37; then s.(n+k)<x0+r by A26; then A31: (s^\k).n<x0+r by SEQM_3:def 9; x0<s.(n+k) & s.(n+k) in dom f2 by A24; then A32: x0<(s^\k).n & (s^\k).n in dom f2 by SEQM_3:def 9; then (s^\k).n in {g2: x0<g2 & g2<x0+r} by A31; then (s^\k).n in ].x0,x0+r .[ by RCOMP_1:def 2; hence x in dom f2/\].x0,x0+r.[ by A30,A32,XBOOLE_0:def 3; end; then A33: rng(s^\k)c=dom f2/\].x0,x0+r.[ by TARSKI:def 3; then A34: rng(s^\k)c=dom f1/\].x0,x0+r.[ by A21,XBOOLE_1:1; dom f1/\].x0,x0+r.[c=dom f1 & dom f1/\ ].x0,x0+r.[c=].x0,x0+r.[ by XBOOLE_1:17; then A35: rng(s^\k)c=dom f1 & rng(s^\k)c=].x0,x0+r.[ by A34,XBOOLE_1:1; ].x0,x0+r.[c=right_open_halfline(x0) by LIMFUNC1:11; then rng(s^\k)c=right_open_halfline(x0) by A35,XBOOLE_1:1; then rng(s^\k)c=dom f1/\right_open_halfline(x0) by A35,XBOOLE_1:19; then A36: f1*(s^\k) is convergent & lim(f1*(s^\k))=lim_right(f1,x0) by A1,A4,A27,Def8; dom f2/\].x0,x0+r.[c=dom f2 by XBOOLE_1:17; then A37: rng(s^\k)c=dom f2 by A33,XBOOLE_1:1; now let n; (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in dom f2/\].x0,x0+r.[ by A29; then f1.((s^\k).n)<=f2.((s^\k).n) by A21; then f1.((s^\k).n)<=(f2*(s^\k)).n by A37,RFUNCT_2:21; hence (f1*(s^\k)).n<=(f2*(s^\k)).n by A35,RFUNCT_2:21; end; hence thesis by A28,A36,SEQ_2:32; end; hence thesis; end; theorem (f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0) & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) implies f^ is_left_convergent_in x0 & lim_left(f^,x0)=0 proof assume A1: f is_left_divergent_to+infty_in x0 or f is_left_divergent_to-infty_in x0; assume A2: for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0; A3: now let r; assume r<x0; then consider g such that A4: r<g & g<x0 & g in dom f & f.g<>0 by A2; take g; thus r<g & g<x0 by A4; not f.g in {0} by A4,TARSKI:def 1; then not g in f"{0} by FUNCT_1:def 13 ; then g in dom f\f"{0} by A4,XBOOLE_0:def 4; hence g in dom(f^) by RFUNCT_1: def 8; end; A5: now let seq such that A6: seq is convergent & lim seq=x0 & rng seq c=dom(f^)/\left_open_halfline(x0); dom(f^)/\left_open_halfline(x0)c=dom(f^) & dom(f^)/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A7: rng seq c=dom(f^) & rng seq c=left_open_halfline(x0) by A6,XBOOLE_1: 1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8 ; then dom(f^)c=dom f by XBOOLE_1:36; then rng seq c=dom f by A7,XBOOLE_1:1; then A8: rng seq c=dom f/\left_open_halfline(x0) by A7,XBOOLE_1:19; now per cases by A1; suppose f is_left_divergent_to+infty_in x0; then f*seq is divergent_to+infty by A6,A8,Def2; then (f*seq)" is convergent & lim((f*seq)")=0 by LIMFUNC1:61; hence (f^)*seq is convergent & lim((f^)*seq)=0 by A7,RFUNCT_2:27; suppose f is_left_divergent_to-infty_in x0; then f*seq is divergent_to-infty by A6,A8,Def3; then (f*seq)" is convergent & lim((f*seq)")=0 by LIMFUNC1:61; hence (f^)*seq is convergent & lim((f^)*seq)=0 by A7,RFUNCT_2:27; end; hence (f^)*seq is convergent & lim((f^)*seq)=0; end; hence f^ is_left_convergent_in x0 by A3,Def1; hence thesis by A5,Def7; end; theorem (f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0) & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) implies f^ is_right_convergent_in x0 & lim_right(f^,x0)=0 proof assume A1: f is_right_divergent_to+infty_in x0 or f is_right_divergent_to-infty_in x0; assume A2: for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0; A3: now let r; assume x0<r; then consider g such that A4: g<r & x0<g & g in dom f & f.g<>0 by A2; take g; thus g<r & x0<g by A4; not f.g in {0} by A4,TARSKI:def 1; then not g in f"{0} by FUNCT_1:def 13 ; then g in dom f\f"{0} by A4,XBOOLE_0:def 4; hence g in dom(f^) by RFUNCT_1: def 8; end; A5: now let seq such that A6: seq is convergent & lim seq=x0 & rng seq c=dom(f^)/\right_open_halfline(x0); dom(f^)/\right_open_halfline(x0)c=dom(f^) & dom(f^)/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17 ; then A7: rng seq c=dom(f^) & rng seq c=right_open_halfline(x0) by A6,XBOOLE_1 :1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8 ; then dom(f^)c=dom f by XBOOLE_1:36; then rng seq c=dom f by A7,XBOOLE_1:1; then A8: rng seq c=dom f/\right_open_halfline(x0) by A7,XBOOLE_1:19; now per cases by A1; suppose f is_right_divergent_to+infty_in x0; then f*seq is divergent_to+infty by A6,A8,Def5; then (f*seq)" is convergent & lim((f*seq)")=0 by LIMFUNC1:61; hence (f^)*seq is convergent & lim((f^)*seq)=0 by A7,RFUNCT_2:27; suppose f is_right_divergent_to-infty_in x0; then f*seq is divergent_to-infty by A6,A8,Def6; then (f*seq)" is convergent & lim((f*seq)")=0 by LIMFUNC1:61; hence (f^)*seq is convergent & lim((f^)*seq)=0 by A7,RFUNCT_2:27; end; hence (f^)*seq is convergent & lim((f^)*seq)=0; end; hence f^ is_right_convergent_in x0 by A3,Def4; hence thesis by A5,Def8; end; theorem f is_left_convergent_in x0 & lim_left(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds 0<f.g) implies f^ is_left_divergent_to+infty_in x0 proof assume A1: f is_left_convergent_in x0 & lim_left(f,x0)=0; given r such that A2: 0<r & for g st g in dom f/\].x0-r,x0.[ holds 0<f.g; thus for r1 st r1<x0 ex g1 st r1<g1 & g1<x0 & g1 in dom(f^) proof let r1; assume r1<x0; then consider g1 such that A3: r1<g1 & g1<x0 & g1 in dom f by A1,Def1; now per cases; suppose A4: g1<=x0-r; x0-r<x0 by A2,Lm1; then consider g2 such that A5: x0-r<g2 & g2<x0 & g2 in dom f by A1,Def1; take g2; g1<g2 by A4,A5,AXIOMS:22; hence r1<g2 & g2<x0 by A3,A5,AXIOMS:22; g2 in {r2: x0-r<r2 & r2<x0} by A5; then g2 in ].x0-r,x0.[ by RCOMP_1:def 2; then g2 in dom f/\].x0-r,x0.[ by A5,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A5,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; suppose A6: x0-r<=g1; consider g2 such that A7: g1<g2 & g2<x0 & g2 in dom f by A1,A3,Def1; take g2; thus r1<g2 & g2<x0 by A3,A7,AXIOMS:22; x0-r<g2 by A6,A7,AXIOMS:22; then g2 in {r2: x0-r<r2 & r2<x0} by A7; then g2 in ].x0-r,x0.[ by RCOMP_1:def 2; then g2 in dom f/\].x0-r,x0.[ by A7,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A7,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; end; hence thesis; end; let s be Real_Sequence such that A8: s is convergent & lim s=x0 & rng s c=dom(f^)/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A9: for n st k<=n holds x0-r<s.n by A8,Th1; A10: s^\k is convergent & lim(s^\k)=x0 by A8,SEQ_4:33; dom(f^)/\left_open_halfline(x0)c=dom(f^) & dom(f^)/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A11: rng s c=dom(f^) & rng s c=left_open_halfline(x0) by A8,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A12: rng s c=dom f by A11,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A13: rng(s^\k)c=dom (f^)/\left_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=left_open_halfline(x0) & rng(s^\k)c=dom f by A8,A11,A12,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\left_open_halfline(x0) by XBOOLE_1:19; then A14: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A10,Def7; A15: now let n; A16: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in left_open_halfline(x0) by A13; then (s^\k).n in {g1: g1<x0} by PROB_1:def 15; then A17: ex g1 st g1=(s^\k).n & g1<x0; k<=n+k by NAT_1:37 ; then x0-r<s.(n+k) by A9; then x0-r<(s^\k).n by SEQM_3:def 9 ; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A17; then (s^\k).n in ].x0-r,x0.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0-r,x0.[ by A13,A16,XBOOLE_0:def 3 ; then 0<f.((s^\k).n) by A2; hence 0<(f*(s^\k)).n by A13,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A18: f*(s^\k) is_not_0 by SEQ_1:7 ; for n holds 0<=n implies 0<(f*(s^\k)).n by A15; then A19: (f*(s^\k))" is divergent_to+infty by A14,A18,LIMFUNC1:62; (f*(s^\k))"=((f*s)^\k)" by A12,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A11,RFUNCT_2:27; hence thesis by A19,LIMFUNC1:34; end; theorem f is_left_convergent_in x0 & lim_left(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds f.g<0) implies f^ is_left_divergent_to-infty_in x0 proof assume A1: f is_left_convergent_in x0 & lim_left(f,x0)=0; given r such that A2: 0<r & for g st g in dom f/\].x0-r,x0.[ holds f.g<0; thus for r1 st r1<x0 ex g1 st r1<g1 & g1<x0 & g1 in dom(f^) proof let r1; assume r1<x0; then consider g1 such that A3: r1<g1 & g1<x0 & g1 in dom f by A1,Def1; now per cases; suppose A4: g1<=x0-r; x0-r<x0 by A2,Lm1; then consider g2 such that A5: x0-r<g2 & g2<x0 & g2 in dom f by A1,Def1; take g2; g1<g2 by A4,A5,AXIOMS:22; hence r1<g2 & g2<x0 by A3,A5,AXIOMS:22; g2 in {r2: x0-r<r2 & r2<x0} by A5; then g2 in ].x0-r,x0.[ by RCOMP_1:def 2; then g2 in dom f/\].x0-r,x0.[ by A5,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A5,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; suppose A6: x0-r<=g1; consider g2 such that A7: g1<g2 & g2<x0 & g2 in dom f by A1,A3,Def1; take g2; thus r1<g2 & g2<x0 by A3,A7,AXIOMS:22; x0-r<g2 by A6,A7,AXIOMS:22; then g2 in {r2: x0-r<r2 & r2<x0} by A7; then g2 in ].x0-r,x0.[ by RCOMP_1:def 2; then g2 in dom f/\].x0-r,x0.[ by A7,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A7,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; end; hence thesis; end; let s be Real_Sequence such that A8: s is convergent & lim s=x0 & rng s c=dom(f^)/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A9: for n st k<=n holds x0-r<s.n by A8,Th1; A10: s^\k is convergent & lim(s^\k)=x0 by A8,SEQ_4:33; dom(f^)/\left_open_halfline(x0)c=dom(f^) & dom(f^)/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A11: rng s c=dom(f^) & rng s c=left_open_halfline(x0) by A8,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A12: rng s c=dom f by A11,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A13: rng(s^\k)c=dom (f^)/\left_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=left_open_halfline(x0) & rng(s^\k)c=dom f by A8,A11,A12,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\left_open_halfline(x0) by XBOOLE_1:19; then A14: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A10,Def7; A15: now let n; A16: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in left_open_halfline(x0) by A13; then (s^\k).n in {g1: g1<x0} by PROB_1:def 15; then A17: ex g1 st g1=(s^\k).n & g1<x0; k<=n+k by NAT_1:37 ; then x0-r<s.(n+k) by A9; then x0-r<(s^\k).n by SEQM_3:def 9 ; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A17; then (s^\k).n in ].x0-r,x0.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0-r,x0.[ by A13,A16,XBOOLE_0:def 3 ; then f.((s^\k).n)<0 by A2; hence (f*(s^\k)).n<0 by A13,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A18: f*(s^\k) is_not_0 by SEQ_1:7 ; for n holds 0<=n implies (f*(s^\k)).n<0 by A15; then A19: (f*(s^\k))" is divergent_to-infty by A14,A18,LIMFUNC1:63; (f*(s^\k))"=((f*s)^\k)" by A12,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A11,RFUNCT_2:27; hence thesis by A19,LIMFUNC1:34; end; theorem f is_right_convergent_in x0 & lim_right(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds 0<f.g) implies f^ is_right_divergent_to+infty_in x0 proof assume A1: f is_right_convergent_in x0 & lim_right(f,x0)=0; given r such that A2: 0<r & for g st g in dom f/\].x0,x0+r.[ holds 0<f.g; thus for r1 st x0<r1 ex g1 st g1<r1 & x0<g1 & g1 in dom(f^) proof let r1; assume x0<r1; then consider g1 such that A3: g1<r1 & x0<g1 & g1 in dom f by A1,Def4; now per cases; suppose A4: g1<=x0+r; consider g2 such that A5: g2<g1 & x0<g2 & g2 in dom f by A1,A3,Def4; take g2; thus g2<r1 & x0<g2 by A3,A5,AXIOMS:22; g2<x0+r by A4,A5,AXIOMS:22; then g2 in {r2: x0<r2 & r2<x0+r} by A5; then g2 in ].x0,x0+r.[ by RCOMP_1:def 2; then g2 in dom f/\].x0,x0+r.[ by A5,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A5,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; suppose A6: x0+r<=g1; x0<x0+r by A2,Lm1; then consider g2 such that A7: g2<x0+r & x0<g2 & g2 in dom f by A1,Def4; take g2; g2<g1 by A6,A7,AXIOMS:22; hence g2<r1 & x0<g2 by A3,A7,AXIOMS:22; g2 in {r2: x0<r2 & r2<x0+r} by A7; then g2 in ].x0,x0+r.[ by RCOMP_1:def 2; then g2 in dom f/\].x0,x0+r.[ by A7,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A7,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; end; hence thesis; end; let s be Real_Sequence such that A8: s is convergent & lim s=x0 & rng s c=dom(f^)/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A9: for n st k<=n holds s.n<x0+r by A8,Th2; A10: s^\k is convergent & lim(s^\k)=x0 by A8,SEQ_4:33; dom(f^)/\right_open_halfline(x0)c=dom(f^) & dom(f^)/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A11: rng s c=dom(f^) & rng s c=right_open_halfline(x0) by A8,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A12: rng s c=dom f by A11,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A13: rng(s^\k)c=dom (f^)/\right_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=right_open_halfline(x0) & rng(s^\k)c=dom f by A8,A11,A12,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\right_open_halfline(x0) by XBOOLE_1:19; then A14: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A10,Def8; A15: now let n; A16: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in right_open_halfline(x0) by A13; then (s^\k).n in {g1: x0<g1} by LIMFUNC1:def 3; then A17: ex g1 st g1=(s^\k).n & x0<g1; k<=n+k by NAT_1:37 ; then s.(n+k)<x0+r by A9; then (s^\k).n<x0+r by SEQM_3:def 9 ; then (s^\k).n in {g2: x0<g2 & g2<x0+r} by A17; then (s^\k).n in ].x0,x0+r.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0,x0+r.[ by A13,A16,XBOOLE_0:def 3 ; then 0<f.((s^\k).n) by A2; hence 0<(f*(s^\k)).n by A13,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A18: f*(s^\k) is_not_0 by SEQ_1:7; for n holds 0<=n implies 0<(f*(s^\k)).n by A15; then A19: (f*(s^\k))" is divergent_to+infty by A14,A18,LIMFUNC1:62; (f*(s^\k))"=((f*s)^\k)" by A12,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A11,RFUNCT_2:27; hence thesis by A19,LIMFUNC1:34; end; theorem f is_right_convergent_in x0 & lim_right(f,x0)=0 & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds f.g<0) implies f^ is_right_divergent_to-infty_in x0 proof assume A1: f is_right_convergent_in x0 & lim_right(f,x0)=0; given r such that A2: 0<r & for g st g in dom f/\].x0,x0+r.[ holds f.g<0; thus for r1 st x0<r1 ex g1 st g1<r1 & x0<g1 & g1 in dom(f^) proof let r1; assume x0<r1; then consider g1 such that A3: g1<r1 & x0<g1 & g1 in dom f by A1,Def4; now per cases; suppose A4: g1<=x0+r; consider g2 such that A5: g2<g1 & x0<g2 & g2 in dom f by A1,A3,Def4; take g2; thus g2<r1 & x0<g2 by A3,A5,AXIOMS:22; g2<x0+r by A4,A5,AXIOMS:22; then g2 in {r2: x0<r2 & r2<x0+r} by A5; then g2 in ].x0,x0+r.[ by RCOMP_1:def 2; then g2 in dom f/\].x0,x0+r.[ by A5,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A5,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; suppose A6: x0+r<=g1; x0<x0+r by A2,Lm1; then consider g2 such that A7: g2<x0+r & x0<g2 & g2 in dom f by A1,Def4; take g2; g2<g1 by A6,A7,AXIOMS:22; hence g2<r1 & x0<g2 by A3,A7,AXIOMS:22; g2 in {r2: x0<r2 & r2<x0+r} by A7; then g2 in ].x0,x0+r.[ by RCOMP_1:def 2; then g2 in dom f/\].x0,x0+r.[ by A7,XBOOLE_0:def 3; then 0<>f.g2 by A2; then not f.g2 in {0} by TARSKI:def 1; then not g2 in f"{0} by FUNCT_1:def 13 ; then g2 in dom f\f"{0} by A7,XBOOLE_0:def 4 ; hence g2 in dom(f^) by RFUNCT_1:def 8; end; hence thesis; end; let s be Real_Sequence such that A8: s is convergent & lim s=x0 & rng s c=dom(f^)/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A9: for n st k<=n holds s.n<x0+r by A8,Th2; A10: s^\k is convergent & lim(s^\k)=x0 by A8,SEQ_4:33; dom(f^)/\right_open_halfline(x0)c=dom(f^) & dom(f^)/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A11: rng s c=dom(f^) & rng s c=right_open_halfline(x0) by A8,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A12: rng s c=dom f by A11,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A13: rng(s^\k)c=dom (f^)/\right_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=right_open_halfline(x0) & rng(s^\k)c=dom f by A8,A11,A12,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\right_open_halfline(x0) by XBOOLE_1:19; then A14: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A10,Def8; A15: now let n; A16: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in right_open_halfline(x0) by A13; then (s^\k).n in {g1: x0<g1} by LIMFUNC1:def 3; then A17: ex g1 st g1=(s^\k).n & x0<g1; k<=n+k by NAT_1:37 ; then s.(n+k)<x0+r by A9; then (s^\k).n<x0+r by SEQM_3:def 9 ; then (s^\k).n in {g2: x0<g2 & g2<x0+r} by A17; then (s^\k).n in ].x0,x0+r.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0,x0+r.[ by A13,A16,XBOOLE_0:def 3 ; then f.((s^\k).n)<0 by A2; hence (f*(s^\k)).n<0 by A13,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A18: f*(s^\k) is_not_0 by SEQ_1:7; for n holds 0<=n implies (f*(s^\k)).n<0 by A15; then A19: (f*(s^\k))" is divergent_to-infty by A14,A18,LIMFUNC1:63; (f*(s^\k))"=((f*s)^\k)" by A12,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A11,RFUNCT_2:27; hence thesis by A19,LIMFUNC1:34; end; theorem f is_left_convergent_in x0 & lim_left(f,x0)=0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds 0<=f.g) implies f^ is_left_divergent_to+infty_in x0 proof assume A1: f is_left_convergent_in x0 & lim_left(f,x0)=0 & for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0; given r such that A2: 0<r & for g st g in dom f/\].x0-r,x0.[ holds 0<=f.g; thus for r1 st r1<x0 ex g1 st r1<g1 & g1<x0 & g1 in dom(f^) proof let r1; assume r1<x0; then consider g1 such that A3: r1<g1 & g1<x0 & g1 in dom f & f.g1<>0 by A1; take g1; thus r1<g1 & g1<x0 by A3; not f.g1 in {0} by A3,TARSKI:def 1; then not g1 in f"{0} by FUNCT_1:def 13; then g1 in dom f\f"{0} by A3,XBOOLE_0 :def 4; hence thesis by RFUNCT_1:def 8; end; let s be Real_Sequence such that A4: s is convergent & lim s=x0 & rng s c=dom(f^)/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A5: for n st k<=n holds x0-r<s.n by A4,Th1; A6: s^\k is convergent & lim(s^\k)=x0 by A4,SEQ_4:33; dom (f^)/\left_open_halfline(x0)c=dom(f^) & dom (f^)/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A7: rng s c=dom(f^) & rng s c=left_open_halfline(x0) by A4,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A8: rng s c=dom f by A7,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom (f^)/\left_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=left_open_halfline(x0) & rng(s^\k)c=dom f by A4,A7,A8,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\left_open_halfline(x0) by XBOOLE_1:19; then A10: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A6,Def7; A11: f*(s^\k) is_not_0 by A9,RFUNCT_2:26; A12: now let n; A13: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in left_open_halfline(x0) by A9; then (s^\k).n in {g1: g1<x0} by PROB_1:def 15; then A14: ex g1 st g1=(s^\k).n & g1<x0; k<=n+k by NAT_1:37 ; then x0-r<s.(n+k) by A5; then x0-r<(s^\k).n by SEQM_3:def 9 ; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A14; then (s^\k).n in ].x0-r,x0.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0-r,x0.[ by A9,A13,XBOOLE_0:def 3 ; then A15: 0<=f.((s^\k).n) by A2 ; (f*(s^\k)).n<>0 by A11,SEQ_1:7; hence 0<(f*(s^\k)).n by A9,A15,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A16: f*(s^\k) is_not_0 by SEQ_1:7; for n holds 0<=n implies 0<(f*(s^\k)).n by A12; then A17: (f*(s^\k))" is divergent_to+infty by A10,A16,LIMFUNC1:62; (f*(s^\k))"=((f*s)^\k)" by A8,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A7,RFUNCT_2:27; hence thesis by A17,LIMFUNC1:34; end; theorem f is_left_convergent_in x0 & lim_left(f,x0)=0 & (for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0-r,x0.[ holds f.g<=0) implies f^ is_left_divergent_to-infty_in x0 proof assume A1: f is_left_convergent_in x0 & lim_left(f,x0)=0 & for r st r<x0 ex g st r<g & g<x0 & g in dom f & f.g<>0; given r such that A2: 0<r & for g st g in dom f/\].x0-r,x0.[ holds f.g<=0; thus for r1 st r1<x0 ex g1 st r1<g1 & g1<x0 & g1 in dom(f^) proof let r1; assume r1<x0; then consider g1 such that A3: r1<g1 & g1<x0 & g1 in dom f & f.g1<>0 by A1; take g1; thus r1<g1 & g1<x0 by A3; not f.g1 in {0} by A3,TARSKI:def 1; then not g1 in f"{0} by FUNCT_1:def 13; then g1 in dom f\f"{0} by A3,XBOOLE_0 :def 4; hence thesis by RFUNCT_1:def 8; end; let s be Real_Sequence such that A4: s is convergent & lim s=x0 & rng s c=dom(f^)/\left_open_halfline(x0); x0-r<x0 by A2,Lm1; then consider k such that A5: for n st k<=n holds x0-r<s.n by A4,Th1; A6: s^\k is convergent & lim(s^\k)=x0 by A4,SEQ_4:33; dom(f^)/\left_open_halfline(x0)c=dom(f^) & dom(f^)/\left_open_halfline(x0)c=left_open_halfline(x0) by XBOOLE_1:17; then A7: rng s c=dom(f^) & rng s c=left_open_halfline(x0) by A4,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A8: rng s c=dom f by A7,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom (f^)/\left_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=left_open_halfline(x0) & rng(s^\k)c=dom f by A4,A7,A8,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\left_open_halfline(x0) by XBOOLE_1:19; then A10: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A6,Def7; A11: f*(s^\k) is_not_0 by A9,RFUNCT_2:26; A12: now let n; A13: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in left_open_halfline(x0) by A9; then (s^\k).n in {g1: g1<x0} by PROB_1:def 15; then A14: ex g1 st g1=(s^\k).n & g1<x0; k<=n+k by NAT_1:37 ; then x0-r<s.(n+k) by A5; then x0-r<(s^\k).n by SEQM_3:def 9 ; then (s^\k).n in {g2: x0-r<g2 & g2<x0} by A14; then (s^\k).n in ].x0-r,x0.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0-r,x0.[ by A9,A13,XBOOLE_0:def 3 ; then A15: f.((s^\k).n)<=0 by A2 ; (f*(s^\k)).n<>0 by A11,SEQ_1:7; hence (f*(s^\k)).n<0 by A9,A15,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A16: f*(s^\k) is_not_0 by SEQ_1:7; for n holds 0<=n implies (f*(s^\k)).n<0 by A12; then A17: (f*(s^\k))" is divergent_to-infty by A10,A16,LIMFUNC1:63; (f*(s^\k))"=((f*s)^\k)" by A8,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A7,RFUNCT_2:27; hence thesis by A17,LIMFUNC1:34; end; theorem f is_right_convergent_in x0 & lim_right(f,x0)=0 & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds 0<=f.g) implies f^ is_right_divergent_to+infty_in x0 proof assume A1: f is_right_convergent_in x0 & lim_right(f,x0)=0 & for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0; given r such that A2: 0<r & for g st g in dom f/\].x0,x0+r.[ holds 0<=f.g; thus for r1 st x0<r1 ex g1 st g1<r1 & x0<g1 & g1 in dom(f^) proof let r1; assume x0<r1; then consider g1 such that A3: g1<r1 & x0<g1 & g1 in dom f & f.g1<>0 by A1; take g1; thus g1<r1 & x0<g1 by A3; not f.g1 in {0} by A3,TARSKI:def 1; then not g1 in f"{0} by FUNCT_1:def 13; then g1 in dom f\f"{0} by A3,XBOOLE_0 :def 4; hence thesis by RFUNCT_1:def 8; end; let s be Real_Sequence such that A4: s is convergent & lim s=x0 & rng s c=dom(f^)/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A5: for n st k<=n holds s.n<x0+r by A4,Th2; A6: s^\k is convergent & lim(s^\k)=x0 by A4,SEQ_4:33; dom(f^)/\right_open_halfline(x0)c=dom(f^) & dom(f^)/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A7: rng s c=dom(f^) & rng s c=right_open_halfline(x0) by A4,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A8: rng s c=dom f by A7,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom (f^)/\right_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=right_open_halfline(x0) & rng(s^\k)c=dom f by A4,A7,A8,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\right_open_halfline(x0) by XBOOLE_1:19; then A10: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A6,Def8; A11: f*(s^\k) is_not_0 by A9,RFUNCT_2:26; A12: now let n; A13: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in right_open_halfline(x0) by A9; then (s^\k).n in {g1: x0<g1} by LIMFUNC1:def 3; then A14: ex g1 st g1=(s^\k).n & x0<g1; k<=n+k by NAT_1:37 ; then s.(n+k)<x0+r by A5; then (s^\k).n<x0+r by SEQM_3:def 9 ; then (s^\k).n in {g2: x0<g2 & g2<x0+r} by A14; then (s^\k).n in ].x0,x0+r.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0,x0+r.[ by A9,A13,XBOOLE_0:def 3 ; then A15: 0<=f.((s^\k).n) by A2 ; 0<>(f*(s^\k)).n by A11,SEQ_1:7; hence 0<(f*(s^\k)).n by A9,A15,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A16: f*(s^\k) is_not_0 by SEQ_1:7; for n holds 0<=n implies 0<(f*(s^\k)).n by A12; then A17: (f*(s^\k))" is divergent_to+infty by A10,A16,LIMFUNC1:62; (f*(s^\k))"=((f*s)^\k)" by A8,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A7,RFUNCT_2:27; hence thesis by A17,LIMFUNC1:34; end; theorem f is_right_convergent_in x0 & lim_right(f,x0)=0 & (for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0) & (ex r st 0<r & for g st g in dom f /\ ].x0,x0+r.[ holds f.g<=0) implies f^ is_right_divergent_to-infty_in x0 proof assume A1: f is_right_convergent_in x0 & lim_right(f,x0)=0 & for r st x0<r ex g st g<r & x0<g & g in dom f & f.g<>0; given r such that A2: 0<r & for g st g in dom f/\].x0,x0+r.[ holds f.g<=0; thus for r1 st x0<r1 ex g1 st g1<r1 & x0<g1 & g1 in dom(f^) proof let r1; assume x0<r1; then consider g1 such that A3: g1<r1 & x0<g1 & g1 in dom f & f.g1<>0 by A1; take g1; thus g1<r1 & x0<g1 by A3; not f.g1 in {0} by A3,TARSKI:def 1; then not g1 in f"{0} by FUNCT_1:def 13; then g1 in dom f\f"{0} by A3,XBOOLE_0 :def 4; hence thesis by RFUNCT_1:def 8; end; let s be Real_Sequence such that A4: s is convergent & lim s=x0 & rng s c=dom(f^)/\right_open_halfline(x0); x0<x0+r by A2,Lm1; then consider k such that A5: for n st k<=n holds s.n<x0+r by A4,Th2; A6: s^\k is convergent & lim(s^\k)=x0 by A4,SEQ_4:33; dom(f^)/\right_open_halfline(x0)c=dom(f^) & dom(f^)/\right_open_halfline(x0)c=right_open_halfline(x0) by XBOOLE_1:17; then A7: rng s c=dom(f^) & rng s c=right_open_halfline(x0) by A4,XBOOLE_1:1; dom(f^)=dom f\f"{0} by RFUNCT_1:def 8; then dom(f^)c=dom f by XBOOLE_1:36 ; then A8: rng s c=dom f by A7,XBOOLE_1:1; rng(s^\k)c=rng s by RFUNCT_2:7; then A9: rng(s^\k)c=dom (f^)/\right_open_halfline(x0) & rng(s^\k)c=dom(f^) & rng(s^\k)c=right_open_halfline(x0) & rng(s^\k)c=dom f by A4,A7,A8,XBOOLE_1:1 ; then rng(s^\k)c=dom f/\right_open_halfline(x0) by XBOOLE_1:19; then A10: f*(s^\k) is convergent & lim(f*(s^\k))=0 by A1,A6,Def8; A11: f*(s^\k) is_not_0 by A9,RFUNCT_2:26; A12: now let n; A13: (s^\k).n in rng(s^\k) by RFUNCT_2:10; then (s^\k).n in right_open_halfline(x0) by A9; then (s^\k).n in {g1: x0<g1} by LIMFUNC1:def 3; then A14: ex g1 st g1=(s^\k).n & x0<g1; k<=n+k by NAT_1:37 ; then s.(n+k)<x0+r by A5; then (s^\k).n<x0+r by SEQM_3:def 9 ; then (s^\k).n in {g2: x0<g2 & g2<x0+r} by A14; then (s^\k).n in ].x0,x0+r.[ by RCOMP_1:def 2; then (s^\k).n in dom f/\].x0,x0+r.[ by A9,A13,XBOOLE_0:def 3 ; then A15: f.((s^\k).n)<=0 by A2 ; (f*(s^\k)).n<>0 by A11,SEQ_1:7; hence (f*(s^\k)).n<0 by A9,A15,RFUNCT_2:21; end; then for n holds 0<>(f*(s^\k)).n; then A16: f*(s^\k) is_not_0 by SEQ_1:7; for n holds 0<=n implies (f*(s^\k)).n<0 by A12; then A17: (f*(s^\k))" is divergent_to-infty by A10,A16,LIMFUNC1:63; (f*(s^\k))"=((f*s)^\k)" by A8,RFUNCT_2:22 .=((f*s)")^\k by SEQM_3:41 .=((f^)*s)^\k by A7,RFUNCT_2:27; hence thesis by A17,LIMFUNC1:34; end;