Journal of Formalized Mathematics
Volume 7, 1995
University of Bialystok
Copyright (c) 1995
Association of Mizar Users
The abstract of the Mizar article:
-
- by
- Andrzej Trybulec
- Received July 9, 1995
- MML identifier: GOBOARD6
- [
Mizar article,
MML identifier index
]
environ
vocabulary PRE_TOPC, EUCLID, GOBOARD1, MCART_1, ARYTM_1, METRIC_1, PCOMPS_1,
TOPS_1, SQUARE_1, FUNCT_1, FINSEQ_1, TREES_1, GOBOARD5, ARYTM_3,
ABSVALUE, BOOLE, TOPREAL1, ARYTM;
notation TARSKI, XBOOLE_0, ORDINAL1, XREAL_0, REAL_1, NAT_1, ABSVALUE,
SQUARE_1, BINARITH, BINOP_1, FINSEQ_1, MATRIX_1, STRUCT_0, METRIC_1,
PRE_TOPC, TOPS_1, PCOMPS_1, EUCLID, TOPREAL1, GOBOARD1, GOBOARD5;
constructors REAL_1, ABSVALUE, SQUARE_1, BINARITH, TOPS_1, PCOMPS_1, GOBOARD1,
GOBOARD5, MEMBERED, XBOOLE_0;
clusters STRUCT_0, RELSET_1, EUCLID, XREAL_0, PCOMPS_1, METRIC_1, ARYTM_3,
MEMBERED, ZFMISC_1, XBOOLE_0, ORDINAL2;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
begin
reserve i,j,n for Nat,
r,s,r1,s1,r2,s2,r',s' for Real,
p,q for Point of TOP-REAL 2,
G for Go-board,
x,y for set,
v for Point of Euclid 2;
canceled 3;
theorem :: GOBOARD6:4
for M being non empty Reflexive MetrStruct, u being Point of M,
r being real number holds
r > 0 implies u in Ball(u,r);
canceled;
theorem :: GOBOARD6:6
for B being Subset of TOP-REAL n, u being Point of Euclid n
st B = Ball(u,r) holds B is open;
theorem :: GOBOARD6:7
for M being non empty MetrSpace, u being Point of M,
P being Subset of TopSpaceMetr(M)
holds u in Int P iff ex r being real number st r > 0 & Ball(u,r) c= P;
theorem :: GOBOARD6:8
for u being Point of Euclid n, P being Subset of TOP-REAL n
holds u in Int P iff ex r being real number st r > 0 & Ball(u,r) c= P;
theorem :: GOBOARD6:9 :: TOPREAL3:12
for u,v being Point of Euclid 2 st u = |[r1,s1]| & v = |[r2,s2]| holds
dist(u,v) =sqrt ((r1 - r2)^2 + (s1 - s2)^2);
theorem :: GOBOARD6:10
for u being Point of Euclid 2 st u = |[r,s]| holds
0 <= r2 & r2 < r1 implies |[r+r2,s]| in Ball(u,r1);
theorem :: GOBOARD6:11
for u being Point of Euclid 2 st u = |[r,s]| holds
0 <= s2 & s2 < s1 implies |[r,s+s2]| in Ball(u,s1);
theorem :: GOBOARD6:12
for u being Point of Euclid 2 st u = |[r,s]| holds
0 <= r2 & r2 < r1 implies |[r-r2,s]| in Ball(u,r1);
theorem :: GOBOARD6:13
for u being Point of Euclid 2 st u = |[r,s]| holds
0 <= s2 & s2 < s1 implies |[r,s-s2]| in Ball(u,s1);
theorem :: GOBOARD6:14
1 <= i & i < len G & 1 <= j & j < width G
implies G*(i,j)+G*(i+1,j+1) = G*(i,j+1)+G*(i+1,j);
theorem :: GOBOARD6:15
Int v_strip(G,0) = { |[r,s]| : r < G*(1,1)`1 };
theorem :: GOBOARD6:16
Int v_strip(G,len G) = { |[r,s]| : G*(len G,1)`1 < r };
theorem :: GOBOARD6:17
1 <= i & i < len G
implies Int v_strip(G,i) = { |[r,s]| : G*(i,1)`1 < r & r < G*(i+1,1)`1 };
theorem :: GOBOARD6:18
Int h_strip(G,0) = { |[r,s]| : s < G*(1,1)`2 };
theorem :: GOBOARD6:19
Int h_strip(G,width G) = { |[r,s]| : G*(1,width G)`2 < s };
theorem :: GOBOARD6:20
1 <= j & j < width G
implies Int h_strip(G,j) = { |[r,s]| : G*(1,j)`2 < s & s < G*(1,j+1)`2 };
theorem :: GOBOARD6:21
Int cell(G,0,0) = { |[r,s]| : r < G*(1,1)`1 & s < G*(1,1)`2 };
theorem :: GOBOARD6:22
Int cell(G,0,width G) = { |[r,s]| : r < G*(1,1)`1 & G*(1,width G)`2 < s };
theorem :: GOBOARD6:23
1 <= j & j < width G
implies Int cell(G,0,j) =
{ |[r,s]| : r < G*(1,1)`1 & G*(1,j)`2 < s & s < G*(1,j+1)`2 };
theorem :: GOBOARD6:24
Int cell(G,len G,0) = { |[r,s]| : G*(len G,1)`1 < r & s < G*(1,1)`2 };
theorem :: GOBOARD6:25
Int cell(G,len G,width G) =
{ |[r,s]| : G*(len G,1)`1 < r & G*(1,width G)`2 < s };
theorem :: GOBOARD6:26
1 <= j & j < width G
implies Int cell(G,len G,j) =
{ |[r,s]| : G*(len G,1)`1 < r & G*(1,j)`2 < s & s < G*(1,j+1)`2 };
theorem :: GOBOARD6:27
1 <= i & i < len G
implies Int cell(G,i,0) =
{ |[r,s]| : G*(i,1)`1 < r & r < G*(i+1,1)`1 & s < G*(1,1)`2 };
theorem :: GOBOARD6:28
1 <= i & i < len G
implies Int cell(G,i,width G) =
{ |[r,s]| : G*(i,1)`1 < r & r < G*(i+1,1)`1 & G*(1,width G)`2 < s };
theorem :: GOBOARD6:29
1 <= i & i < len G & 1 <= j & j < width G
implies Int cell(G,i,j) =
{ |[r,s]| : G*(i,1)`1 < r & r < G*(i+1,1)`1 &
G*(1,j)`2 < s & s < G*(1,j+1)`2 };
theorem :: GOBOARD6:30
1 <= j & j <= width G & p in Int h_strip(G,j) implies p`2 > G*(1,j)`2;
theorem :: GOBOARD6:31
j < width G & p in Int h_strip(G,j) implies p`2 < G*(1,j+1)`2;
theorem :: GOBOARD6:32
1 <= i & i <= len G & p in Int v_strip(G,i) implies p`1 > G*(i,1)`1;
theorem :: GOBOARD6:33
i < len G & p in Int v_strip(G,i) implies p`1 < G*(i+1,1)`1;
theorem :: GOBOARD6:34
1 <= i & i+1 <= len G & 1 <= j & j+1 <= width G implies
1/2*(G*(i,j)+G*(i+1,j+1)) in Int cell(G,i,j);
theorem :: GOBOARD6:35
1 <= i & i+1 <= len G implies
1/2*(G*(i,width G)+G*(i+1,width G))+|[0,1]| in Int cell(G,i,width G);
theorem :: GOBOARD6:36
1 <= i & i+1 <= len G implies
1/2*(G*(i,1)+G*(i+1,1))-|[0,1]| in Int cell(G,i,0);
theorem :: GOBOARD6:37
1 <= j & j+1 <= width G implies
1/2*(G*(len G,j)+G*(len G,j+1))+|[1,0]| in Int cell(G,len G,j);
theorem :: GOBOARD6:38
1 <= j & j+1 <= width G implies
1/2*(G*(1,j)+G*(1,j+1))-|[1,0]| in Int cell(G,0,j);
theorem :: GOBOARD6:39
G*(1,1)-|[1,1]| in Int cell(G,0,0);
theorem :: GOBOARD6:40
G*(len G,width G)+|[1,1]| in Int cell(G,len G,width G);
theorem :: GOBOARD6:41
G*(1,width G)+|[-1,1]| in Int cell(G,0,width G);
theorem :: GOBOARD6:42
G*(len G,1)+|[1,-1]| in Int cell(G,len G,0);
theorem :: GOBOARD6:43
1 <= i & i < len G & 1 <= j & j < width G implies
LSeg(1/2*(G*(i,j)+G*(i+1,j+1)),1/2*(G*(i,j)+G*(i,j+1)))
c= Int cell(G,i,j) \/ { 1/2*(G*(i,j)+G*(i,j+1)) };
theorem :: GOBOARD6:44
1 <= i & i < len G & 1 <= j & j < width G implies
LSeg(1/2*(G*(i,j)+G*(i+1,j+1)),1/2*(G*(i,j+1)+G*(i+1,j+1))) c=
Int cell(G,i,j) \/ { 1/2*(G*(i,j+1)+G*(i+1,j+1)) };
theorem :: GOBOARD6:45
1 <= i & i < len G & 1 <= j & j < width G implies
LSeg(1/2*(G*(i,j)+G*(i+1,j+1)),1/2*(G*(i+1,j)+G*(i+1,j+1))) c=
Int cell(G,i,j) \/ { 1/2*(G*(i+1,j)+G*(i+1,j+1)) };
theorem :: GOBOARD6:46
1 <= i & i < len G & 1 <= j & j < width G implies
LSeg(1/2*(G*(i,j)+G*(i+1,j+1)),1/2*(G*(i,j)+G*(i+1,j))) c=
Int cell(G,i,j) \/ { 1/2*(G*(i,j)+G*(i+1,j)) };
theorem :: GOBOARD6:47
1 <= j & j < width G implies
LSeg(1/2*(G*(1,j)+G*(1,j+1)) - |[1,0]|,1/2*(G*(1,j)+G*(1,j+1))) c=
Int cell(G,0,j) \/ { 1/2*(G*(1,j)+G*(1,j+1)) };
theorem :: GOBOARD6:48
1 <= j & j < width G implies
LSeg(1/2*(G*(len G,j)+G*(len G,j+1))
+ |[1,0]|,1/2*(G*(len G,j)+G*(len G,j+1)))
c= Int cell(G,len G,j) \/ { 1/2*(G*(len G,j)+G*(len G,j+1)) };
theorem :: GOBOARD6:49
1 <= i & i < len G implies
LSeg(1/2*(G*(i,1)+G*(i+1,1)) - |[0,1]|,1/2*(G*(i,1)+G*(i+1,1))) c=
Int cell(G,i,0) \/ { 1/2*(G*(i,1)+G*(i+1,1)) };
theorem :: GOBOARD6:50
1 <= i & i < len G implies
LSeg(1/2*(G*(i,width G)+G*(i+1,width G))+ |[0,1]|,
1/2*(G*(i,width G)+G*(i+1,width G)))
c= Int cell(G,i,width G) \/ { 1/2*(G*(i,width G)+G*(i+1,width G)) };
theorem :: GOBOARD6:51
1 <= j & j < width G implies
LSeg(1/2*(G*(1,j)+G*(1,j+1)) - |[1,0]|,G*(1,j) - |[1,0]|) c=
Int cell(G,0,j) \/ { G*(1,j) - |[1,0]| };
theorem :: GOBOARD6:52
1 <= j & j < width G implies
LSeg(1/2*(G*(1,j)+G*(1,j+1)) - |[1,0]|,G*(1,j+1) - |[1,0]|) c=
Int cell(G,0,j) \/ { G*(1,j+1) - |[1,0]| };
theorem :: GOBOARD6:53
1 <= j & j < width G implies
LSeg(1/2*(G*(len G,j)+G*(len G,j+1)) + |[1,0]|,G*(len G,j) + |[1,0]|) c=
Int cell(G,len G,j) \/ { G*(len G,j) + |[1,0]| };
theorem :: GOBOARD6:54
1 <= j & j < width G implies
LSeg(1/2*(G*(len G,j)+G*(len G,j+1)) + |[1,0]|,G*(len G,j+1) + |[1,0]|) c=
Int cell(G,len G,j) \/ { G*(len G,j+1) + |[1,0]| };
theorem :: GOBOARD6:55
1 <= i & i < len G implies
LSeg(1/2*(G*(i,1)+G*(i+1,1)) - |[0,1]|,G*(i,1) - |[0,1]|) c=
Int cell(G,i,0) \/ { G*(i,1) - |[0,1]| };
theorem :: GOBOARD6:56
1 <= i & i < len G implies
LSeg(1/2*(G*(i,1)+G*(i+1,1)) - |[0,1]|,G*(i+1,1) - |[0,1]|) c=
Int cell(G,i,0) \/ { G*(i+1,1) - |[0,1]| };
theorem :: GOBOARD6:57
1 <= i & i < len G implies
LSeg(1/2*(G*(i,width G)+G*(i+1,width G)) + |[0,1]|,G*
(i,width G) + |[0,1]|) c=
Int cell(G,i,width G) \/ { G*(i,width G) + |[0,1]| };
theorem :: GOBOARD6:58
1 <= i & i < len G implies
LSeg(1/2*(G*(i,width G)+G*(i+1,width G)) + |[0,1]|,G*
(i+1,width G) + |[0,1]|)
c= Int cell(G,i,width G) \/ { G*(i+1,width G) + |[0,1]| };
theorem :: GOBOARD6:59
LSeg(G*(1,1) - |[1,1]|,G*(1,1) - |[1,0]|) c=
Int cell(G,0,0) \/ { G*(1,1) - |[1,0]| };
theorem :: GOBOARD6:60
LSeg(G*(len G,1) + |[1,-1]|,G*(len G,1) + |[1,0]|) c=
Int cell(G,len G,0) \/ { G*(len G,1) + |[1,0]| };
theorem :: GOBOARD6:61
LSeg(G*(1,width G) + |[-1,1]|,G*(1,width G) - |[1,0]|) c=
Int cell(G,0,width G) \/ { G*(1,width G) - |[1,0]| };
theorem :: GOBOARD6:62
LSeg(G*(len G,width G) + |[1,1]|,G*(len G,width G) + |[1,0]|) c=
Int cell(G,len G,width G) \/ { G*(len G,width G) + |[1,0]| };
theorem :: GOBOARD6:63
LSeg(G*(1,1) - |[1,1]|,G*(1,1) - |[0,1]|) c=
Int cell(G,0,0) \/ { G*(1,1) - |[0,1]| };
theorem :: GOBOARD6:64
LSeg(G*(len G,1) + |[1,-1]|,G*(len G,1) - |[0,1]|) c=
Int cell(G,len G,0) \/ { G*(len G,1) - |[0,1]| };
theorem :: GOBOARD6:65
LSeg(G*(1,width G) + |[-1,1]|,G*(1,width G) + |[0,1]|) c=
Int cell(G,0,width G) \/ { G*(1,width G) + |[0,1]| };
theorem :: GOBOARD6:66
LSeg(G*(len G,width G) + |[1,1]|,G*(len G,width G) + |[0,1]|) c=
Int cell(G,len G,width G) \/ { G*(len G,width G) + |[0,1]| };
theorem :: GOBOARD6:67
1 <= i & i < len G & 1 <= j & j+1 < width G implies
LSeg(1/2*(G*(i,j)+G*(i+1,j+1)),1/2*(G*(i,j+1)+G*(i+1,j+2))) c=
Int cell(G,i,j) \/ Int cell(G,i,j+1) \/ { 1/2*(G*(i,j+1)+G*(i+1,j+1)) };
theorem :: GOBOARD6:68
1 <= j & j < width G & 1 <= i & i+1 < len G implies
LSeg(1/2*(G*(i,j)+G*(i+1,j+1)),1/2*(G*(i+1,j)+G*(i+2,j+1))) c=
Int cell(G,i,j) \/ Int cell(G,i+1,j) \/ { 1/2*(G*(i+1,j)+G*(i+1,j+1)) };
theorem :: GOBOARD6:69
1 <= i & i < len G & 1 < width G implies
LSeg(1/2*(G*(i,1)+G*(i+1,1))-|[0,1]|,1/2*(G*(i,1)+G*(i+1,2))) c=
Int cell(G,i,0) \/ Int cell(G,i,1) \/ { 1/2*(G*(i,1)+G*(i+1,1)) };
theorem :: GOBOARD6:70
1 <= i & i < len G & 1 < width G implies
LSeg(1/2*(G*(i,width G)+G*(i+1,width G))+|[0,1]|,
1/2*(G*(i,width G)+G*(i+1,width G -' 1))) c=
Int cell(G,i,width G -'1) \/ Int cell(G,i,width G)
\/ { 1/2*(G*(i,width G)+G*(i+1,width G)) };
theorem :: GOBOARD6:71
1 <= j & j < width G & 1 < len G implies
LSeg(1/2*(G*(1,j)+G*(1,j+1))-|[1,0]|,1/2*(G*(1,j)+G*(2,j+1))) c=
Int cell(G,0,j) \/ Int cell(G,1,j) \/ { 1/2*(G*(1,j)+G*(1,j+1)) };
theorem :: GOBOARD6:72
1 <= j & j < width G & 1 < len G implies
LSeg(1/2*(G*(len G,j)+G*(len G,j+1))+|[1,0]|,
1/2*(G*(len G,j)+G*(len G -' 1,j+1))) c=
Int cell(G,len G -' 1,j) \/ Int cell(G,len G,j)
\/ { 1/2*(G*(len G,j)+G*(len G,j+1)) };
theorem :: GOBOARD6:73
1 < len G & 1 <= j & j+1 < width G implies
LSeg(1/2*(G*(1,j)+G*(1,j+1))-|[1,0]|,1/2*(G*(1,j+1)+G*(1,j+2))-|[1,0]|) c=
Int cell(G,0,j) \/ Int cell(G,0,j+1) \/ { G*(1,j+1)-|[1,0]| };
theorem :: GOBOARD6:74
1 < len G & 1 <= j & j+1 < width G implies
LSeg(1/2*(G*(len G,j)+G*(len G,j+1))+|[1,0]|,
1/2*(G*(len G,j+1)+G*(len G,j+2))+|[1,0]|) c=
Int cell(G,len G,j) \/ Int cell(G,len G,j+1) \/ { G*(len G,j+1)+|[1,0]| };
theorem :: GOBOARD6:75
1 < width G & 1 <= i & i+1 < len G implies
LSeg(1/2*(G*(i,1)+G*(i+1,1))-|[0,1]|,1/2*(G*(i+1,1)+G*(i+2,1))-|[0,1]|) c=
Int cell(G,i,0) \/ Int cell(G,i+1,0) \/ { G*(i+1,1)-|[0,1]| };
theorem :: GOBOARD6:76
1 < width G & 1 <= i & i+1 < len G implies
LSeg(1/2*(G*(i,width G)+G*(i+1,width G))+|[0,1]|,
1/2*(G*(i+1,width G)+G*(i+2,width G))+|[0,1]|) c=
Int cell(G,i,width G) \/ Int cell(G,i+1,width G) \/
{ G*(i+1,width G)+|[0,1]| };
theorem :: GOBOARD6:77
1 < len G & 1 < width G implies
LSeg(G*(1,1)-|[1,1]|,1/2*(G*(1,1)+G*(1,2))-|[1,0]|) c=
Int cell(G,0,0) \/ Int cell(G,0,1) \/ { G*(1,1)-|[1,0]| };
theorem :: GOBOARD6:78
1 < len G & 1 < width G implies
LSeg(G*(len G,1)+|[1,-1]|,1/2*(G*(len G,1)+G*(len G,2))+|[1,0]|) c=
Int cell(G,len G,0) \/ Int cell(G,len G,1) \/ { G*(len G,1)+|[1,0]| };
theorem :: GOBOARD6:79
1 < len G & 1 < width G implies
LSeg(G*(1,width G)+|[-1,1]|,1/2*(G*(1,width G)+G*
(1,width G -' 1))-|[1,0]|) c=
Int cell(G,0,width G) \/ Int cell(G,0,width G -' 1)
\/ { G*(1,width G)-|[1,0]| };
theorem :: GOBOARD6:80
1 < len G & 1 < width G implies
LSeg(G*(len G,width G)+|[1,1]|,
1/2*(G*(len G,width G)+G*(len G,width G -' 1))+|[1,0]|) c=
Int cell(G,len G,width G) \/ Int cell(G,len G,width G -' 1)
\/ { G*(len G,width G)+|[1,0]| };
theorem :: GOBOARD6:81
1 < width G & 1 < len G implies
LSeg(G*(1,1)-|[1,1]|,1/2*(G*(1,1)+G*(2,1))-|[0,1]|) c=
Int cell(G,0,0) \/ Int cell(G,1,0) \/ { G*(1,1)-|[0,1]| };
theorem :: GOBOARD6:82
1 < width G & 1 < len G implies
LSeg(G*(1,width G)+|[-1,1]|,1/2*(G*(1,width G)+G*(2,width G))+|[0,1]|) c=
Int cell(G,0,width G) \/ Int cell(G,1,width G) \/ { G*(1,width G)+|[0,1]| };
theorem :: GOBOARD6:83
1 < width G & 1 < len G implies
LSeg(G*(len G,1)+|[1,-1]|,1/2*(G*(len G,1)+G*(len G -' 1,1))-|[0,1]|) c=
Int cell(G,len G,0) \/ Int cell(G,len G -' 1,0)
\/ { G*(len G,1)-|[0,1]| };
theorem :: GOBOARD6:84
1 < width G & 1 < len G implies
LSeg(G*(len G,width G)+|[1,1]|,
1/2*(G*(len G,width G)+G*(len G -' 1,width G))+|[0,1]|) c=
Int cell(G,len G,width G) \/ Int cell(G,len G -' 1,width G)
\/ { G*(len G,width G)+|[0,1]| };
theorem :: GOBOARD6:85
1 <= i & i+1 <= len G & 1 <= j & j+1 <= width G implies
LSeg(1/2*(G*(i,j)+G*(i+1,j+1)),p) meets Int cell(G,i,j);
theorem :: GOBOARD6:86
1 <= i & i+1 <= len G implies
LSeg(p,1/2*(G*(i,width G)+G*(i+1,width G))+|[0,1]|)
meets Int cell(G,i,width G);
theorem :: GOBOARD6:87
1 <= i & i+1 <= len G implies
LSeg(1/2*(G*(i,1)+G*(i+1,1))-|[0,1]|,p) meets Int cell(G,i,0);
theorem :: GOBOARD6:88
1 <= j & j+1 <= width G implies
LSeg(1/2*(G*(1,j)+G*(1,j+1))-|[1,0]|,p) meets Int cell(G,0,j);
theorem :: GOBOARD6:89
1 <= j & j+1 <= width G implies
LSeg(p,1/2*(G*(len G,j)+G*(len G,j+1))+|[1,0]|) meets Int cell(G,len G,j);
theorem :: GOBOARD6:90
LSeg(p,G*(1,1)-|[1,1]|) meets Int cell(G,0,0);
theorem :: GOBOARD6:91
LSeg(p,G*(len G,width G)+|[1,1]|) meets Int cell(G,len G,width G);
theorem :: GOBOARD6:92
LSeg(p,G*(1,width G)+|[-1,1]|) meets Int cell(G,0,width G);
theorem :: GOBOARD6:93
LSeg(p,G*(len G,1)+|[1,-1]|) meets Int cell(G,len G,0);
Back to top