environ vocabulary BOOLE, KURATO_1, FINSET_1, TOPS_1, PRE_TOPC, CARD_1, SUBSET_1, RCOMP_1, PROB_1, INCPROJ, SETFAM_1, AMI_1, TOPMETR, RAT_1, BORSUK_5; notation XBOOLE_0, TARSKI, SUBSET_1, STRUCT_0, NUMBERS, XREAL_0, PRE_TOPC, TOPS_1, ENUMSET1, CARD_1, FINSET_1, RCOMP_1, INCPROJ, NAT_1, SEQ_4, RCOMP_2, PCOMPS_1, TOPMETR, AMI_1, BORSUK_5; constructors TOPS_1, NAT_1, INCPROJ, RCOMP_2, PSCOMP_1, INTEGRA1, COMPTS_1, LIMFUNC1, TOPGRP_1, TREAL_1, DOMAIN_1, RAT_1, PROB_1, AMI_1, BORSUK_5, MEMBERED; clusters FINSET_1, TOPS_1, TOPREAL6, AMI_1, XBOOLE_0, BORSUK_5, MEMBERED, ZFMISC_1; requirements SUBSET, BOOLE, NUMERALS, REAL, ARITHM; begin :: Fourteen Kuratowski Sets reserve T for non empty TopSpace; reserve A for Subset of T; theorem :: KURATO_1:1 Cl (Cl (Cl (Cl A)`)`)` = Cl (Cl A)`; definition let T, A; func Kurat14Part A equals :: KURATO_1:def 1 { A, Cl A, (Cl A)`, Cl (Cl A)`, (Cl (Cl A)`)`, Cl (Cl (Cl A)`)`, (Cl (Cl (Cl A)`)`)` }; end; definition let T, A; cluster Kurat14Part A -> finite; end; definition let T, A; func Kurat14Set A -> Subset-Family of T equals :: KURATO_1:def 2 { A, Cl A, (Cl A)`, Cl (Cl A)`, (Cl (Cl A)`)`, Cl (Cl (Cl A)`)`, (Cl (Cl (Cl A)`)`)` } \/ { A`, Cl A`, (Cl A`)`, Cl (Cl A`)`, (Cl (Cl A`)`)`, Cl (Cl (Cl A`)`)`, (Cl (Cl (Cl A`)`)`)` }; end; theorem :: KURATO_1:2 Kurat14Set A = Kurat14Part A \/ Kurat14Part A`; theorem :: KURATO_1:3 A in Kurat14Set A & Cl A in Kurat14Set A & (Cl A)` in Kurat14Set A & Cl (Cl A)` in Kurat14Set A & (Cl (Cl A)`)` in Kurat14Set A & Cl (Cl (Cl A)`)` in Kurat14Set A & (Cl (Cl (Cl A)`)`)` in Kurat14Set A; theorem :: KURATO_1:4 A` in Kurat14Set A & Cl A` in Kurat14Set A & (Cl A`)` in Kurat14Set A & Cl (Cl A`)` in Kurat14Set A & (Cl (Cl A`)`)` in Kurat14Set A & Cl (Cl (Cl A`)`)` in Kurat14Set A & (Cl (Cl (Cl A`)`)`)` in Kurat14Set A; definition let T, A; func Kurat14ClPart A -> Subset-Family of T equals :: KURATO_1:def 3 { Cl A, Cl (Cl A)`, Cl (Cl (Cl A)`)`, Cl A`, Cl (Cl A`)`, Cl (Cl (Cl A`)`)` }; func Kurat14OpPart A -> Subset-Family of T equals :: KURATO_1:def 4 { (Cl A)`, (Cl (Cl A)`)`, (Cl (Cl (Cl A)`)`)`, (Cl A`)`, (Cl (Cl A`)`)`, (Cl (Cl (Cl A`)`)`)` }; end; theorem :: KURATO_1:5 Kurat14Set A = { A, A` } \/ Kurat14ClPart A \/ Kurat14OpPart A; definition let T, A; cluster Kurat14Set A -> finite; end; theorem :: KURATO_1:6 for Q being Subset of T holds Q in Kurat14Set A implies Q` in Kurat14Set A & Cl Q in Kurat14Set A; theorem :: KURATO_1:7 card Kurat14Set A <= 14; begin :: Seven Kuratowski Sets definition let T, A; func Kurat7Set A -> Subset-Family of T equals :: KURATO_1:def 5 { A, Int A, Cl A, Int Cl A, Cl Int A, Cl Int Cl A, Int Cl Int A }; end; theorem :: KURATO_1:8 A in Kurat7Set A & Int A in Kurat7Set A & Cl A in Kurat7Set A & Int Cl A in Kurat7Set A & Cl Int A in Kurat7Set A & Cl Int Cl A in Kurat7Set A & Int Cl Int A in Kurat7Set A; theorem :: KURATO_1:9 Kurat7Set A = { A } \/ { Int A, Int Cl A, Int Cl Int A } \/ { Cl A, Cl Int A, Cl Int Cl A }; definition let T, A; cluster Kurat7Set A -> finite; end; theorem :: KURATO_1:10 for Q being Subset of T holds Q in Kurat7Set A implies Int Q in Kurat7Set A & Cl Q in Kurat7Set A; theorem :: KURATO_1:11 card Kurat7Set A <= 7; begin :: The Set Generating Exactly Fourteen Kuratowski Sets definition func KurExSet -> Subset of R^1 equals :: KURATO_1:def 6 {1} \/ RAT (2,3) \/ ]. 3, 4 .[ \/ ]. 4,+infty.[; end; theorem :: KURATO_1:12 Cl KurExSet = {1} \/ [. 2,+infty.[; theorem :: KURATO_1:13 (Cl KurExSet)` = ].-infty, 1 .[ \/ ]. 1, 2 .[; theorem :: KURATO_1:14 Cl (Cl KurExSet)` = ].-infty, 2 .]; theorem :: KURATO_1:15 (Cl (Cl KurExSet)`)` = ]. 2,+infty.[; theorem :: KURATO_1:16 Cl (Cl (Cl KurExSet)`)` = [. 2,+infty.[; theorem :: KURATO_1:17 (Cl (Cl (Cl KurExSet)`)`)` = ].-infty, 2 .[; theorem :: KURATO_1:18 KurExSet` = ].-infty, 1 .[ \/ ]. 1, 2 .] \/ IRRAT(2,3) \/ {3} \/ {4}; theorem :: KURATO_1:19 Cl KurExSet` = ].-infty, 3 .] \/ {4}; theorem :: KURATO_1:20 (Cl KurExSet`)` = ]. 3, 4 .[ \/ ]. 4,+infty.[; theorem :: KURATO_1:21 Cl (Cl KurExSet`)` = [. 3,+infty.[; theorem :: KURATO_1:22 (Cl (Cl KurExSet`)`)` = ].-infty, 3 .[; theorem :: KURATO_1:23 Cl (Cl (Cl KurExSet`)`)` = ].-infty, 3 .]; theorem :: KURATO_1:24 (Cl (Cl (Cl KurExSet`)`)`)` = ]. 3,+infty.[; begin :: The Set Generating Exactly Seven Kuratowski Sets theorem :: KURATO_1:25 Int KurExSet = ]. 3, 4 .[ \/ ]. 4,+infty.[; theorem :: KURATO_1:26 Cl Int KurExSet = [. 3,+infty.[; theorem :: KURATO_1:27 Int Cl Int KurExSet = ]. 3,+infty.[; theorem :: KURATO_1:28 Int Cl KurExSet = ]. 2,+infty.[; theorem :: KURATO_1:29 Cl Int Cl KurExSet = [. 2,+infty.[; begin :: The Difference Between Chosen Kuratowski Sets theorem :: KURATO_1:30 Cl Int Cl KurExSet <> Int Cl KurExSet; theorem :: KURATO_1:31 Cl Int Cl KurExSet <> Cl KurExSet; theorem :: KURATO_1:32 Cl Int Cl KurExSet <> Int Cl Int KurExSet; theorem :: KURATO_1:33 Cl Int Cl KurExSet <> Cl Int KurExSet; theorem :: KURATO_1:34 Cl Int Cl KurExSet <> Int KurExSet; theorem :: KURATO_1:35 Int Cl KurExSet <> Cl KurExSet; theorem :: KURATO_1:36 Int Cl KurExSet <> Int Cl Int KurExSet; theorem :: KURATO_1:37 Int Cl KurExSet <> Cl Int KurExSet; theorem :: KURATO_1:38 Int Cl KurExSet <> Int KurExSet; theorem :: KURATO_1:39 Int Cl Int KurExSet <> Cl KurExSet; theorem :: KURATO_1:40 Cl Int KurExSet <> Cl KurExSet; theorem :: KURATO_1:41 Int KurExSet <> Cl KurExSet; theorem :: KURATO_1:42 Cl KurExSet <> KurExSet; theorem :: KURATO_1:43 KurExSet <> Int KurExSet; theorem :: KURATO_1:44 Cl Int KurExSet <> Int Cl Int KurExSet; theorem :: KURATO_1:45 Int Cl Int KurExSet <> Int KurExSet; theorem :: KURATO_1:46 Cl Int KurExSet <> Int KurExSet; begin :: Final Proofs For Seven theorem :: KURATO_1:47 Int Cl Int KurExSet <> Int Cl KurExSet; theorem :: KURATO_1:48 Int KurExSet, Int Cl KurExSet, Int Cl Int KurExSet are_mutually_different; theorem :: KURATO_1:49 Cl KurExSet, Cl Int KurExSet, Cl Int Cl KurExSet are_mutually_different; theorem :: KURATO_1:50 for X being set st X in { Int KurExSet, Int Cl KurExSet, Int Cl Int KurExSet } holds X is open non empty Subset of R^1; theorem :: KURATO_1:51 for X being set st X in { Cl KurExSet, Cl Int KurExSet, Cl Int Cl KurExSet } holds X is closed Subset of R^1; theorem :: KURATO_1:52 for X being set st X in { Int KurExSet, Int Cl KurExSet, Int Cl Int KurExSet } holds X <> REAL; theorem :: KURATO_1:53 for X being set st X in { Cl KurExSet, Cl Int KurExSet, Cl Int Cl KurExSet } holds X <> REAL; theorem :: KURATO_1:54 { Int KurExSet, Int Cl KurExSet, Int Cl Int KurExSet } misses { Cl KurExSet, Cl Int KurExSet, Cl Int Cl KurExSet }; theorem :: KURATO_1:55 Int KurExSet, Int Cl KurExSet, Int Cl Int KurExSet, Cl KurExSet, Cl Int KurExSet, Cl Int Cl KurExSet are_mutually_different; definition cluster KurExSet -> non closed non open; end; theorem :: KURATO_1:56 { Int KurExSet, Int Cl KurExSet, Int Cl Int KurExSet, Cl KurExSet, Cl Int KurExSet, Cl Int Cl KurExSet } misses { KurExSet }; theorem :: KURATO_1:57 KurExSet, Int KurExSet, Int Cl KurExSet, Int Cl Int KurExSet, Cl KurExSet, Cl Int KurExSet, Cl Int Cl KurExSet are_mutually_different; theorem :: KURATO_1:58 card Kurat7Set KurExSet = 7; begin :: Final Proofs For Fourteen definition cluster Kurat14ClPart KurExSet -> with_proper_subsets; cluster Kurat14OpPart KurExSet -> with_proper_subsets; end; definition cluster Kurat14Set KurExSet -> with_proper_subsets; end; definition cluster Kurat14Set KurExSet -> with_non-empty_elements; end; theorem :: KURATO_1:59 for A being with_non-empty_elements set, B being set st B c= A holds B is with_non-empty_elements; definition cluster Kurat14ClPart KurExSet -> with_non-empty_elements; cluster Kurat14OpPart KurExSet -> with_non-empty_elements; end; definition cluster with_proper_subsets with_non-empty_elements Subset-Family of R^1; end; theorem :: KURATO_1:60 for F, G being with_proper_subsets with_non-empty_elements Subset-Family of R^1 st F is open & G is closed holds F misses G; definition cluster Kurat14ClPart KurExSet -> closed; cluster Kurat14OpPart KurExSet -> open; end; theorem :: KURATO_1:61 Kurat14ClPart KurExSet misses Kurat14OpPart KurExSet; definition let T, A; cluster Kurat14ClPart A -> finite; cluster Kurat14OpPart A -> finite; end; theorem :: KURATO_1:62 card (Kurat14ClPart KurExSet) = 6; theorem :: KURATO_1:63 card (Kurat14OpPart KurExSet) = 6; theorem :: KURATO_1:64 { KurExSet, KurExSet` } misses Kurat14ClPart KurExSet; definition cluster KurExSet -> non empty; end; theorem :: KURATO_1:65 KurExSet <> KurExSet`; theorem :: KURATO_1:66 { KurExSet, KurExSet` } misses Kurat14OpPart KurExSet; theorem :: KURATO_1:67 card Kurat14Set KurExSet = 14; begin :: Properties of Kuratowski Sets definition let T be TopStruct, A be Subset-Family of T; attr A is Cl-closed means :: KURATO_1:def 7 for P being Subset of T st P in A holds Cl P in A; attr A is Int-closed means :: KURATO_1:def 8 for P being Subset of T st P in A holds Int P in A; end; definition let T be 1-sorted, A be Subset-Family of T; attr A is compl-closed means :: KURATO_1:def 9 for P being Subset of T st P in A holds P` in A; end; definition let T, A; cluster Kurat14Set A -> non empty; cluster Kurat14Set A -> Cl-closed; cluster Kurat14Set A -> compl-closed; end; definition let T, A; cluster Kurat7Set A -> non empty; cluster Kurat7Set A -> Int-closed; cluster Kurat7Set A -> Cl-closed; end; definition let T; cluster Int-closed Cl-closed non empty Subset-Family of T; cluster compl-closed Cl-closed non empty Subset-Family of T; end;