Journal of Formalized Mathematics
Volume 11, 1999
University of Bialystok
Copyright (c) 1999 Association of Mizar Users

The abstract of the Mizar article:

Basic Properties of Genetic Algorithm

by
Akihiko Uchibori, and
Noboru Endou

Received April 24, 1999

MML identifier: GENEALG1
[ Mizar article, MML identifier index ]


environ

 vocabulary FINSEQ_1, RFINSEQ, ARYTM_1, FUNCT_1, RELAT_1, ZF_REFLE, PROB_1,
      TARSKI, BOOLE, SUBSET_1, GENEALG1, FINSEQ_4;
 notation TARSKI, XBOOLE_0, SUBSET_1, XCMPLX_0, XREAL_0, NAT_1, FUNCT_1,
      RELAT_1, FINSEQ_1, PROB_1, FINSEQ_4, RFINSEQ, BINARITH, TOPREAL1;
 constructors REAL_1, FINSEQ_4, AMI_1, GOBOARD9, BINARITH, RFINSEQ, PROB_1,
      MEMBERED;
 clusters RELSET_1, FINSEQ_1, PRVECT_1, MSAFREE1, PUA2MSS1, XREAL_0, ARYTM_3,
      TOPREAL1, RELAT_1;
 requirements NUMERALS, BOOLE, SUBSET, ARITHM;


begin :: Preliminaries

 reserve D for non empty set;
 reserve f1,f2 for FinSequence of D;
 reserve i,k,n,n1,n2,n3,n4,n5,n6 for Nat;

theorem :: GENEALG1:1
n <= len f1 implies (f1^f2)/^n = (f1/^n)^f2;

theorem :: GENEALG1:2
(f1^f2)|(len f1 + i) = f1^(f2|i);

:::::::::::::::::::::::::::::::::::::::::::::::::::::
:: Definitions of Gene-Set,GA-Space and Individual ::
:::::::::::::::::::::::::::::::::::::::::::::::::::::

definition
  mode Gene-Set is non-empty non empty FinSequence;
end;

definition let S be Gene-Set;
  redefine func Union S;
  synonym GA-Space S;
end;

definition let f be non-empty non empty Function;
  cluster Union f -> non empty;
end;

definition let S be Gene-Set;
  mode Individual of S -> FinSequence of GA-Space S means
:: GENEALG1:def 1
  len it = len S & for i st i in dom it holds it.i in S.i;
end;

begin
::::::::::::::::::::::::::::::::::::::::::::::
:: Definitions of several genetic operators ::
::::::::::::::::::::::::::::::::::::::::::::::

definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n;
func crossover(p1,p2,n) -> FinSequence of GA-Space S equals
:: GENEALG1:def 2
(p1|n)^(p2/^n);
end;

definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S, n1,n2;
func crossover(p1,p2,n1,n2) -> FinSequence of GA-Space S equals
:: GENEALG1:def 3
crossover(crossover(p1,p2,n1),crossover(p2,p1,n1),n2);
end;

definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S,
n1,n2,n3;
func crossover(p1,p2,n1,n2,n3) -> FinSequence of GA-Space S equals
:: GENEALG1:def 4
crossover(crossover(p1,p2,n1,n2),crossover(p2,p1,n1,n2),n3);
end;

definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S,
n1,n2,n3,n4;
func crossover(p1,p2,n1,n2,n3,n4) -> FinSequence of GA-Space S equals
:: GENEALG1:def 5
crossover(crossover(p1,p2,n1,n2,n3),crossover(p2,p1,n1,n2,n3),n4);
end;

definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S,
n1,n2,n3,n4,n5;
func crossover(p1,p2,n1,n2,n3,n4,n5) -> FinSequence of GA-Space S equals
:: GENEALG1:def 6

crossover(crossover(p1,p2,n1,n2,n3,n4),crossover(p2,p1,n1,n2,n3,n4),n5);
end;

definition let S be Gene-Set, p1,p2 be FinSequence of GA-Space S,
n1,n2,n3,n4,n5,n6;
func crossover(p1,p2,n1,n2,n3,n4,n5,n6) -> FinSequence of GA-Space S equals
:: GENEALG1:def 7

crossover(crossover(p1,p2,n1,n2,n3,n4,n5),
   crossover(p2,p1,n1,n2,n3,n4,n5),n6);
end;

begin
:::::::::::::::::::::::::::::::::::::
:: Properties of 1-point crossover ::
:::::::::::::::::::::::::::::::::::::

reserve S for Gene-Set;
reserve p1,p2 for Individual of S;

theorem :: GENEALG1:3
crossover(p1,p2,n) is Individual of S;

definition let S be Gene-Set, p1,p2 be Individual of S, n;
  redefine func crossover(p1,p2,n) -> Individual of S;
end;

theorem :: GENEALG1:4
crossover(p1,p2,0) = p2;

theorem :: GENEALG1:5
n >= len p1 implies crossover(p1,p2,n) = p1;

begin
::::::::::::::::::::::::::::::::::::::
:: Properties of 2-points crossover ::
:::::::::::::::::::::::: :::::::::::::

theorem :: GENEALG1:6
crossover(p1,p2,n1,n2) is Individual of S;

definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2;
redefine func crossover(p1,p2,n1,n2) -> Individual of S;
end;

theorem :: GENEALG1:7
crossover(p1,p2,0,n) = crossover(p2,p1,n);

theorem :: GENEALG1:8
crossover(p1,p2,n,0) = crossover(p2,p1,n);

theorem :: GENEALG1:9
n1 >= len p1 implies crossover(p1,p2,n1,n2)=crossover(p1,p2,n2);

theorem :: GENEALG1:10
n2 >= len p1 implies crossover(p1,p2,n1,n2)=crossover(p1,p2,n1);

theorem :: GENEALG1:11
n1 >= len p1 & n2 >= len p1 implies crossover(p1,p2,n1,n2)=p1;

theorem :: GENEALG1:12
crossover(p1,p2,n1,n1) = p1;

theorem :: GENEALG1:13
crossover(p1,p2,n1,n2) = crossover(p1,p2,n2,n1);

begin
::::::::::::::::::::::::::::::::::::::
:: Properties of 3-points crossover ::
:::::::::::::::::::::::: :::::::::::::

theorem :: GENEALG1:14
crossover(p1,p2,n1,n2,n3) is Individual of S;

definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2,n3;
redefine func crossover(p1,p2,n1,n2,n3) -> Individual of S;
end;

theorem :: GENEALG1:15
crossover(p1,p2,0,n2,n3) = crossover(p2,p1,n2,n3) &
crossover(p1,p2,n1,0,n3) = crossover(p2,p1,n1,n3) &
crossover(p1,p2,n1,n2,0) = crossover(p2,p1,n1,n2);

theorem :: GENEALG1:16
crossover(p1,p2,0,0,n3) = crossover(p1,p2,n3) &
crossover(p1,p2,n1,0,0) = crossover(p1,p2,n1) &
crossover(p1,p2,0,n2,0) = crossover(p1,p2,n2);

theorem :: GENEALG1:17
crossover(p1,p2,0,0,0) = p2;

theorem :: GENEALG1:18
n1 >= len p1 implies
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2,n3);

theorem :: GENEALG1:19
n2 >= len p1 implies
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n3);

theorem :: GENEALG1:20
n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n2);

theorem :: GENEALG1:21
n1 >= len p1 & n2 >= len p1 implies
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n3);

theorem :: GENEALG1:22
n1 >= len p1 & n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2);

theorem :: GENEALG1:23
n2 >= len p1 & n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1);

theorem :: GENEALG1:24
n1 >= len p1 & n2 >= len p1 & n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3) = p1;

theorem :: GENEALG1:25
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n2,n1,n3)
& crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n1,n3,n2);

theorem :: GENEALG1:26
crossover(p1,p2,n1,n2,n3) = crossover(p1,p2,n3,n1,n2);

theorem :: GENEALG1:27
crossover(p1,p2,n1,n1,n3)=crossover(p1,p2,n3) &
crossover(p1,p2,n1,n2,n1)=crossover(p1,p2,n2) &
crossover(p1,p2,n1,n2,n2)=crossover(p1,p2,n1);

begin
::::::::::::::::::::::::::::::::::::::
:: Properties of 4-points crossover ::
:::::::::::::::::::::::: :::::::::::::

theorem :: GENEALG1:28
crossover(p1,p2,n1,n2,n3,n4) is Individual of S;

definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2,n3,n4;
redefine func crossover(p1,p2,n1,n2,n3,n4) -> Individual of S;
end;

theorem :: GENEALG1:29
crossover(p1,p2,0,n2,n3,n4) = crossover(p2,p1,n2,n3,n4) &
crossover(p1,p2,n1,0,n3,n4) = crossover(p2,p1,n1,n3,n4) &
crossover(p1,p2,n1,n2,0,n4) = crossover(p2,p1,n1,n2,n4) &
crossover(p1,p2,n1,n2,n3,0) = crossover(p2,p1,n1,n2,n3);

theorem :: GENEALG1:30
crossover(p1,p2,0,0,n3,n4) = crossover(p1,p2,n3,n4) &
crossover(p1,p2,0,n2,0,n4) = crossover(p1,p2,n2,n4) &
crossover(p1,p2,0,n2,n3,0) = crossover(p1,p2,n2,n3) &
crossover(p1,p2,n1,0,n3,0) = crossover(p1,p2,n1,n3) &
crossover(p1,p2,n1,0,0,n4) = crossover(p1,p2,n1,n4) &
crossover(p1,p2,n1,n2,0,0) = crossover(p1,p2,n1,n2);

theorem :: GENEALG1:31
crossover(p1,p2,n1,0,0,0) = crossover(p2,p1,n1) &
crossover(p1,p2,0,n2,0,0) = crossover(p2,p1,n2) &
crossover(p1,p2,0,0,n3,0) = crossover(p2,p1,n3) &
crossover(p1,p2,0,0,0,n4) = crossover(p2,p1,n4);

theorem :: GENEALG1:32
crossover(p1,p2,0,0,0,0) = p1;

theorem :: GENEALG1:33
(n1 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4)) &
(n2 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4)) &
(n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n4)) &
(n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n3));

theorem :: GENEALG1:34
(n1 >= len p1 & n2 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4)) &
(n1 >= len p1 & n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4)) &
(n1 >= len p1 & n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3)) &
(n2 >= len p1 & n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4)) &
(n2 >= len p1 & n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3)) &
(n3 >= len p1 & n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2));

theorem :: GENEALG1:35
(n1 >= len p1 & n2 >= len p1 & n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4)) &
(n1 >= len p1 & n2 >= len p1 & n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3)) &
(n1 >= len p1 & n3 >= len p1 & n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2)) &
(n2 >= len p1 & n3 >= len p1 & n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1));

theorem :: GENEALG1:36
n1 >= len p1 & n2 >= len p1 & n3 >= len p1 & n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4) = p1;

theorem :: GENEALG1:37
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n2,n4,n3) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n2,n4) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n3,n4,n2) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4,n2,n3) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n1,n4,n3,n2) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n1,n3,n4) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n1,n4,n3) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n1,n4) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n3,n4,n1) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4,n1,n3) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n2,n4,n3,n1) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n1,n2,n4) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n1,n4,n2) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n2,n1,n4) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n2,n4,n1) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4,n1,n2) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n3,n4,n2,n1) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n1,n2,n3) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n1,n3,n2) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n2,n1,n3) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n2,n3,n1) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n3,n1,n2) &
crossover(p1,p2,n1,n2,n3,n4) = crossover(p1,p2,n4,n3,n2,n1);

theorem :: GENEALG1:38
crossover(p1,p2,n1,n1,n3,n4) = crossover(p1,p2,n3,n4) &
crossover(p1,p2,n1,n2,n1,n4) = crossover(p1,p2,n2,n4) &
crossover(p1,p2,n1,n2,n3,n1) = crossover(p1,p2,n2,n3) &
crossover(p1,p2,n1,n2,n2,n4) = crossover(p1,p2,n1,n4) &
crossover(p1,p2,n1,n2,n3,n2) = crossover(p1,p2,n1,n3) &
crossover(p1,p2,n1,n2,n3,n3) = crossover(p1,p2,n1,n2);

theorem :: GENEALG1:39
  crossover(p1,p2,n1,n1,n3,n3) = p1 &
crossover(p1,p2,n1,n2,n1,n2) = p1 &
crossover(p1,p2,n1,n2,n2,n1) = p1;

begin
::::::::::::::::::::::::::::::::::::::
:: Properties of 5-points crossover ::
:::::::::::::::::::::::: :::::::::::::

theorem :: GENEALG1:40
crossover(p1,p2,n1,n2,n3,n4,n5) is Individual of S;

definition let S be Gene-Set, p1,p2 be Individual of S, n1,n2,n3,n4,n5;
redefine func crossover(p1,p2,n1,n2,n3,n4,n5) -> Individual of S;
end;

theorem :: GENEALG1:41
crossover(p1,p2,0,n2,n3,n4,n5)=crossover(p2,p1,n2,n3,n4,n5) &
crossover(p1,p2,n1,0,n3,n4,n5) = crossover(p2,p1,n1,n3,n4,n5) &
crossover(p1,p2,n1,n2,0,n4,n5) = crossover(p2,p1,n1,n2,n4,n5) &
crossover(p1,p2,n1,n2,n3,0,n5) = crossover(p2,p1,n1,n2,n3,n5) &
crossover(p1,p2,n1,n2,n3,n4,0) = crossover(p2,p1,n1,n2,n3,n4);

theorem :: GENEALG1:42
crossover(p1,p2,0,0,n3,n4,n5)=crossover(p1,p2,n3,n4,n5) &
crossover(p1,p2,0,n2,0,n4,n5)=crossover(p1,p2,n2,n4,n5) &
crossover(p1,p2,0,n2,n3,0,n5)=crossover(p1,p2,n2,n3,n5) &
crossover(p1,p2,0,n2,n3,n4,0)=crossover(p1,p2,n2,n3,n4) &
crossover(p1,p2,n1,0,0,n4,n5)=crossover(p1,p2,n1,n4,n5) &
crossover(p1,p2,n1,0,n3,0,n5)=crossover(p1,p2,n1,n3,n5) &
crossover(p1,p2,n1,0,n3,n4,0)=crossover(p1,p2,n1,n3,n4) &
crossover(p1,p2,n1,n2,0,0,n5)=crossover(p1,p2,n1,n2,n5) &
crossover(p1,p2,n1,n2,0,n4,0)=crossover(p1,p2,n1,n2,n4) &
crossover(p1,p2,n1,n2,n3,0,0)=crossover(p1,p2,n1,n2,n3);

theorem :: GENEALG1:43
crossover(p1,p2,0,0,0,n4,n5)=crossover(p2,p1,n4,n5) &
crossover(p1,p2,0,0,n3,0,n5)=crossover(p2,p1,n3,n5) &
crossover(p1,p2,0,0,n3,n4,0)=crossover(p2,p1,n3,n4) &
crossover(p1,p2,0,n2,0,0,n5)=crossover(p2,p1,n2,n5) &
crossover(p1,p2,0,n2,0,n4,0)=crossover(p2,p1,n2,n4) &
crossover(p1,p2,0,n2,n3,0,0)=crossover(p2,p1,n2,n3) &
crossover(p1,p2,n1,0,0,0,n5)=crossover(p2,p1,n1,n5) &
crossover(p1,p2,n1,0,0,n4,0)=crossover(p2,p1,n1,n4) &
crossover(p1,p2,n1,0,n3,0,0)=crossover(p2,p1,n1,n3) &
crossover(p1,p2,n1,n2,0,0,0)=crossover(p2,p1,n1,n2);

theorem :: GENEALG1:44
crossover(p1,p2,0,0,0,0,n5)=crossover(p1,p2,n5) &
crossover(p1,p2,0,0,0,n4,0)=crossover(p1,p2,n4) &
crossover(p1,p2,0,0,n3,0,0)=crossover(p1,p2,n3) &
crossover(p1,p2,0,n2,0,0,0)=crossover(p1,p2,n2) &
crossover(p1,p2,n1,0,0,0,0)=crossover(p1,p2,n1);

theorem :: GENEALG1:45
crossover(p1,p2,0,0,0,0,0)=p2;

theorem :: GENEALG1:46
(n1>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n4,n5)) &
(n2>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n4,n5)) &
(n3>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n4,n5)) &
(n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3,n5)) &
(n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3,n4));

theorem :: GENEALG1:47
(n1>=len p1 & n2>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n4,n5)) &
(n1>=len p1 & n3>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n4,n5)) &
(n1>=len p1 & n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n5)) &
(n1>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3,n4)) &
(n2>=len p1 & n3>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n4,n5)) &
(n2>=len p1 & n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n5)) &
(n2>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3,n4)) &
(n3>=len p1 & n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n5)) &
(n3>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n4)) &
(n4>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2,n3));

theorem :: GENEALG1:48
(n1>=len p1 & n2>=len p1 & n3>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4,n5)) &
(n1>=len p1 & n2>=len p1 & n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n5)) &
(n1>=len p1 & n2>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n4)) &
(n1>=len p1 & n3>=len p1 & n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n5)) &
(n1>=len p1 & n3>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n4)) &
(n1>=len p1 & n4>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n3)) &
(n2>=len p1 & n3>=len p1 & n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n5)) &
(n2>=len p1 & n3>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n4)) &
(n2>=len p1 & n4>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n3)) &
(n3>=len p1 & n4>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1,n2));

theorem :: GENEALG1:49
(n1>=len p1 & n2>=len p1 & n3>=len p1 & n4>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n5)) &
(n1>=len p1 & n2>=len p1 & n3>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4)) &
(n1>=len p1 & n2>=len p1 & n4>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3)) &
(n1>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2)) &
(n2>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n1));

theorem :: GENEALG1:50
n1>=len p1 & n2>=len p1 & n3>=len p1 & n4>=len p1 & n5>=len p1
implies crossover(p1,p2,n1,n2,n3,n4,n5)=p1;

theorem :: GENEALG1:51
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n2,n1,n3,n4,n5) &
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n3,n2,n1,n4,n5) &
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n4,n2,n3,n1,n5) &
crossover(p1,p2,n1,n2,n3,n4,n5)=crossover(p1,p2,n5,n2,n3,n4,n1);

theorem :: GENEALG1:52
crossover(p1,p2,n1,n1,n3,n4,n5)=crossover(p1,p2,n3,n4,n5) &
crossover(p1,p2,n1,n2,n1,n4,n5)=crossover(p1,p2,n2,n4,n5) &
crossover(p1,p2,n1,n2,n3,n1,n5)=crossover(p1,p2,n2,n3,n5) &
crossover(p1,p2,n1,n2,n3,n4,n1)=crossover(p1,p2,n2,n3,n4);

begin
::::::::::::::::::::::::::::::::::::::
:: Properties of 6-points crossover ::
::::::::::::::::::::::::::::::::::::::

theorem :: GENEALG1:53
crossover(p1,p2,n1,n2,n3,n4,n5,n6) is Individual of S;

definition let S be Gene-Set,p1,p2 be Individual of S,n1,n2,n3,n4,n5,n6;
redefine func crossover(p1,p2,n1,n2,n3,n4,n5,n6) -> Individual of S;
end;

theorem :: GENEALG1:54
  crossover(p1,p2,0,n2,n3,n4,n5,n6)=crossover(p2,p1,n2,n3,n4,n5,n6) &
crossover(p1,p2,n1,0,n3,n4,n5,n6)=crossover(p2,p1,n1,n3,n4,n5,n6) &
crossover(p1,p2,n1,n2,0,n4,n5,n6)=crossover(p2,p1,n1,n2,n4,n5,n6) &
crossover(p1,p2,n1,n2,n3,0,n5,n6)=crossover(p2,p1,n1,n2,n3,n5,n6) &
crossover(p1,p2,n1,n2,n3,n4,0,n6)=crossover(p2,p1,n1,n2,n3,n4,n6) &
crossover(p1,p2,n1,n2,n3,n4,n5,0)=crossover(p2,p1,n1,n2,n3,n4,n5);

theorem :: GENEALG1:55
(n1 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n2,n3,n4,n5,n6)) &
(n2 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n3,n4,n5,n6)) &
(n3 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n4,n5,n6)) &
(n4 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n5,n6)) &
(n5 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n4,n6)) &
(n6 >= len p1 implies
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n1,n2,n3,n4,n5));

theorem :: GENEALG1:56
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n2,n1,n3,n4,n5,n6) &
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n3,n2,n1,n4,n5,n6) &
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n4,n2,n3,n1,n5,n6) &
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n5,n2,n3,n4,n1,n6) &
crossover(p1,p2,n1,n2,n3,n4,n5,n6)=crossover(p1,p2,n6,n2,n3,n4,n5,n1);

theorem :: GENEALG1:57
  crossover(p1,p2,n1,n1,n3,n4,n5,n6)=crossover(p1,p2,n3,n4,n5,n6) &
crossover(p1,p2,n1,n2,n1,n4,n5,n6)=crossover(p1,p2,n2,n4,n5,n6) &
crossover(p1,p2,n1,n2,n3,n1,n5,n6)=crossover(p1,p2,n2,n3,n5,n6) &
crossover(p1,p2,n1,n2,n3,n4,n1,n6)=crossover(p1,p2,n2,n3,n4,n6) &
crossover(p1,p2,n1,n2,n3,n4,n5,n1)=crossover(p1,p2,n2,n3,n4,n5);

Back to top